
Three-Tiered Interest Management
for Large-Scale Virtual Environments

Howard Abrams
abramsh@acm.org

Kent Watsen
watsen@acm.org

Michael Zyda
zyda@siggraph.org

Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5118 USA

1. ABSTRACT

As virtual environments have grown in size,
increasing attention is being brought to the
issue of filtering data that is of no interest to a
given client. This filtering is known as interest
management. Typically, interest management
is thought of as a one step process: data flows
in from the network, and either is rejected or
accepted.

This paper outlines a three-tiered approach to
interest management, utilizing dynamic
multicast group assignment based on a load-
balanced octree design. Initial prototyping
suggests that it is possible to create virtual
environments with the number of entities
interacting in the environment at least an
order of magnitude larger than previously
demonstrated.

2. INTRODUCTION
As virtual environments grow in size and grow in number
of clients, it has become increasingly important to filter
unneeded data before it arrives at a client for processing.
This filtering process is known as interest management.

In the past there have been several approaches taken. In
NPSNET [1], the world is broken into hexagons, each

representing a multicast group. Each entity sends state
information to a multicast group corresponding to the local
hexagon it is in, while at the same time subscribing to many
surrounding hexagons via their multicast groups. This
approach, while not exact, works well when entities are
distributed evenly within the virtual environment, but fails
if all entities are clumped within the same cell.

In Spline [2], the world is broken up into ‘Locales’ which
can be any size or shape. This allows the designer of the
environment to partition the world so as to try and avoid
this clumping problem. Although this helps, clumping can
still occur because the designer can never know in advance
how many entities will be in one place. Furthermore,
spatially large virtual environments typically must be
generated by an automated process, not by hand. If the
environment is too large to be processed by hand, most
likely the partitioning of the space into ‘Locales’ must also
be automated. It could be very difficult to create an optimal
automatic partition of the space, and therefore would
reduce the original benefit of designing the ‘Locale’ to any
size or shape.

Interest management has typically been a one-step process.
Data would flow in from the network, and then an area-of-
interest manager (AOIM) would roughly filter it, hopefully
passing what would be mostly relevant data, on to the
client. In [3], ten interest-management systems are outlined.
Of the ten outlined, only Proximity Detection filters in
more than one step. Proximity Detection uses a two-step
approach, where the first step involves breaking the world
into grids, similar to NPSNET or Spline. An entity uses
point-to-point unicast to transmit its information to each
entity within the current grid. In the second step, each
entity itself performs a more accurate filtering based on
what it actually wants, but still actually receives the data
before throwing it away.

This paper outlines a three step, or tiered, approach to
interest management.

3. DESIGN
The first tier works similarly to NPSNET, Proximity
Detection, or Spline, where the world is broken up into
manageable pieces, or regions. However, these approaches
are extended by allowing the regions to change size
dynamically, thereby eliminating the clumping problem.
The information sent to these regions is at a low rate and
low fidelity. The low fidelity information is only used for
an approximation of where an entity is located, and where
it is going. High fidelity information is then gathered for
entities of interest in the upper two tiers.

The second tier uses the data from the first tier to create a
protocol independent perfect match between a client’s
interests and the environment. This is similar to Proximity
Detection, although this second pass is done in a broad and
protocol independent manner.

The third tier, building on the first two, adds protocol
dependence, allowing the client to receive only the data
from the protocol it needs. At the same time, by separating
out the protocol from the core interest management, we can
allow multiple protocols to simultaneously exist within the
same environment, while using the same underlying
filtering mechanism.

It is thought that, together, these tiers create the best
possible match between what the client wants to receive
and what it actually receives, while conserving network
bandwidth and CPU cycles.

3.1 The First Tier
The reason data is often only roughly filtered by interest
managers is that for a large number of clients, it is too
costly to calculate an exact intersection of a client’s interest
expression (IE) and all of the data coming in over the
network.

If the roughly filtered data was used as a first pass towards
this intersection, instead of an approximation, it would be
possible to compute exactly the data needed for a given
client by using only this subset of the total data. Therefore
the size of a simulation would only be limited by the
number of entities a given client is interacting with, not the
number of entities in the entire simulation.

One element present in most IEs is the distance from a
client. Typically this area of interest (AOI) can be
represented by a sphere with a radius equal to the
maximum distance of interest. As described in the
introduction, several approaches have used spatially based
multicast groups to reduce network and CPU load at a
hardware level. Although successful, these approaches are
limited by the size of a group in three-space. If a region
was too small, a client would have to subscribe to too many
groups, and if the region was too large, a client would have
to listen to other clients it did not care about.

Figure 2 shows an example of a case in which the regions
are too large in size. It is easily seen that there are many
clients ‘clumped’ in region 4, but few clients in region 1, 2,
or 3. If a client, with an AOI as shown by the circle, were
interested in only a small corner of region 4, it would be
overwhelmed with data from clients it cares little about.

Figure 2 – Example of ‘clumping’

For the military simulation STOW-E, it was concluded that
a multicast group size of 2 to 2.5 km provided significant
reduction in total host download, and that sizes less than 2
km provided only marginal additional benefit [4]. It was
also concluded that “if the multicast grid could be
dynamically re-sized and re-aligned locally, relative to the
areas of highest activity, a significant reduction in total host
download would be achieved.” [4]

Third Tier
Per Entity, Protocol Dependent Multicast

Second Tier
Per Entity, Protocol Independent Multicast

First Tier
 Low Fidelity, Load Balanced, Multicast Regions

Figure 1 – Data flow in the three tier design

One simple solution to this problem is to use an octree to
load balance these regions, and therefore the number of
entities within a multicast group. If too many entities fall
within one region, simply subdivide it into eight regions. If
too many entities leave a group of regions, merge eight
regions into one larger region. By load balancing the
multicast groups in this manner, it is impossible to
encounter the clumping example described above. Figure 3
shows the same distribution of clients as in figure 2, but
with load balanced regions. Notice that a client with an
AOI as shown by the circle, would only receive
information about 12 entities, instead of 24 as in figure 2.

Figure 3 –‘Clumping’ with dynamic load balancing

The dynamic subdivision of the octree creates a new
problem. If there is a very high density of entities,
subdivision can occur to the point where entities are
continuously switching regions and adding overhead when
it is needed least. Take for example the case of a man
standing next to an anthill with 10,000 ants. Because of the
high density of ants, the octree will subdivide until it meets
some criteria of entity density. This is exactly what the ants
need, but exactly what the man does not. If the man were to
move across the hill, he would go through tens, possibly
hundreds, of regions with each step.

To solve this problem, we introduce the concept of a
smallest region. An entity calculates the smallest region
that it deems reasonable given its size and speed. When a
region that it is in divides, an entity simply checks to see if
it is below its minimum size requirement. If so, it stays
within the current region instead of switching to one of the
eight new leaf nodes.

The outcome is that entities are found throughout the
octree, not only in the leaf nodes, and they are distributed

not only by location, but also by size and speed. This has
the added benefit for additional filtering based on size, and
the ability to do efficient aggregation. Again take the
example of the man and the ants. It may be that the man is
running through a field, and happens to pass by the hill. If
so, he would not be interested in things the size of ants, and
as such, need not subscribe to the ants’ regions. An
aggregate version of the ants may be present in one of the
larger regions, giving him the impression that the ants are
there as he passes by. But if he stops to examine the hill, he
could simply subscribe to the smaller regions temporarily,
to see the ants in all their detail.

One limitation of using multicast groups is that the time to
join a group may be on the order of a half second. This
problem can be accounted for when deciding on an AOI.
For example, if an entity can move within the virtual
environment at a speed of 100 meters per second, the radius
of its AOI can be extended by 50 meters to account for a
0.5-second lag in the time it takes to join a group. By
adding to the AOI, it is possible that the client may receive
information about more entities than is wanted, but
remember, this is only a first pass, and the second tier will
decide if indeed an entity’s higher fidelity information is
needed.

3.2 The Second Tier
Traditionally, the use of multicast groups was only used at
a broad level because the number of addresses available
limited the implementation. Under IPv4, the address space
for multicast addresses is limited to just over 8 million
addresses [5]. Even more limiting is the number of
addresses a single interface can subscribe to and the
number of multicast routes a router can keep track of. As
multicast matures, and becomes more widely used
throughout Internet, these hardware limitations will become
less restricting. Already IPv6 is being used on the Internet.
Under IPv6, the address space used for multicast address is
currently over 32 bits, but has allocated space for over 112
bits to be used once routing hardware catch up.

If an entity were to have its own multicast address, clients
could subscribe to each other on a per entity basis. A client
could use the information gained from the first tier filtering
to limit the list of possible candidates to choose from,
thereby limiting the amount of network and CPU resources
needed for interest management.

 The manner in which data is gathered in the first tier need
not be protocol specific. In fact, it has already been
demonstrated how multiple protocols could be dynamically
inserted into a simulation at runtime [6]. An added benefit
to having a network stream per entity is that they can be
protocol specific, and can bypass the AOIM layer
altogether.

Figure 4 – Load balancing with AOI filter

Figure 4 shows the same AOI and region intersections from
figure 3, but now the client is interested only in entities that
are within the AOI.

Figure 5 – AOI and protocol filter

Figure 5 shows the same AOI and region intersections from
figure 3, but now the client is interested only in entities that
are within the AOI and using the circle protocol.

3.3 The Third Tier
As stated above, the first two tiers can be implemented in a
protocol independent manner, so that a simulation
consisting of multiple protocols can exist with the interest
management only computed once per client, not once per
protocol per client.

This introduces a problem. If the AOIM is unaware of
specific attributes of a given protocol, than these attributes
cannot be contained in a client’s IE. By adding interest

management specific to a protocol into the protocol module
itself, we create a third tier to allow an almost perfect
filtering of data.

Continuing the example from figure 5, figure 6 again shows
the same AOI and region intersections, but now the client is
interested only in entities that are circles, and have the
protocol specific property of being solid in color. This
yields only one entity, rather than 24 as in figure 2.

Figure 6 – AOI and protocol specific filter

The second tier simply hands up a socket to a client to the
correct protocol specific layer, and then that layer decides if
it should subscribe to that entity or not. In fact, a protocol
could have multiple multicast addresses per entity, each
transmitting a specific type of data, or at a different rate. It
is in this manner that a client would receive exactly the data
it needs.

Figure 7 – AOI with varying fidelity

Figure 7, also continuing our example from figure 5, but
this time the client is interested in any color circle, but at
increasing fidelity as it approaches the center of the AOI.

A client could also choose not to subscribe to any
individual entities, but only to the regions found in the first
tier. This can be very useful for Plan View Displays, where
information about many, perhaps hundreds of thousands of
entities is needed, but only at a low rate, and at low fidelity.

4. RESULTS
A prototype of the first tier was developed on the SGI IRIX
6.5 platform using IPv4 multicast. This includes a
lightweight server, a test client, and a graphical client based
on the Bamboo [7] architecture.

The server is implemented in less than 700 lines of C++
code. It is a complete implementation, and includes TCP
based communication for region check-in/check-out, and
location to region lookup. Also included is region load
balancing based on time delayed entity density, and reliable
multicast based messaging for octree division and collapse.

The test client is based on a set of C++ base classes
designed to make interest management transparent to the
programmer of a virtual environment. The classes handle
region check-in/check-out communication with the server.
For each entity, they periodically transmit a state packet
based on low fidelity dead reckoning parameters to the
multicast address of the region the entity is within, and
filter a list of interesting entities. The client itself is
implemented in 15 lines of code, and moves thousands of
entities in random circles within a 10000-meter cube.

The graphical client controls a floating observer which can
move within the space. It is used for measurement and
visual verification of the simulation as it progresses.

The scenario tested was the server running on an SGI Indy,
three test clients each controlling 3333 entities running on
an SGI Indy, O2, and Onyx. The graphical client ran on an
SGI maximum impact 10000. The scenario ran for over
three hours and completed without failure.

While moving through the environment with the graphical
client, typically over 3000 entities were visible at a time
within the 5000-meter AOI. Even though the client is single
threaded, refresh rates never dropped below 30 Hz.

Although few experimental numbers were gathered, it can
be said that the prototype system handled the 10000
dynamic entities with ease. It should also be noted that the
server is used for load balancing only, and most
communication is client to client via multicast.

5. CONCLUSION
By using a three tiered approach to interest management,
this paper suggests that a client can subscribe to only the
data it needs, with a minimum of overhead in network
traffic and CPU time. Using this approach, a virtual
environment’s scale should only be limited by the number
of other entities a client needs to know about at a specific
moment, not the total number of entities in the
environment. Early prototypes of this work are able to
handle tens of thousands of entities, with no indication of
an upper bound. Further large scale testing is needed, as
well as an implementation of the second and third tier.

6. ACKNOWLEGMENTS
This paper outlines an architecture in which development
was helped through technical conversations with Kent
Watsen, Don McGregor, and Don Brutzman. Furthermore,
this work would not have been possible without the support
of our sponsors: Advanced Network and Services, the
National Tele-Immersion Initiative, the Office for Naval
Research, the Defense Modeling and Simulation Office,
and the Defense Advanced Research Projects Agency.

7. REFERENCES
[1] Macedonia, M.R., et al. , Exploiting Reality with

Multicast Group: A Network Architecture for Large-
scale Virtual Environments. IEEE Computer Graphics
& Applications, 1995 (September 1995), 38-45.

[2] Barrus, J.W., R.C. Waters, and D.B. Anderson,
Locales and Beacons: Efficient and Precise Support
For Large Multi-User Virtual Environments. 1996,
Mitsubishi Electric Information Technology Center
America. http://www.merl.com/reports/TR95-16a

[3] Morse, K.L., L. Bic, and M. Dillencourt, Interest
Management in Large-Scale Distributed Simulations.
1996. In Preparation.

[4] Rak, S.J. and D.J.Van Hook. Evaluation of Grid-Based
Relevance Filtering for Multicast Group Assignment .
in 14th Workshop on Standards for the Interoperability
of Distributed Simulations. 1996.

[5] Stevens, W.R., Networking APIs: Sockets and XTI .
2nd ed. Unix Network Programming. Vol. 1. Prentice
Hall, New Jersey 1998

[6] Watsen, K. and M. Zyda. Bamboo - Supporting
Dynamic Protocols for Virtual Environments. in
Image. 1998. Scottsdale, Arizona.

[7] Watsen, K. and M. Zyda. Bamboo - A Portable System
for Dynamically Extensible, Real-Time, Networked,
Virtual Environments. in IEEE Virtual Reality Annual
International Symposium. 1998, 252-259. Atlanta,
Georgia.

