
Comput. & Graphics Vol. 12, No. 1, pp. 91-97, 1988 0097-8493/88 $3.00 + .00
Printed in Great Britain. 1988 Pergamon Press pie

Short Technical Notes/Technical Forum/Systems

DESIGN NOTES ON A SINGLE BOARD
MULTIPROCESSOR FOR REAL-TIME CONTOUR

SURFACE DISPLAY GENERATION*

MICHAEL J. ZYDA~" AND ROBERT A. WALKER
Naval Postgraduate School, Code 52, Dept. of Computer Science, Monterey, California 93943-5100

Abstract--We present in this study a design for a VLSI multiprocessor capable of generating contour surface
displays in real-time (one-thirtieth of a second). We begin by examining an application that requires real-
time contour surface display generation. We sketch some outlines for an architecture based on a decomposable
algorithm recently published. We then propose an architecture for a single board VLSI contour surface
display generator that is pluggable into the Multihus of the Silicon Graphics, Inc. IRIS workstation.

1. INTRODUCTION

Contour surface display generation is one of the most
frequently used applications graphics algorithms[1-5].
A contour surface display is a visual representation of
a surface by the collection of lines formed when that
surface is intersected by a set of parallel planes (Fig.
1). The lines formed on each of those planes are called
contours. A contour represents the set of points that
belong to both the surface and the particular inter-
secting plane. Contour surface displays are used in X-
ray crystallography, computer-aided tomography, and
other applications for which grid data is collected.
Contour surface display generation is generally depicted
as a computationally slow operation whose output is
sent to a plotter or film recorder. One publication has
described an architecture, and produced a feasibility
determination for a VLSI based contour surface display
generator[3]. This article is a distillation and conden-
sation of that study.

1.1. Contour surface display generation is slow
Our initial premise for this study is that contour

surface display generation on a single processor system,
such as a graphics workstation with a floating point
accelerator, is too slow to be of any use for interactive
applications requiring such a display. This premise is
based on [3] and is reinforced by statements found in
the literature. Several papers have been written doc-
umenting "breakthroughs" that increase the speed of
contour surface display generation. One author has re-
ported that his contour surface display generation sub-
routine used one second of central processor time on
NCAR's Control Data 7600[4]. Although a contour
surface display generation program of this speed is
useful for static situations, it is unacceptable for ap-
plications that generate a succession of contour surface
displays in response to contour level changes read from
a control dial. Such a program requires that a new

* This work has been supported by the VHSIC Program
Office, the U.S. Army Combat Developments Experimenta-
tion Center, Fort Ord, California and the Naval Ocean Systems
Center, San Diego. It is a condensation of [8], which is available
by request to the Department of Computer Science at the
Naval Postgraduate School.

t Contact author.

contour surface display be generated, distributed, and
displayed in real-time, typically one-thirtieth of a sec-
ond for current display technology[6].

One application in which real-time contour surface
display generation is important is the determination
of molecular structures from the electron density data
generated by X-ray crystallography[1]. Such an oper-
ation is executed interactively by using a computer
graphics program that displays a Dreiding (stick) model
of the molecule inside a contour surface display of the
corresponding region of the molecule's electron density
grid. In addition to the graphics function, the computer
program monitors a series of signals generated by the
user, while the user is turning the various knobs on a
control console. The values read from these knobs are
interpreted by the program as modifications to either
the molecule or the surface display. Modifications to
the molecule take the form of bond rotations or bond
lengthenings. Modifications to the contour surface dis-
play take the form of an increase or decrease of the
contour level. The goal of this process is to produce
the stick model of the molecule that best fits inside the
given electron density data set. The user can determine
whether the model fits the density grid by modifying
the contour level, shrinking the contour surface to the
molecule. Similarly, the user can expand the contour
surface from the stick model for better visibility. This
function requires that the hardware has the capability
to rapidly change the contour display as its contour
level changes.

We know from [3] that the generation of a contour
surface display, such as those required by the above
application, cannot be completed in real-time using a
conventional uniprocessor. The reason for this failure
is that contour surface display generation algorithms
require many more instructions executed per second
than can be provided by currently available unipr¢~
cessors. In the past, this limitation of the conventional
processor has relegated such applications to either the
non real-time environment (waiting a few minutes for
each display), or to the equally unsatisfying environ-
ment of motion picture film. Because of this, the au-
thors of [3] looked for a VLSI multiprocessor solution
to the real-time contour surface display generation
problem.

91

92 M.J. ZYDA AND R. A. WALKER

Fig. 1. Contour surface display generated from a hydrogen atom wavefunction squared (3dz2 orbital).

1.2. Contouring definitions
A contour surface is a visual display that represents

all points in a particular region of three-space (x, y,
z} which satisfy the relation f ((x , y, z)) = k, where k
is a constant known as the contour level (Fig. 1). The
function frepresents a physical quantity defined over
the three-dimensional volume of interest. The visual
display created by this algorithm is the collection of
lines that belong to the intersection of both the set of
points that satisfy the relation f ({ x , y, z)) = k, and a
set of regularly spaced parallel planes that pass through
the region of three-space for which the relation is de-
fined.

For this study, the function f i s approximated by a
discrete, three-dimensional grid created by sampling
that function over the volume of interest. The three-
dimensional grid contains a value at each of its defined
points that corresponds to the physical quantity ob-
tained from the function, i.e., the value associated with
point (Xo, Yo, Zo) is Vo, where f(xo, Yo, z0) = v0.

A decomposable algorithm for contour surface dis-
play generation is described in [5]. That algorithm is
constructed from a two-dimensional contouring al-
gorithm used to contour all the possible planar, or-
thogonal, two-dimensional grids of a larger three-di-
mensional grid. The contouring algorithm that works
on the two-dimensional grid is comprised of compo-
nents, called algorithm components. The algorithm
components operate on individual 2 X 2 subgrids of
the larger two-dimensional grid. (Note: a 2 X 2 subgrid
is defined to be that portion of the two-dimensional
grid bounded by four adjacent grid points.) In the al-

gorithm, the computations necessary for generating the
contour lines for a single 2 X 2 subgrid are independent
from those required for any other 2 X 2 subgrid. If we
compute the contours corresponding to contour level
k for all 2 X 2 subgrids of a two-dimensional grid, then
we will have determined the complete set of contours
for that grid. If we compute the contours corresponding
to contour level k for all possible 2 × 2 subgrids of the
larger three-dimensional grid, then we will have the
complete contour surface display for that grid. The
assemblage of the contours created by this process, i.e.,
the simultaneous display of all the contours created
for all 2 X 2 subgrids of the larger three-dimensional
grid, produces a "chicken-wire-like" contour surface
display (Fig. 1). The full development of this algorithm
can be found in [5]. We refer to the results of those
studies and, consequently, do not cover the algorithm
here in great detail. We only note that for the largest
three-dimensional grid of interest for the above appli-
cation, a 30 X 30 X 30 grid, this means the potential
for 75,690 parallel operations (see Fig. 2 and [1]).

2. ARCHITECTURAL GOALS FOR THE CONTOUR
SURFACE DISPLAY GENERATOR

The first goal in the design of the contour surface
display generator is to build a system that meets the
performance requirements, i.e., a new contour surface
display computed from a 30 X 30 X 30 grid, and de-
livered to a display device in one-thirtieth of a second.
This is an ambitious goal but it must be noted that
one-thirtieth of a second is the maximum amount of
time allowable for the operation. Any longer amount

A single board multiprocessor for contour surface display 93

m

x (m- I) X

1

. ° .

A 2D Grid of Size 1 x m Has

(i - i) x (m - I) 2 x 2 Subgrids.

A 2 x 2 Subgrld

/ / / / /
/ / / /

/

2 . . .

/

/

/

n -

A 3D Grid of Size i x m x n Has

I) + m x (i - 1) x (n - I) + n x

2 x 2 Subgrids

Fig. 2.2 × 2 subgrid count for 2D and 3D grids.

(I - 1) x (m - 1)

of time does not provide the viewer smooth transitions
between successive contour surface displays. This goal
says nothing about the load time of the 30 × 30 × 30
grid to the special piece of hardware that computes the
contour surface display. Consequently, we allow so-
lutions that pre-load the grid.

The second goal for the construction of the contour
surface display generator is that we be able to plug it
into an existing graphics system with minimal hardware
and software changes. For the purposes of this study,
the target graphics system is chosen to be the Silicon

Graphics, Inc. IRIS workstation (see Fig. 3 and [7]).
The Silicon Graphics, Inc., IRIS is currently the highest
performance graphics system that best matches the se-
lected application's goals.

3. ARCHITECTURE OF THE CONTOUR SURFACE
DISPLAY GENERATOR

There is not enough space in this paper to present
the complete architecture of the contour surface display
generator. The reader is instead referred to [3]. An
overview architectural description is that the contour

94 M. J. ZYDA AND R. A. WALKER

~d

Complnlon
Processor

(MCaSOOO)

Contour
SurfLce
Display

Cenerator

\
/

8 8

Program
~nd

Display
List Memory

Frame-Buffer
Control

Geometry
Engines

}

Bit PiLne
Memory

Updlte
Controller

8 8
~ i s p l L y Col

ontrol (R{Mt

~)

I
Multibus

8 8 8 8
Ethernet

Control

MC68010
Processor

Disk
Controller

Floating
P o i n t

Fig. 3. Block diagram of the Silicon Graphics, Inc. IRIS (with additional, non-SGI contour surface display
generator).

surface display generator is comprised of four subsys-
tems: (I) the array of algorithm component processors,
(2) the controller for that array of processors, (3) the
algorithm component processor itself, and (4) the in-
terface to the graphics system. Figure 4 shows how the
four subsystems relate to the target graphics system.

Figure 4 depicts the array of algorithm component
processors as a single box, with three connections to
the outside environment: an input bus for contour lev-

sis and subgrids, an output bus for coordinates and
drawing instructions, and a bus for controlling the array
of processors. A dual bus configuration is chosen to
maximize concurrency in the system. This is possible
because of the autonomous nature of the input and
output operations of the algorithm.

The input bus is the medium responsible for deliv-
ering subgrid definitions and contour levels to the array
of algorithm component processors. Because this is the

Multlbus

Controller

and

Support

Devices

Control Bus

Input

Bus

jL
Array

of

Algorithm

Component

Processor8

Output
Bus

Disp lay

P r o c e s s i n g

Unit /

(iRlS)

Fig. 4. Contour surface display generator: buses and data flow.

(Multibus
Interfac,
85 Pins

A single board multiprocessor for contour surface display

Input
Bus)

SYSTEMS IBO-IB15 /

CONTROLLER

Control Bus

Reset

T e s t

Load Subgr ids

Compute Contours

Input Count Ensble

Input Count Enable Return

Output Count Enable

Output Count Enable Return

Wait/Test Acknowledge

Write Enable

Error

95

Input
Bus

IBO-IB15

Reeet----Ip

Test~

Load
Subgrids

Compute---~
Contours

Input Count~
Enable Return

Input Coun~
Enable

Gnd----Ip

Vcc---Ip

Clock----Ip

ALGORITHM

COMPONENT

PROCESSOR

Output
Bus)

0BO-0BI&/

~ Walt/Test
A c k n o w l e d g e

9~---Write
Enable

_--~Error

---~ 0utput Count
Enable Return

Output Count
Enable

g e . r e q

g e . a c k

Fig. 5. Functional pin diagrams of the systems controller and the algorithm component processor.

only data required to be transmitted on the bus, the
bandwidth of the input bus does not need to be high.
The rate at which subgrid definitions are loaded into

the algorithm component processors does not directly
affect the real-time capabilities of the system. The real-
time capabilities of the contour surface display gen-

96 M. J. ZYDA AND R. A. WALKER

erator are determined by the rate at which data can be
produced in each algorithm component processor.
This, in turn, directly affects the rate of output to the
display processing unit. The output bus is responsible
for delivering the coordinates and drawing instructions
to the display processing unit.

The control bus for the contour surface display gen-
erator contains all the control lines necessary to manage
the data flow on the input side of the system. Two
additional control lines are required on the output side
of the system to coordinate the two wire handshake
between the algorithm component processors and the
display processing unit (Geometry Engines).

Control of the array of algorithm component pro-
cessors involves the integration of several different
components. The systems controller coordinates the
operation of all other components (Fig. 5). The systems
controller converts incoming signals from the Multibus
bus master of the Silicon Graphics, Inc. IRIS worksta-
tion into signals that make sense to the algorithm com-
ponent processors. The Multibus bus master is the
board in the Multibus Backplane that places the com-
mands on the Multibus. The systems controller is a
slave in that it reacts to commands placed on the Mul-
tibus.

The component that is responsible for the produc-
tion of the coordinates and drawing instructions for
the contour surface display generator is the algorithm
component processor (Fig. 5). Each of these processors
is identical and functions independently. We do not
go into great detail about that processor other than to
state that the processor is a full microprocessor of the
Motorola MC68000 class.

The contour surface display generator is connected
to the Silicon Graphics, Inc. IRIS graphics system by
the IEEE standard Multibus Backplane Bus[8]. This
Multibus connection provides all inputs to the contour
surface display generator. The Multibus interfaces to
two different classifications of bus modules: (1) Mas-
t e r s - those modules that generate commands, and (2)
Slaves--those that respond to commands. The parent
processor (MC68000) is the Master module for the
graphics system. The contour surface display generator
is a slave module in that system.

The output of the contour surface display generator
is to the Private Bus of the IRIS system (Figs. 3 and
6). The Private Bus is a unidirectional, 16-bit bus ded-
icated to the provision of coordinate and drawing in-
structions to the high speed Geometry Engines. Co-
ordination of the transfer of data between the algorithm
component processors and the Geometry Engines is
done via a two line handshake protocol.

When the contour surface display generator is added
to the system, a physical connection to the Geometry
Engine pipeline must be shared by both itself and the
system processor (the J3 connection of the Geometry
Engine board). To enable the user to alternatively route
processor and generator data to the Geometry Engines,
a hardware switch is added to the system. This hard-
ware provides the system with a way to multiplex the
direct path of the Private Bus. A software switch then

-J

L

.-[

MC68000

PROCESSOR

BOARD

(PM1)

H
I

2

S

CONTOUR

SURFACE

DISPLAY

GENERATOR

Fig. 6(a). Silicon Graphics, Inc. IRIS pipeline connection for
the private bus (courtesy of Silicon Graphics, Inc.).

Fig. 6(b). The J3 pipeline connection of the Silicon Graphics,
Inc. private bus for the contour surface display generator.

provides the control of the Private Bus' origin and
configuration. This software switch establishes either
a path from the contour surface display generator to
the Geometry Pipeline, or a path directly from the
MC68000 processor (Fig. 3).

4. HARDWARE COMPLEXITY ESTIMATE
The above is a quick overview of the architecture

of the contour surface display generator. One of the
key components in this system is obviously the algo-
rithm component processor. In [3], it is determined
that 50 algorithm component processors are all that

A single board multiprocessor for contour surface display 97

are needed in the system to generate and deliver the
average sized picture for a 30 × 30 × 30 grid. To de-
termine the feasibility of the complete system, we need
a circuit complexity estimate for the size of the algo-
rithm component processor. In [3], we find a summary
of the quantity of transistor equivalent devices nec-
essary. We note only that the total devices required for
one algorithm component processor is about 660K de-
vices. This number is well below the two million devices
per chip level that is currently being produced in re-
search laboratories[9]. For this level of chip complexity,
the array of algorithm component processors can be
built in less than 25 VLSI chips. At the ten million
devices per chip level promised in [10], this is less than
5 VLSI chips. At either chip complexity level, this is
a smaller quantity of chips than normally found on a
single Multibus board. Consequently, the design of this
system is within our goal of putting all elements on a
single board pluggable into our workstation.

5. CONCLUSIONS
This study is intended to give an overview of the

design for the real-time contour surface display gen-
erator described in [3]. We can be assured that once
we produce such a system that the applications user
will return to us with further hardware demands for
either other algorithms, or additional real-time graphics
display generation capabilities. There are several ways
to respond to such demands. One way is to use the
knowledge gained in the design of the contour surface
display generator as a base for the design of the display
generator for the later graphics algorithm. Such design
efforts are expensive and must be justified by demand.
An alternative is to step back from the contour surface
display generator and attempt to generalize the archi-
tecture required such that other graphics algorithms
with similar characteristics can use the same special

hardware. This later approach is our current research
direction. We hope to provide from this effort a series
of single board (one or two board) multiprocessors
useful for different classes of graphics applications al-
gorithms. We are at an early phase of this effort and
are working on defining those algorithm classes.

REFERENCES
1. C. D. Barry and J. H. Sucher, Interactive real-time con-

touring of density maps. American Crystallographic As-
sociation Winter Meeting, Honolulu, Poster Session
(March 1979).

2. D. H. Faber, E. W. M. Rutten-Keulemans, and C. Altona,
Computer plotting of contour maps: an improved method.
Computers & Chemistry 3, 51-55 Pergamon Press Ltd.,
Oxford (1979).

3. Robert A. Walker and Michael J. Zyda, An integrated
systems architecture for real-time contour surface display
generation. Technical Report NPS42-85-010, Department
of Computer Science, Naval Postgraduate School, Mon-
terey, California (1985).

4. T. Wright and J. Humbrecht, ISOSRF--an algorithm for
plotting iso-valued surfaces of a function of three variables.
Computer Graphics: A Quarterly Report of SIGGRAPH-
ACM 13(2), 182-189 (1979).

5. Michael J. Zyda, A decomposable algorithm for contour
surface display generation. Technical Report NPS52-84-
011, Department of Computer Science, Naval Postgrad-
uate School, Monterey, California (1984).

6. William H. Newman and Robert F. Sproull, Principles
of Interactive Graphics, Second Edition. McGraw-Hill,
New York (1979).

7. J. H. Clark and T. Davis, Workstation unites real-time
graphics with unix, ethernet. Electronics (October 20,
1983).

8. Intel Corporation Technical Publication, Intel Multibus
Specification, Intel Corporation, Santa Clara, California
(1982).

9. Micronews, IBM experimental million bit memory chip,
IEEEMicro 4(4), 191 (1984).

10. Leonard Uhr, Algorithm-Structured Computer Arrays and
Networks. Academic Press, Orlando, Florida (1984).

