
COMMUNICATIONS
OF THE ACM

Association for
Computing Machinery

Finding the Fun
in Computer Science

Education

A Smart
Cyberinfrastructure

For Research

DNS Lies

Ready for Web OS?

A Threat Analysis of
RFID Systems

CACM.ACM.ORG 12/2009 VOL.52 NO.12

http://CACM.ACM.ORG

66 COMMUNICATIONS OF THE ACM | DECEMBER 2009 | VOL. 52 | NO. 12

contributed articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 A
N

D
R

E
A

 T
S

E
N

G
 /

 C
H

I
M

E
R

A
 G

A
M

E
 S

T
U

D
I

O
S

IN TECHNOLOGY, T HE conceptual age is defined
by cognitive or creative assets, including design,
storytelling, artistry, empathy, play, and emotion.
Good engineering or good computer science is no
longer enough; design must be just as good.7
The transition from information age to conceptual
age has been overlooked by most academics in
computer science, yet many of the consequences of
the transition have been apparent for the past decade
at least, including a drop in undergraduate interest,
the outsourcing of U.S. programming jobs, and the
decline in research laboratories focused on advanced
computer science research. Today, another aspect
of the transition is emerging: integration of game
development into computer science curricula. Here,
I discuss what it looks like, how it affects computer
science departments, and how it helps drive the
overall transition.

DOI:10.1145/1610252.1610272

University CS departments are incorporating
game design and development to prepare their
students for the game industry’s expectations.

BY MICHAEL ZYDA

Computer
Science in the
Conceptual
Age

The last quarter of the 20th cen-
tury saw the U.S. economy transition
from the industrial age to the infor-
mation age, a move characterized
by major changes in profession, as
many people chose to be knowledge
workers, rather than manual labor-
ers. Computer science was the driving
intellectual, social, and cultural force
behind the information age. Comput-
er researchers and developers spear-
headed widespread adoption of new
technology and were paid well. Aca-
demic computer science departments
grew in terms of numbers of students,
faculty, and facilities; almost all ma-
jor universities received donations,
including new “computer science
buildings,” and enrollment was so
large that standardized tests had to
be created for the field. These were
the fattest of times, when computer
science research drove the growth
in the national, as well as the global,
economy.

The dot-com crash closing out
the 20th century signaled the end of
the era. Computer science was now
viewed as an unstable career choice,
with corresponding drop in interest
by young people.8 Additionally, many
computer science departments heard
complaints from industry that their
recent graduates were unprepared to
be part of the modern work force. So,
following their economic self-inter-
est, students migrated to other fields,
and the leading U.S. universities saw
major growth in undergraduate busi-
ness programs.

We can hypothesize that the drop
in interest in computer science was
part of the natural ebb and flow and
fashion of career choice. But doing so
is to stick one’s head in the sand and
hope for the return of yesteryear. A
more progressive view is to focus on
the concurrent transition from infor-
mation age to conceptual age. The old

Scene from the Artemis Chronicle PC game
built with Microsoft’s XNA toolkit and
the USC GamePipe Laboratory NitroX
game engine.

68 COMMUNICATIONS OF THE ACM | DECEMBER 2009 | VOL. 52 | NO. 12

contributed articles

focus on “tractable abstractions sepa-
rate from real problems”2 is no longer
acceptable. In the conceptual age, we
need to change the direction of the
field or continue an unwelcome slide
toward irrelevance.

Cognitive and Creative Assets
The conceptual age of technology is
defined by cognitive and creative as-
sets, with the design side being just
as good. We see harbingers in recent
business success. For example, Ap-
ple has done well with design-driven
products enabled by great engineer-
ing. On the other hand, Microsoft is
a great engineering company that
deemphasizes design at its own peril;
the Vista operating system, despite
its technical success, was not built
with user experience as its ultimate
goal and had great difficulty with re-
spect to adoption. Much of the rest of
the traditional computing industry is
shrinking, but the game industry is a
segment that continues to grow due
to its focus on design backed up by
great supporting engineering. The de-
mand for computer scientists capable
of building games is high, with large
companies like Electronic Arts report-
ing that 65% of their hiring demand
is for programmers skilled in build-
ing games. Unfortunately, the kind
of computer scientist required by
the game industry is not exactly what

traditional computer science depart-
ments produce.

The game industry wants gradu-
ates who are strong programmers and
system developers, skilled in game de-
sign, and capable of and experienced
in game development in large, cross-
disciplinary collaborative teams.
Some computer science departments
produce graduates who are strong
programmers and system developers,
but most do not produce graduates
skilled in game design. Moreover,
most do not produce graduates facile
in large, cross-disciplinary collabora-
tive teams. The typical computer sci-
ence graduate has little experience
with team software development be-
yond one or two projects with three to
five other computer science students.

Computer science departments
can retool themselves to meet these
challenges, but, for game develop-
ment, doing so requires a strong, ex-
perienced champion and proper re-
sources. Here, I discuss a particular
approach we take at the University of
Southern California, outcomes from
that program, and questions with re-
spect to transitioning a mature field
toward the conceptual age.

Game Development
and CS Education
If computer science departments are
indeed to make the transition, what

will they transition into? The game
industry also wants graduates with a
strong background in computer sci-
ence. It does not want graduates with
watered-down computer science de-
grees, but rather an enhanced set of
skills. This is good news for the de-
partments, meaning they can transi-
tion some courses to new material
or new foci, create new courses, and
still not abandon decades of hard-
won knowledge. The best way to think
about the transition to the conceptual
age is to make the focus the “big idea
or big concept,” with a follow-on fo-
cus on how to build the concept and
with what technologies.

Strong programming skills is the
first item on the list, meaning an
undergraduate program’s first four
computer science courses—CS-101
Fundamentals of Computer Program-
ming, CS-102 Data Structures, CS-
105 Object Oriented Programming,
and CS-201 Principles of Software
Development—must be taught in a
rigorous manner by excellent practic-
ing programmers. While computer
programming languages abound,
and the historic computer science at-
titude “You learn one language, and
it’s easy to pick up the next one” is not
shared by industry. The game industry
will also tell you that it wants the first
four programming classes in C++, not
Java, according to M.M. McGill4 and

Components of a networked game.

Real-Time
Rendering

Time and Event
Ordering

Shared State
Management

Game
Controller

Collision
Detection Latency

ScalabilityKeyboard

AI Bandwidth

Some crossover

Multi-
ThreadedHeadset

Other
Computation

App. Layer
Protocol

Heterogeneity

Interface
Inter-

operability

Failure
ManagementHybrid EEG

Networked Game

Data NetworkGame Engine
Components

Processing
Systems

Control and
Communication

Devices

contributed articles

DECEMBER 2009 | VOL. 52 | NO. 12 | COMMUNICATIONS OF THE ACM 69

my own private communications with
directors of human resources in major
game-development companies. Many
universities switched to Java with the
Internet boom, as it is easy to resource
a programming laboratory for Java,
and Java support for the user interface
is extensive. But the game industry
programs mainly in C++. Many game
companies say they will not interview
or hire someone whose first program-
ming language is Java. Computer
scientists might argue about the vir-
tues of programming languages, but
most console and PC games are built
in C++. From a C++ perspective, our
students can teach themselves other
useful languages, learning Objective-
C for iPhone game development or
C# for games with XNA in a single se-
mester. The industry is basically say-
ing it wants strong programmers with
multiple courses in C++, its primary
development language. The USC ex-
perience is that 100% of its students
interviewed for programming posi-
tions are given three-to-four-hour-
long programming tests, with almost
all companies administering the tests
in C++. We had one company (NCSoft)
test in C and another (Microsoft) indi-
cate the test could be done in C++, C,
or C#. Programming interns/job seek-
ers from our program Spring 2009 (35
interviewed in the game industry)
found no companies administering
programming tests in Java.

Strong skills in system develop-
ment is another must. The figure here
outlines the components that must be
juggled by a programmer developing a
typical networked game, touching on
much of computer science and then
some. Moreover, the game software
must run multithreaded in a well-bal-
anced manner and provide an immer-
sive and entertaining experience to
the game player. Game development
is viewed by some as systems design.

Programmers comfortable in cross-
disciplinary groups is third on the list.
Industry wants programmers who are
able to generate software based on
the vision of designers, work with art-
ists to generate the right display and
feel, and know how to participate in
large-team development efforts. The
traditional computer science student
is far from this.

Computer science departments

must provide the necessary experi-
ence so game programmers are in-
dustry-ready on graduation day. This
means that graduates must have built
a significant game by collaborating
with other students, not all of whom
have backgrounds in computer sci-
ence. Grads should also be familiar
with the pipeline-development pro-
cess and asset-management systems,
both aspects of game-industry devel-
opment potentially useful throughout
the program. Such experience is very
different from traditional computer
science-degree programs in which
software-development teams are
small, and there is no strong require-
ment for asset management or source-
code base sharing or versioning.

Big Game Program or Baby Steps?
Computer science departments
changing their focus toward game
development is an obvious approach
toward preparing students for the
conceptual age. Many universities
are building game-development pro-
grams within or aligned with their com-
puter science departments.1,3,5,6,9,10

The annual Foundations of Digital
Games conference (http://www.foun-
dationsofdigitalgames.org/) focuses
on this important transition.

How does all this directly affect the
departments? Consider two separate
efforts: the USC GamePipe Laborato-
ry and the University of Washington,
Bothell, the latter covered in the arti-
cle “Computer Games and Computer
Science” by Kelvin Sung (on page 74).

USC GamePipe Laboratory
The USC Department of Computer
Science offers both a bachelor’s de-
gree in computer science (games) and
a master’s degree in computer science
(game development).12 Students inter-
ested in Ph.D.-level topics are encour-
aged (for the moment) to apply to the
traditional computer science Ph.D.
program. The bachelor’s in computer
science (games) program includes 37
units of traditional computer science
and 42 units of game-development
courses. The computer science cours-
es are the same as those taken by
regular students in USC’s bachelor’s
computer-science program, except
for the following modifications:

Programming courses. We rewrote

Programming
interns/job seekers
from our program
Spring 2009 (35
interviewed in the
game industry)
found no companies
administering
programming tests
in Java.

http://www.foundationsofdigitalgames.org/
http://www.foundationsofdigitalgames.org/

70 COMMUNICATIONS OF THE ACM | DECEMBER 2009 | VOL. 52 | NO. 12

contributed articles

No foreign languages. General edu-
cation requirements for the bach-
elor’s degree in computer science
(games) are approximately the same
as for USC’s regular computer sci-
ence degree. The degree lacks a four-
course foreign-language requirement
as in all other USC College degrees,
an accident of planning rather than a
recommendation.

When we began planning the de-
gree, the dean of engineering said,
“I don’t want a weak degree.” So we
made these changes to the computer
science component of the program
and are confident we offer an aca-
demically strong and industry-viable
undergraduate degree.

For the games-side of the bach-
elor’s degree, we replaced 42 units of
electives from the general computer
science degree with a full course in
game development. Hence, the degree
looks more like a double major than a
specialization. We also have a set of
courses on game engineering, game
design, and game cross-disciplinary.

Game engineering covers video-
game programming, parallel pro-
gramming on consoles and graphics
processing units, and programming
game engines, all of which are
straightforward software-develop-
ment courses and all important for
game development.

For game design, we send our
students to a three-course Game De-
sign Workshop sequence in the USC
School of Cinematic Arts Interactive
Media Program. Engineers are im-
mersed in gameplay design as taught
by master game designers. The first
course in the sequence—CTIN-488
Game Design Workshop—teaches
students how to prototype gameplay
using cardboard and hand-drawn art;
they basically build board games. We
get an interesting response from the
engineers we send there. Some rave
about it, saying it’s the best thing
they’ve ever taken. Some hate it, feel-
ing frustrated they cannot immedi-
ately code-up a game. Some hate the
first few weeks but in the end come
back and say it was a great course.
Ultimately, the students who under-
stand the importance of the course
and express satisfaction end up with
great internships/jobs in the game
industry. It’s where we see the future

three of the first four programming
courses to be in C++ and created game-
oriented examples and exercises. The
game focus helps motivate students,
getting them excited about program-
ming. For Fall 2008, results showed
a 28% increase in the number of stu-
dents with letter grade A in the games-
oriented CS-101 Introduction to the
Fundamentals of Programming and
for Spring 2009 a 49% increase (http://
gamepipe.usc.edu/~zyda/GamePipe/
Ghyam-Final-MS-Study-2009.pdf). Fur-
ther analysis of the results is under-
way to determine whether they reflect
superior skills, superior understand-
ing of programming, superior motiva-
tion, or some other cause;

Replaced EE with CS. We replaced
four electrical-engineering courses
on circuit design with computer-sci-
ence-focused EE-352 Computer Orga-
nization & Architecture and parallel-
programming-focused EE-452 Game
Hardware Architecture. The removed
courses represent an older style of
computer-science-degree program.
We felt it more important that stu-
dents learn how computer architec-
tures affect programming rather than
how to make such architectures. We
also felt that parallel programming
was highly relevant to both the multi-
threaded nature of modern game de-
velopment and multicore processors;

Added EE. We added EE-450 Intro-
duction to Computer Networks as a
degree requirement. Networking is
offered as an elective in the regular
computer science curriculum. Be-
cause games need networking, all our
students take it;

Cut compiler courses. We eliminated
the two compiler courses taken by reg-
ular computer science students. ACM
eliminated compilers as a require-
ment from the CS core in 1979. The
USC Computer Science Department
uses the two courses as large program-
ming-project capstone courses, so we
felt we would rather have our students
build games. The replacement for the
games curriculum is the two-semes-
ter CS-491A/B Final Game Projects
course. An interesting result is that
the Computer Science Department
is weighing whether to allow general
computer science students to take the
Final Game Projects course instead of
the compiler sequence; and

We felt that parallel
programming was
highly relevant to
the multithreaded
nature of modern
game development
and multicore
processors.

http://gamepipe.usc.edu/~zyda/GamePipe/Ghyam-Final-MS-Study-2009.pdf
http://gamepipe.usc.edu/~zyda/GamePipe/Ghyam-Final-MS-Study-2009.pdf
http://gamepipe.usc.edu/~zyda/GamePipe/Ghyam-Final-MS-Study-2009.pdf

contributed articles

DECEMBER 2009 | VOL. 52 | NO. 12 | COMMUNICATIONS OF THE ACM 71

game industry technical directors of
the conceptual age.

Our approach to creating a cross-
disciplinary program was to design
courses that could be taken by non-
computer scientists, as well as by
computer science majors. First-se-
mester undergraduates survey game
play, from the start of games to using
(among other things) old consoles,
old PC games, and emulators. Stu-
dents come out of the course hooked
on our degree program and wanting
more. They then take a video-game
production course to build individual
games using GameMaker and hear
from industry speakers on game de-
velopment. Next is CS-281 Pipelines
for Games & Interactives in which they
learn how to create assets for games,
including 3D models and anima-
tions. One achievement is a pipeline
asset and source-code management
system we designed that is shared by
all game-development courses in the
program. We teach our students how
to use it early on, simplifying and en-
hancing their ability to develop games
in subsequent courses. We also place
all our students in a semester-long
character-animation course.

In their final one-and-a-half years
before graduation, our students be-
come ready for game development.
All take a course developing a serious
game in a large team for an interested
sponsor. Their last year before gradu-
ation is in CS-491A/B Final Game Proj-
ects building games in large cross-dis-
ciplinary teams from August to May,
with game designs selected through
a design playoff the previous May.
The Final Game Projects course is
administered jointly by the School of
Cinematic Arts and has students from
computer science (bachelor’s and
master’s students), interactive media
(bachelor’s of fine arts and master’s of
fine arts), fine arts (bachelor’s of fine
arts), animation (bachelor’s of fine
arts), music composition, and film
scoring. Teams in this class include
from 11 to 25 students building sig-
nificant games over its two-semester
run, aiming for contest submission by
the end of the second semester.

Strong cross-disciplinary collabo-
ration occurs, with results presented
at the end of each semester on Demo
Day when game-industry executives

tles at your fingertips on the iPhone.
Videos of the most recent Demo
Day are at http://gamepipe.usc.edu/
USC_GamePipe_Laboratory/R%26D/
R%26D.html.

At the end of each academic year,
we now routinely place large numbers
of students (typically around 35) in
internships/jobs in the game indus-
try where they are nearly instantly
productive. In the Fall semesters in
2007 and 2008, a team on Demo Day
was offered a commercial deal to turn
their game into a company for further
development or prepare to ship com-
mercially. Spring 2009 included five
student-built games under commer-
cial consideration.

are invited to review the students’
work; the accompanying screenshots
are indicative of the visual quality.
Artemis Chronicle, a beautiful action-
adventure title (see page 67), demon-
strates the powerful features of the
NitroX Engine, a revolutionary, com-
plete development framework for
creating XNA games. Both the game
and the NitroX engine were built in
the CS-491AB Final Games course
over two semesters. Air Guitar God, a
beat-matching iPhone game (below),
incorporates a student-designed al-
gorithm for automatically computing
beat detection from any song import-
ed into the game. And Slice, an action
role-playing game (below), puts bat-

Scene from Slice, an iPhone gesture-based fighting game developed
by students in the USC GamePipe Laboratory.

Opening screen from Air Guitar God, an iPhone beat-matching game
developed by students in the USC GamePipe Laboratory’s mobile games course.

http://gamepipe.usc.edu/USC_GamePipe_Laboratory/R%26D/R%26D.html
http://gamepipe.usc.edu/USC_GamePipe_Laboratory/R%26D/R%26D.html
http://gamepipe.usc.edu/USC_GamePipe_Laboratory/R%26D/R%26D.html

72 COMMUNICATIONS OF THE ACM | DECEMBER 2009 | VOL. 52 | NO. 12

contributed articles

Effect on the USC CS Department
How has the game-degree program
affected USC’s Computer Science De-
partment, nudging it along toward the
conceptual age? First, I must say we
have not dismantled the traditional
bachelor’s program in computer sci-
ence, and students continue to enroll
in it. Computer science and games
students share almost the same core
computer science curriculum.

Enrollment concerns were part of
our original motivation with respect
to the games program, though they
have eased, as they have for many
departments, according to the Com-
puting Research Association’ annual
Taulbee Survey (http://www.cra.org/
statistics/). For the Fall 2009 semes-
ter, 29% of the students in the USC
bachelor’s in computer science pro-
gram are in the games program, rep-
resenting an important influence on
the department.

While we have not measured it,
probably the greatest effect we see is
an apparent “joy of computing” feel-
ing by our students who come to class
highly motivated, pour their best
ideas into their projects, and produce
spectacularly creative results, some
of which the game industry wants to
commercialize. The graduating stu-
dents who move into positions in the
game industry return to subsequent
Demo Days, bring their bosses, and
hire more of our graduates. The addi-

tion of a creative-design component
and making it student-driven and stu-
dent-dependent is key to this success.
Students take ownership of their edu-
cational program and aspire to make
everything they do shine.

Another component worth men-
tioning is the commitment of the pro-
gram’s faculty and instructors. The
students are in small classes where
they have much say in direction and
result. The faculty is available to pro-
vide technical guidance, mentorship,
motivation, and support. It is physi-
cally draining if done properly, but if
the students recognize their passion
for games, they cannot help but be
passionate game developers as well.
Faculty working directly with our pro-
gram are the executive producers of
some 12 to 14 games per semester.
The results of these efforts are visible
on the USC GamePipe Web site (http://
gamepipe.usc.edu).

We have also been able to create
a line of research funding based on
and around games.11 It is more than
difficult to build an R&D program on
games without a pipeline of students
learning to build them. Today, we have
both. The games program has addi-
tionally strengthened the reputation
of USC’s Computer Science Depart-
ment in terms of increased R&D fund-
ing, improved hiring rates for gradu-
ates, attention to the games program
in the press, invitations to games fac-

ulty to speak at conferences and pub-
lish in traditional venues, and other
universities desiring to copy USC’s
success. In Fall 2008, the director of
the USC GamePipe Laboratory was ap-
pointed an ACM Distinguished Speak-
er (http://www.dsp.acm.org/) in recog-
nition of the program’s achievement.
Hiring managers and developers in
the games industry now regard us as
one of the “best games programs,”
though we are only in our fourth year
of operation. Moreover, traditional
USC computer science faculty not cur-
rently involved in the games program
have begun to ask how they can partic-
ipate, some have changed their course
projects to be game-related, and many
ask how we can draft proposals to-
gether. The computer science faculty
realizes that something important is
happening, with some beginning to
also guide their own programs toward
the conceptual age.

References
1. Barnes, T., Powell, E., Chaffin, A., and Lipford, H.

Game2Learn: improving the motivation of CS1
students. ACM Game Development in Computer
Science Education (Miami, FL, Feb. 26–Mar. 3, 2008).
1–5.

2. Brooks, Jr., F.P. The computer scientist as toolsmith
II. Commun. ACM 39, 3 (Mar. 1996), 61–68.

3. Horswill, I. and Novak, M. Evolving the artist-
technologist. IEEE Computer 39, 6 (June 2006),
62–69.

4. McGill, M.M. Defining the expectation gap: A
comparison of industry needs and existing game
development curricula. ACM Foundations of Digital
Games (Orlando, FL, 2009), 129–136.

5. Parberry, I., Roden, T., and Kazemzadeh, M.B.
Experience with an industry-driven capstone course on
game programming. ACM SIG on Computer Science
Education (Houston, TX, 2005), 91–95.

6. Phelps, A., Egert, C., and Bierre, K. Games first
pedagogy: Using games and virtual worlds to
enhance programming education. Journal of Game
Development 1, 4 (May 2006), 45–64.

7. Pink, D.H. A Whole New Mind: Moving from the
Information Age to the Conceptual Age. Riverhead
Books, New York, 2005.

8. Thibodeau, P. Computer science graduating class of
2007 smallest this decade. Computerworld Online
(Mar. 5, 2008); http://www.computerworld.com/
action/article.do?command=viewArticleBasic&article
Id=9066659.

9. Whitehead, J. Introduction to game design in the large
classroom. ACM Game Development in Computer
Science Education (Miami, FL, 2008), 61–65.

10. Wolz, U. and Pulimood, S.M. An integrated approach to
project management through classic CS III and video
game development. ACM SIG on Computer Science
Education (Covington, KY, 2007), 322–326.

11. Zyda, M., Spraragen, M., and Ranganathan, B. Testing
behavioral models with an online game. IEEE
Computer 42, 4 (Apr. 2009), 103–105.

12. Zyda, M., Lacour, V., and Swain, C. Operating a
computer science game degree program. ACM Game
Development in Computer Science Education (Miami,
FL, 2008), 71–75.

Michael Zyda (zyda@usc.edu) is the director of the USC
GamePipe Laboratory and a professor of engineering
practice in the Department of Computer Science at the
University of Southern California, Los Angeles, CA.

© 2009 ACM 0001-0782/09/1200 $10.00

Industry wants programmers comfortable in cross-disciplinary teams.

P
H

O
T

O
G

R
A

P
H

 B
Y

 M
I

C
H

A
E

L
 Z

Y
D

A
/U

S
C

 G
A

M
E

P
I

P
E

 L
A

B
O

R
A

T
O

R
Y

http://gamepipe.usc.edu
http://www.dsp.acm.org/
mailto:zyda@usc.edu
http://www.cra.org/statistics/
http://www.cra.org/statistics/
http://gamepipe.usc.edu
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleid=9066659
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleid=9066659
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleid=9066659

Acknowledgements
We wish to thank Gerard Medioni, the Computer Science Department Chair who
strongly supported the creation of this new academic program. Gerard let us
create sixteen new Computer Science and two EE courses over an 18 month
period and let us focus on that rather than proposal writing. Dean Yannis Yortsos
of the Viterbi School of Engineering provided us laboratory support in the newest
building on campus and helped us create a great program for our students. Scott
Easley contributed enormously to the creation of this degree program and has
operated both the Serious game research course structure and Final Game
Projects sequence. Chris Swain of the School of Cinematic Arts Interactive
Media Program provided guidance on how to utilize the game design workshop
sequence in our degree program. Scott Easley and Chris Swain have now
bravely created and operated the first joint Final Game Projects course sequence
between the School of Cinematic Arts and the Viterbi School of Engineering.
Steve Schrader made the paperwork happen for the degree program and he is
an irreplaceable part of the Computer Science Department. Massoud Ghyam
was a tremendous help in revising the computer programming and software
development sequence of the undergraduate degree program. Jose Villeta
developed the entire set of course notes for the EE-452 Game Hardware
Architectures sequence. Louise Yates, Associate Dean for Admissions and
Students Affairs, has been outstanding in handling admissions so that we get
excellent students and has been wonderful in providing statistical support to
show how the BS in Computer Science (Games) degree program has helped to
strengthen and grow the Computer Science Department. Dean Ruth Weisberg of
the School of Fine Arts was wonderfully receptive to the idea of creating a Game
Art and Design minor program to complement her schools’ degrees. Ann Page of
Fine Arts carried the ball in designing that Fine Arts minor program. We had a
host of graduate and undergraduate students that made the USC GamePipe
Laboratory happen even when there was no financial compensation or reward –
Pamela Fox, Dhruv Thukral, Sumeet Jakatdar, Fred Zyda, Danny Parks, Donna
Djordjevich, Erin Reynolds, Rob Cheng, Marc Spraragen, Balakrishnan
Ranganathan, Ricardo Chavarria, Keyur Bhulani, Devin Rosen, and Lily Cheng.
We consider them the founding students for this laboratory and academic
program. We had wonderful contributions to our degree program from Jose
Villeta of Heavy Iron Studios; Steve Seabolt, Colleen McCreary, and Bing
Gordon of Electronic Arts; John Bojorquez and Pat Griffith of Activision; Mike Lee
of Emsense, and Anthony Borquez of Konami (formerly USC ITP). We had
donations from Motorola Research Laboratories, Microsoft Research (John
Nordlinger), the Humana Innovation Center, Lockheed Martin, Sandia National
Laboratories, THQ Interactive, Activision, EA Mobile, and Alon Carmel that keep
our program operating.

	Table of Contents
	News
	Blueprints for Self-Assembly
	Ready for a Web OS?
	Making Automation Work
	Problem Solvers

	Viewpoints
	Broadening Participation
	Opening Remarks

	Emerging Markets
	Israel's Technology Industry as an Economic Growth Engine

	The Profession of IT
	Computing's Paradigm

	Kode Vicious
	Broken Builds

	Viewpoint
	A "Smart" Cyberinfrastructure for Research

	Practice
	A Threat Analysis of RFID Passports
	What DNS Is Not
	Maximizing Power Efficiency with Asymmetric Multicore Systems

	Contributed Articles
	The Bulk Multicore Architecture for Improved Programmability
	Computer Science in the Conceptual Age

	Review Articles
	Computer Games and Traditional CS Courses

	Research Highlights
	Technical Perspective
	Design Tools for the Rest of Us
	Designing Plush Toys with a Computer

	Technical Perspective
	A Graphical Sense of Touch
	ThinSight: A Thin Form-Factor Interactive Surface Technology

	Departments
	CSTA Letter
	It is a Pivotal Time for K-12 Computer Science

	Letters To The Editor
	In CS Education, Educate the Educators First

	BLOG@CACM
	CS Woes: Deadline-Driven Research, Academic Inequality

	In the Virtual Extension
	CACM Online
	Crowdsourcing and the Question of Expertise

	Report from the ACM Nominating Committee
	Slate of Nominees for ACM General Election

	Calendar
	Careers

	Last Byte
	Puzzled
	Solutions and Sources

	Future Tense
	Mightier Than the Pen

