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Abstract--We present in this study a design for a VLSI multiprocessor capable of generating contour surface 
displays in real-time (one-thirtieth of a second). We begin by examining an application that requires real- 
time contour surface display generation. We sketch some outlines for an architecture based on a decomposable 
algorithm recently published. We then propose an architecture for a single board VLSI contour surface 
display generator that is pluggable into the Multihus of the Silicon Graphics, Inc. IRIS workstation. 

1. INTRODUCTION 

Contour surface display generation is one of the most 
frequently used applications graphics algorithms[ 1-5]. 
A contour surface display is a visual representation of 
a surface by the collection of lines formed when that 
surface is intersected by a set of parallel planes (Fig. 
1). The lines formed on each of those planes are called 
contours. A contour represents the set of points that 
belong to both the surface and the particular inter- 
secting plane. Contour surface displays are used in X- 
ray crystallography, computer-aided tomography, and 
other applications for which grid data is collected. 
Contour surface display generation is generally depicted 
as a computationally slow operation whose output is 
sent to a plotter or film recorder. One publication has 
described an architecture, and produced a feasibility 
determination for a VLSI based contour surface display 
generator[3]. This article is a distillation and conden- 
sation of that study. 

1.1. Contour surface display generation is slow 
Our initial premise for this study is that contour 

surface display generation on a single processor system, 
such as a graphics workstation with a floating point 
accelerator, is too slow to be of any use for interactive 
applications requiring such a display. This premise is 
based on [3] and is reinforced by statements found in 
the literature. Several papers have been written doc- 
umenting "breakthroughs" that increase the speed of 
contour surface display generation. One author has re- 
ported that his contour surface display generation sub- 
routine used one second of central processor time on 
NCAR's Control Data 7600[4]. Although a contour 
surface display generation program of this speed is 
useful for static situations, it is unacceptable for ap- 
plications that generate a succession of contour surface 
displays in response to contour level changes read from 
a control dial. Such a program requires that a new 
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contour surface display be generated, distributed, and 
displayed in real-time, typically one-thirtieth of a sec- 
ond for current display technology[6]. 

One application in which real-time contour surface 
display generation is important is the determination 
of molecular structures from the electron density data 
generated by X-ray crystallography[ 1 ]. Such an oper- 
ation is executed interactively by using a computer 
graphics program that displays a Dreiding (stick) model 
of the molecule inside a contour surface display of the 
corresponding region of the molecule's electron density 
grid. In addition to the graphics function, the computer 
program monitors a series of signals generated by the 
user, while the user is turning the various knobs on a 
control console. The values read from these knobs are 
interpreted by the program as modifications to either 
the molecule or the surface display. Modifications to 
the molecule take the form of bond rotations or bond 
lengthenings. Modifications to the contour surface dis- 
play take the form of an increase or decrease of the 
contour level. The goal of this process is to produce 
the stick model of the molecule that best fits inside the 
given electron density data set. The user can determine 
whether the model fits the density grid by modifying 
the contour level, shrinking the contour surface to the 
molecule. Similarly, the user can expand the contour 
surface from the stick model for better visibility. This 
function requires that the hardware has the capability 
to rapidly change the contour display as its contour 
level changes. 

We know from [3] that the generation of a contour 
surface display, such as those required by the above 
application, cannot be completed in real-time using a 
conventional uniprocessor. The reason for this failure 
is that contour surface display generation algorithms 
require many more instructions executed per second 
than can be provided by currently available unipr¢~ 
cessors. In the past, this limitation of the conventional 
processor has relegated such applications to either the 
non real-time environment (waiting a few minutes for 
each display), or to the equally unsatisfying environ- 
ment of motion picture film. Because of this, the au- 
thors of [3] looked for a VLSI multiprocessor solution 
to the real-time contour surface display generation 
problem. 

91 



92 M.J. ZYDA AND R. A. WALKER 

Fig. 1. Contour surface display generated from a hydrogen atom wavefunction squared (3dz2 orbital). 

1.2. Contouring definitions 
A contour surface is a visual display that represents 

all points in a particular region of three-space (x, y, 
z} which satisfy the relation f ( (x ,  y, z))  = k, where k 
is a constant known as the contour level (Fig. 1). The 
function frepresents a physical quantity defined over 
the three-dimensional volume of interest. The visual 
display created by this algorithm is the collection of 
lines that belong to the intersection of both the set of 
points that satisfy the relation f ( { x ,  y, z))  = k, and a 
set of regularly spaced parallel planes that pass through 
the region of three-space for which the relation is de- 
fined. 

For this study, the function f i s  approximated by a 
discrete, three-dimensional grid created by sampling 
that function over the volume of interest. The three- 
dimensional grid contains a value at each of its defined 
points that corresponds to the physical quantity ob- 
tained from the function, i.e., the value associated with 
point (Xo, Yo, Zo) is Vo, where f(xo, Yo, z0) = v0. 

A decomposable algorithm for contour surface dis- 
play generation is described in [5]. That algorithm is 
constructed from a two-dimensional contouring al- 
gorithm used to contour all the possible planar, or- 
thogonal, two-dimensional grids of a larger three-di- 
mensional grid. The contouring algorithm that works 
on the two-dimensional grid is comprised of compo- 
nents, called algorithm components. The algorithm 
components operate on individual 2 X 2 subgrids of 
the larger two-dimensional grid. (Note: a 2 X 2 subgrid 
is defined to be that portion of the two-dimensional 
grid bounded by four adjacent grid points.) In the al- 

gorithm, the computations necessary for generating the 
contour lines for a single 2 X 2 subgrid are independent 
from those required for any other 2 X 2 subgrid. If we 
compute the contours corresponding to contour level 
k for all 2 X 2 subgrids of a two-dimensional grid, then 
we will have determined the complete set of contours 
for that grid. If we compute the contours corresponding 
to contour level k for all possible 2 × 2 subgrids of the 
larger three-dimensional grid, then we will have the 
complete contour surface display for that grid. The 
assemblage of the contours created by this process, i.e., 
the simultaneous display of all the contours created 
for all 2 X 2 subgrids of the larger three-dimensional 
grid, produces a "chicken-wire-like" contour surface 
display (Fig. 1). The full development of this algorithm 
can be found in [5]. We refer to the results of those 
studies and, consequently, do not cover the algorithm 
here in great detail. We only note that for the largest 
three-dimensional grid of interest for the above appli- 
cation, a 30 X 30 X 30 grid, this means the potential 
for 75,690 parallel operations (see Fig. 2 and [1]). 

2. ARCHITECTURAL GOALS FOR THE CONTOUR 
SURFACE DISPLAY GENERATOR 

The first goal in the design of the contour surface 
display generator is to build a system that meets the 
performance requirements, i.e., a new contour surface 
display computed from a 30 X 30 X 30 grid, and de- 
livered to a display device in one-thirtieth of a second. 
This is an ambitious goal but it must be noted that 
one-thirtieth of a second is the maximum amount of 
time allowable for the operation. Any longer amount 
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of time does not provide the viewer smooth transitions 
between successive contour surface displays. This goal 
says nothing about the load time of the 30 × 30 × 30 
grid to the special piece of hardware that computes the 
contour surface display. Consequently, we allow so- 
lutions that pre-load the grid. 

The second goal for the construction of the contour 
surface display generator is that we be able to plug it 
into an existing graphics system with minimal hardware 
and software changes. For the purposes of this study, 
the target graphics system is chosen to be the Silicon 

Graphics, Inc. IRIS workstation (see Fig. 3 and [7]). 
The Silicon Graphics, Inc., IRIS is currently the highest 
performance graphics system that best matches the se- 
lected application's goals. 

3. ARCHITECTURE OF THE CONTOUR SURFACE 
DISPLAY GENERATOR 

There is not enough space in this paper to present 
the complete architecture of the contour surface display 
generator. The reader is instead referred to [3]. An 
overview architectural description is that the contour 
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Fig. 3. Block diagram of the Silicon Graphics, Inc. IRIS (with additional, non-SGI contour surface display 
generator). 

surface display generator is comprised of four subsys- 
tems: (I) the array of algorithm component processors, 
(2) the controller for that array of processors, (3) the 
algorithm component processor itself, and (4) the in- 
terface to the graphics system. Figure 4 shows how the 
four subsystems relate to the target graphics system. 

Figure 4 depicts the array of algorithm component 
processors as a single box, with three connections to 
the outside environment: an input bus for contour lev- 

sis and subgrids, an output bus for coordinates and 
drawing instructions, and a bus for controlling the array 
of processors. A dual bus configuration is chosen to 
maximize concurrency in the system. This is possible 
because of the autonomous nature of the input and 
output operations of the algorithm. 

The input bus is the medium responsible for deliv- 
ering subgrid definitions and contour levels to the array 
of algorithm component processors. Because this is the 
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Fig. 5. Functional pin diagrams of the systems controller and the algorithm component processor. 

only data required to be transmitted on the bus, the 
bandwidth of the input bus does not need to be high. 
The rate at which subgrid definitions are loaded into 

the algorithm component processors does not directly 
affect the real-time capabilities of the system. The real- 
time capabilities of the contour surface display gen- 
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erator are determined by the rate at which data can be 
produced in each algorithm component processor. 
This, in turn, directly affects the rate of output to the 
display processing unit. The output bus is responsible 
for delivering the coordinates and drawing instructions 
to the display processing unit. 

The control bus for the contour surface display gen- 
erator contains all the control lines necessary to manage 
the data flow on the input side of the system. Two 
additional control lines are required on the output side 
of the system to coordinate the two wire handshake 
between the algorithm component processors and the 
display processing unit (Geometry Engines). 

Control of the array of algorithm component pro- 
cessors involves the integration of several different 
components. The systems controller coordinates the 
operation of all other components (Fig. 5). The systems 
controller converts incoming signals from the Multibus 
bus master of the Silicon Graphics, Inc. IRIS worksta- 
tion into signals that make sense to the algorithm com- 
ponent processors. The Multibus bus master is the 
board in the Multibus Backplane that places the com- 
mands on the Multibus. The systems controller is a 
slave in that it reacts to commands placed on the Mul- 
tibus. 

The component that is responsible for the produc- 
tion of the coordinates and drawing instructions for 
the contour surface display generator is the algorithm 
component processor (Fig. 5). Each of these processors 
is identical and functions independently. We do not 
go into great detail about that processor other than to 
state that the processor is a full microprocessor of the 
Motorola MC68000 class. 

The contour surface display generator is connected 
to the Silicon Graphics, Inc. IRIS graphics system by 
the IEEE standard Multibus Backplane Bus[8]. This 
Multibus connection provides all inputs to the contour 
surface display generator. The Multibus interfaces to 
two different classifications of bus modules: (1) Mas- 
t e r s - those  modules that generate commands, and (2) 
Slaves--those that respond to commands. The parent 
processor (MC68000) is the Master module for the 
graphics system. The contour surface display generator 
is a slave module in that system. 

The output of the contour surface display generator 
is to the Private Bus of the IRIS system (Figs. 3 and 
6). The Private Bus is a unidirectional, 16-bit bus ded- 
icated to the provision of coordinate and drawing in- 
structions to the high speed Geometry Engines. Co- 
ordination of the transfer of data between the algorithm 
component processors and the Geometry Engines is 
done via a two line handshake protocol. 

When the contour surface display generator is added 
to the system, a physical connection to the Geometry 
Engine pipeline must be shared by both itself and the 
system processor (the J3 connection of the Geometry 
Engine board). To enable the user to alternatively route 
processor and generator data to the Geometry Engines, 
a hardware switch is added to the system. This hard- 
ware provides the system with a way to multiplex the 
direct path of the Private Bus. A software switch then 
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Fig. 6(a). Silicon Graphics, Inc. IRIS pipeline connection for 
the private bus (courtesy of Silicon Graphics, Inc.). 

Fig. 6(b). The J3 pipeline connection of the Silicon Graphics, 
Inc. private bus for the contour surface display generator. 

provides the control of the Private Bus' origin and 
configuration. This software switch establishes either 
a path from the contour surface display generator to 
the Geometry Pipeline, or a path directly from the 
MC68000 processor (Fig. 3). 

4. HARDWARE COMPLEXITY ESTIMATE 
The above is a quick overview of the architecture 

of the contour surface display generator. One of the 
key components in this system is obviously the algo- 
rithm component processor. In [3], it is determined 
that 50 algorithm component processors are all that 
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are needed in the system to generate and deliver the 
average sized picture for a 30 × 30 × 30 grid. To de- 
termine the feasibility of the complete system, we need 
a circuit complexity estimate for the size of the algo- 
rithm component processor. In [3], we find a summary 
of the quantity of transistor equivalent devices nec- 
essary. We note only that the total devices required for 
one algorithm component processor is about 660K de- 
vices. This number is well below the two million devices 
per chip level that is currently being produced in re- 
search laboratories[9]. For this level of chip complexity, 
the array of algorithm component processors can be 
built in less than 25 VLSI chips. At the ten million 
devices per chip level promised in [ 10], this is less than 
5 VLSI chips. At either chip complexity level, this is 
a smaller quantity of chips than normally found on a 
single Multibus board. Consequently, the design of this 
system is within our goal of putting all elements on a 
single board pluggable into our workstation. 

5. CONCLUSIONS 
This study is intended to give an overview of the 

design for the real-time contour surface display gen- 
erator described in [3]. We can be assured that once 
we produce such a system that the applications user 
will return to us with further hardware demands for 
either other algorithms, or additional real-time graphics 
display generation capabilities. There are several ways 
to respond to such demands. One way is to use the 
knowledge gained in the design of the contour surface 
display generator as a base for the design of the display 
generator for the later graphics algorithm. Such design 
efforts are expensive and must be justified by demand. 
An alternative is to step back from the contour surface 
display generator and attempt to generalize the archi- 
tecture required such that other graphics algorithms 
with similar characteristics can use the same special 

hardware. This later approach is our current research 
direction. We hope to provide from this effort a series 
of single board (one or two board) multiprocessors 
useful for different classes of graphics applications al- 
gorithms. We are at an early phase of this effort and 
are working on defining those algorithm classes. 
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