
Appears in the proceedings for the 1998 IEEE Virtual Reality Annual International

Symposium (VRAIS'98), held March 14-18, 1998 in Atlanta, Georgia.

Bamboo -
A Portable System for Dynamically Extensible,
Real-time, Networked, Virtual Environments

Kent Watsen and Mike Zyda
Naval Postgraduate School, Monterey, Ca.

watsen@acm.org, zyda@siggraph.org

Abstract

Bamboo is a portable system supporting real-time,
networked, virtual environments. Unlike previous efforts,
this design focuses on the ability for the system to
dynamically configure itself without explicit user
interaction, allowing applications to take on new
functionality after execution. In particular, this
framework facilitates the discovery of virtual
environments on the network at runtime.

Fundamentally, Bamboo offers a compatible set of
mechanisms needed for a wide variety of real-time,
networked applications. Also included is a particular
combination of these mechanisms supporting a
dynamically extensible runtime environment.

This paper serves as a general introduction to
Bamboo. It describes the system’s architecture,
implementation, and future directions. It also shows how
the system can facilitate the rapid development of robust
applications by promoting code reuse via community-
wide exchange.

Keywords:

portable, multi-platform, dynamically-extensible, real-
time, networking, virtual environment, virtual reality,
toolkit, framework, system

1: Introduction

The development of virtual environment (VE)
applications has been of academic and commercial
interest ever since the advent of three dimensional (3D)
graphics. These applications are typically written from
scratch on top of the native system and low-level graphics
libraries. Only recently have standard higher-level
graphics libraries, such as OpenGL++ [25], providing
cross-platform scene graph construction and manipulation
become available. Even so, the process of developing
robust applications still requires an immense amount of

effort. Recognizing this trend, some academic and
commercial institutions have developed toolkits
facilitating the development of specific applications by
providing features common to that type of application.
However, these toolkits tend to be monolithic
architectures, limited in capability, difficult to extend,
and/or available on only a few platforms, if not just one.
The most significant of such toolkits include Alice [8],
AVIARY [27], BrickNet [26], DIVE [5], dVISE [9],
EasyScene [6], MASSIVE [11], NPSNET [13], Vega[20],
MR Toolkit [10], VEOS [3], and World Toolkit [24].

The architecture described in this paper, Bamboo, is
the result of years of trying to develop the right toolkit for
the research and development of networked VEs.
Historical observation suggests that no single toolkit can
hope to address all user needs, while modern trends seem
to indicate that such goals may be achieved by facilitating
the distribution of the effort to a community of users, such
as with an extensible architecture like Bamboo.

Bamboo is an attempt to enable dynamically scalable
virtual environments hosted on the network. It achieves
this goal by understanding key issues and providing direct
support for them, applying lessons learned from previous
efforts towards an efficient implementation. These
solutions are provided in the form of practical
mechanisms implemented using object oriented and
generic programming techniques. Furthermore, and
perhaps more significantly, the general design philosophy
has been to be minimally invasive, resulting in higher
code reuse and lower learning curves, thus increasing
productivity while reducing chance for error.

2: VE Toolkits, Frameworks, and Systems

Toolkits, in general, are designed to facilitate the
development of applications by providing functionality
that reduces the user’s programming effort. A variety of
functional characteristics may be present in a toolkit
including common mechanisms, specific procedures,
compatibility, portability, performance, and extensibility.

Toolkits are typically presented to the user in the
form of an application programmer’s interface (API)
implemented by header files and linkable libraries. Some
toolkits, known here as frameworks, enforce a structure
on the execution of the program, and may or may not
embed the “main” routine. Frameworks that do embed
the “main” routine, known here as systems, may or may
not allow modification to the executable after
compilation. Systems, and applications in general, that do
enable self-modification at runtime are said to be
dynamically extensible. VE-specific toolkits, frameworks,
and systems are simply those that facilitate the task of
developing VE-specific applications.

It may be illustrative to now point out some graphics-
specific toolkits, frameworks, and systems. A couple
toolkits providing low-level graphics support include
OpenGL [17] and Direct3D Immediate Mode [14]. Some
frameworks providing mid-level graphics support include
Performer [21], Direct3D Retained Mode [15], and
Java3D [7]. Some systems providing high-level graphics
support include Alice, EasyScene, and NPSNET. Note
that each of these progressions tends to utilize the
capabilities of the lower layers. However, each
progression extends the lower layer in some way. For
instance, Performer adds scene graph and App/Cull/Draw
semantics to OpenGL, while EasyScene is a Performer-
based extensible system adding inter-object relationships,
among other capabilities.

Figure 1: Traditional Toolkit Layering

However useful toolkits are meant to be, none are
beyond criticism. Some are large in size (bloated),
complex in nature, limited in capability, difficult to
extend, and/or not available on multiple platforms. A
particular distinction to be emphasized is whether a lower
toolkit layer is completely encapsulated by a higher layer
or if that access is left available and, if so, could its use
inadvertently affect one or more higher layers. This last
point, illustrated by the dotted line in Figure 1, is
significant in that conflicting states between layers may
lead to confusion to the user and/or disaster for the
executable.

3: Initial Design and Implementation

Named after the exotic plant known to flourish,
Bamboo is designed to facilitate the research and
development of VE applications on multiple platforms
while not being limited by its own implementation. It is
the product of insight through years of experience
developing VE applications and the need for support more
flexible than provided by current offerings. Only through
this synergism of need and insight is Bamboo able to be
an effective solution while avoiding the usual pitfalls.

Bamboo is unique in many of its implementation and
capability characteristics. The most notable design
attribute is its provision for dynamic extensibility
achieved through fully embracing the plug-in metaphor
popularized by the commercial packages PhotoShop [1]
and Navigator [18]. However, assuming large-scale
networked environments and the need for explicit linking
at runtime, Bamboo extends the original plug-in metaphor
by adding inter-module dependencies and intra-module
security, the purpose of which are detailed later.

A notable design requirement is for the system to be
portable. This decision recognizes other systems, most
notably the PC, as emerging cost-effective alternatives to
the more traditional SGI hardware. Being portable can
mean either that the source code can be compiled into
multiple-platform-specific binaries or that the source code
can be compiled into an intermediate form that can either
be translated or turned into a platform-specific binary at
load-time. Although the latter choice offers greater
flexibility, there are not many solutions enabling it.
Therefore, it was decided that Bamboo and all of its
dependencies would have to be compiled for each target
platform.

A likely implementation solution would have been to
use Java [12], but the language is not yet considered
suitable due to the real-time performance requirement
immersive experiences demand1. The only other
reasonable choice is C++, for its execution speed, strongly
typed preprocessor, and support for object-oriented and
generic programming semantics. However, unlike Java,
the “standard” C++ libraries vary from system to system.
This concern coupled with the fact that these libraries lack
both type checking and object encapsulation suggested
the use of some foundation class library. Several such
toolkits include Washington University’s ADAPTIVE
Communication Environment (ACE) [23], ObjectSpace’s
Systems<Toolkit> [19], RogueWave’s Total Solution
Suite [22], and University of South Carolina’s Yet
Another Class Library (YACL) [28]. Furthermore, in

1 This decision should be reconsidered in a few years as hardware
becomes faster and the language matures.

addition to providing the portable standard libraries,
including the standard template library (STL) [16], these
toolkits also provide networking, concurrency, and
synchronization abstractions, as well as offering CORBA
[2] and Java interoperability. ACE is chosen among these
for not only being a leader but also for being provided
free of charge.

Although ACE offers many of the desired capabilities
for a multi-platform, networked, virtual environment
toolkit, it does not offer any graphics support.
Fortunately, SGI has been developing a multi-platform,
OpenGL-based, scene graph, C++ API to be known as
OpenGL++[25]. From Bamboo’s perspective, OpenGL++
offers the graphics, as well as window, keyboard, and
mouse events.

Depending on how it is used, Bamboo is a toolkit, a
framework, and a dynamically extensible system. It is a
toolkit in that it exposes an API for a variety of
mechanisms that may or may not be used. It is a
framework in that a few of the mechanisms enforce a
structure to its execution. And it is a system in that the
runtime environment represents a particular combination
of mechanisms with a “main” routine enabling dynamic
extensibility. Bamboo’s mechanisms and the runtime
environment are detailed in following sections.

Bamboo’s layering diagram is depicted in Figure 2.
Note that although the Bamboo API is depicted as sitting
on top ACE (due to its dependency), it can conceptually
be thought of as sitting along side of it and OpenGL++. It
should also be noted now that Bamboo’s kernel is
extremely small, having just enough logic to load in plug-
ins. That is to say, it is completely up to the plug-ins to
give the application its functionality.

Figure 2: Bamboo’s Layering

4: Bamboo’s Mechanisms

Bamboo’s mechanisms provide the core components
needed to support the development of dynamically
extensible applications. The main focus of these
components is to enable the coexistence of plug-ins in a
multi-threaded environment.

4.1: Object Database and Type Identification

This mechanism is implemented by inserting class-
specific templated code into a class’s definition. It
provides simple routines for the identification, storage,
retrieval, naming, reference counting, and thread-safe
storage for objects of that class. Once specified, these
routines automatically maintain themselves, negating the
need for the application to provide similar functionality.

Figure 3: RTTI, Naming, Reference Counting, and Database
Management

The structures needed in memory to support the
database and runtime type identification (RTTI) routines
are completely specified in each object’s base class and
an associated type class, depicted in Figure 3. These
routines enforce the following relationships:

• class types reference their derived class types,
thus providing ancestor relationships

• class types may optionally maintain a reference
to instances of its class type, thus providing
simple database queries

• every object references its class type via a meta-
variable, thus providing for RTTI

• every object must have a unique name, if one is
set, thus providing named lookups

• every object knows the number of times it is
referenced, thus facilitating system maintenance

• every class maintains a static synchronization
primitive, thus enabling thread-safe access to
class-specific data

• every object maintains a synchronization
primitive, thus enabling thread-safe access to
object-specific data

4.2: Callbacks

The callback is one of the most fundamental
mechanisms in all of Bamboo. In its simplest form,

depicted in Figure 4, a callback abstracts the execution of
a single function having a specific declaration. In
particular, the callback abstraction passes one reference to
the invoking object and another to some user-specified
callback data. As trivial as it may seem, the callback will
be seen to be the backbone of Bamboo’s architecture.

Figure 4: A Simple Callback

4.3: Extensibility

The ability to extend a system leads to solutions with
unlimited capability. An extension can be thought of as
an addition to an already existing structure. In the context
of computer architectures, extensibility may refer to the
ability to extend:

• a single object or a whole class
• the executable code and/or support structures
• the execution behavior of the program itself

Figure 5: The Callback Handler

Bamboo directly supports all three of these forms
of extensibility. In particular, because the C++ class
declarations are made available, it is possible to inherit
off them. Secondly, Bamboo has the built-in ability to
dynamically load modules into the executable’s memory
space. Using dynamic linking instead of static linking
offers several advantages. Dynamically linked libraries
save memory, reduce swapping, save disk space, and
upgrade easier. Finally, each module has an opportunity
to attach itself to and remove itself from the process’s
execution loop when being paged in and out of memory.
This last point is implemented in the form of callbacks
being attached to a callback handler as depicted in
Figure 5. Since callback handlers derive from objects,
they can be named and therefore easily locatable.

Figure 6: All Callbacks Are Recursive

Of course, the callback handler itself would be a
limiting solution if left in this form. Ensuring that the
system can support robust behavior, each callback is
actually recursive in that it embeds two callback handlers
(see Figure 6), one just before and one just after the
callback function is executed. This approach facilitates
the grouping of like functionality. For instance, rendering
engines typically implement app, cull, and draw stages as
a pipeline. Users are expected to place code in areas
before and after each stage. These areas are usually
referred to as pre-app, post-app, pre-cull, post-cull, pre-
draw, and post-draw. In this way, the executable can be
thought of as a tree of callbacks (see Figure 7). Any sub-
tree of this execution tree may be selectively pruned or
simply paused, automatically doing the same to its
children.

Figure 7: Extending the Executable

4.5: Event Handling

This mechanism provides an abstraction for the
handling of system and user generated events. The event
handler utilizes the callback handler in that notification of
the occurrence of an event is given to registered parties
via callbacks. Because a callback handler is used,
multiple callbacks may be executed in response to a
single event. Furthermore, each callback may have non-
empty pre and/or post callback handlers.

Although both ACE and OpenGL++ offer event-
handling mechanisms, neither appears to be general
purpose enough for Bamboo. For instance, ACE’s event

handler is best suited for system interrupts and
demultiplexing of protocol keys, while OpenGL++’s
constrains itself to just the window, mouse, and keyboard
events. If either of these two mechanisms become more
flexible, the event handler may no longer be needed.

4.6: Device Management

This base class abstracts the variety of devices that
may be attached to the system. Some standard, and
therefore supported, devices include the monitor, speaker,
mouse, and keyboard. Some of these devices have input,
some have output, and some have both. However, every
device has an optimal cycle rate, the management of
which leads to better resource utilization and system
performance. Specifically, each device may be maintained
in a its own light-weight thread that may be executed at a
frequency suitable to that device.

Furthermore, this base class will (not yet
implemented) attempt to provide common device data
translation methods. For instance, a move forward
callback may be executed in response to a specific
keyboard, mouse, spaceball, joystick, or data glove event.
Such methods may facilitate the introduction of new
devices into existing applications.

4.7: Threading

Given that systems containing multiple processors
offer significant benefits and are becoming more
accessible, Bamboo includes this mechanism to facilitate
the distribution and collaboration of multiple light-weight
threads of execution. Threads are implemented in
Bamboo using threaded callbacks, which are simply
callbacks that are executed in a separate thread. All of the
original callback semantics are valid. Particularly, the
new thread executes the pre and post callback handlers.

Unpredictable events leading to a need for more CPU
time than available may occur in even well behaved
applications. Of particular interest is how the system’s
performance degrades under stress and if it can be
managed gracefully. This mechanism will (not yet
implemented) attempt to reduce the average processing
load by symmetrically balancing each thread’s CPU
allocation until the stress has been removed.

4.8: Networking

The ability for applications to communicate over a
network is a sensible, if not necessary, feature given
current market trends. Therefore also central to Bamboo's
architectural design are mechanisms supporting the
current IP4 and forthcoming IP6 protocols. These

abstractions address unicast, multicast, and broadcast
packets for both reliable and unreliable transmissions.

Fortunately, it is not necessary to develop these
interfaces as ACE already provides robust networking
support. As its acronym implies, ACE has primarily been
developed as a research tool for telecommunication
industry. It provides very elegant abstractions for Internet
addresses, sockets, streams, and datagrams. Furthermore,
Bamboo will leverage off ACE’s transition to IP6 and
adoption of the reliable multicast protocol (RMP).

4.9: Graphical User Interface (GUI)

User interfaces are necessary in many applications,
yet their efficient implementation within virtual
environments is poorly understood. The confusion is in
how to implement the GUI so that user interaction is not
limited to the frame rate of the rendering engine. The
solution is for the GUI to be in its own thread of
execution.

Traditionally, this meant running the GUI in a
separate process and having it communicate with the core
process via remote procedure calls (RPC) over an inter-
process communication (IPC) mechanism. However, the
advent of lightweight threads enables a GUI to exist in the
same process space and therefore execute core functions
directly, provided that it does so in a thread-safe manner.
Simple GUIs using this approach have been implemented
for Bamboo with standard X-Windows and MS-
Windows. However, neither of these windowing APIs are
portable. Both Java’s2 abstract windowing toolkit (AWT)
and TCL offer highly portable interfaces but also have
limitations; AWT doesn’t provide platform-specific look-
and-feel, while TCL must reinterpret all of its scripts
whenever a change occurs. The current implementation
uses AWT for ease of use.

The other significant feature about the GUI is that it
too must be dynamically extensible. Every time a module
is dynamically linked into the core executable and the
GUI is running (it may not be), the GUI support for the
module must also be dynamically linked into the GUI.
Figure 8 shows how the GUI might look before and after
a module is brought into the system. Of particular
significance, note that the GUI’s menu bar initially
displays the usual File, Edit, and Help items. To facilitate
an intuitive interface, GUI panels being inserted as menu
bar items must define the “path” from the menu bar to the
panel. For instance, in this example, mod1 defines two
sub-menu bars, both wishing to be placed under the
“Objects” menu item. When Panel1 as being loaded, the

2 Amazingly, the Java virtual machine (VM) can be executed from
within a C thread

Objects item does not yet exist, so it creates it and then
loads itself as a sub-item. Panel2 simply verifies that
Objects exists and then loads itself as a sub-item.

Figure 8: Java-based GUI Extensibility

Finally, it is recognized that there are VEs, such as
those that use head-mounted displays (HMDs) or CAVEs,
that have no use for the traditional 2D GUI interface.
Applications that do not require an interface will note that
the GUI itself is a module that can be paged in and out of
an executable.

4.10: Physically-based Modeling

Too many virtual environments today are static in
nature, having little if any motion. Movement is
important because it results in more compelling scenes,
which may lead to greater immersion. Many
environments can be enhanced by physically-based logic
that affects particular elements in the scene. However, it
is not in the scope of this paper to define what logic is or
is not needed for all applications using Bamboo.
However, observation of systems that do implement
physically-based models suggests that there exists two
types of variables: global and local. Global variables
typically specify environmental constants such as gravity,
time of day, and wind direction. While local variables
typically specify object-specific attributes such as mass,
thermal conductivity, and elasticity. Even though global
variables should be implemented as shared constants,
some systems have each object locally define and
maintain its own set of such variables. This situation
potentially leads to some objects maintaining different
global states. Therefore, this mechanism simply defines
an environment object that enables global variables to be
registered and then referenced by physically-based
objects. The creation of an environment object is
significant as it establishes a convention by which
potentially diverse physically-based objects can share
global states.

5: The Runtime Environment

As previously mentioned, not only does Bamboo
provide a collection of commonly used mechanisms, but
it also provides a particular combination of these
mechanisms tied together with a “main” routine, forming
a specific executable referred to as Bamboo’s runtime.
Also mentioned is the ability to dynamically link
modules, thus enabling for an executable to be
dynamically extended at runtime. What was not
emphasized, though, is that all of Bamboo itself is
comprised of many modules, such that the original
executable, the core kernel (see Figure 9), need only have
enough logic to page modules and provide the initial
framework for the plug-ins to hook into. In this way, no
assumptions are made regarding what capabilities are
needed by the kernel, but are determined at runtime by the
application being loaded. For instance, if the particular
application does not need protocol-specific networking
support, the system would not load that module and thus
save the memory and processing time that would
ordinarily be consumed by such a mechanism.

Figure 9: Runtime Abstract View

However, having each application specify every
module it depends on could be a complex and error-prone
process. Fortunately, each module, when being loaded,
need only verify that its immediate dependencies are
already in memory, loading them if not. For example,
using Figure 10 as a reference, assume that M3 has
already been loaded. In the process of trying to load M4,
the system must first verify that M2 is in memory. M2 is
not already in memory and must be loaded. In the process
of trying to load M2, the system must first verify that M1
is in memory. M1 is already in memory, from when M3
was loaded, and does not need to be loaded again.
Finally, M2 and then M4 may finish loading themselves.

Figure 10: Module Dependency View

Because it is desirable to be able to have a module
loaded off the network, if not found locally, its integrity
may be suspect. This concern will be (not yet
implemented) mitigated by Bamboo’s insistence that a
trusted partner sign all modules being loaded off the
network. If the module does not have a trusted signature,
the system prompts to have the signature added, to just
load the module, or to ignore the module altogether.
Modules may be multiply signed, thus enabling a
hierarchy of trusted partners. For instance, the author
may sign the module and the author’s company may sign
the module. Few may trust the author directly, but many
may trust the author’s company. At the top of this
hierarchy is Bamboo itself; a module signed by Bamboo
is implicitly trusted by all. It is recognized that this
scheme can not be trusted to secure global-wide
simulations, but does provide decent trust for academic
and commercial institutions.

6: A Demonstration Scenario

A scenario might best illustrate how Bamboo may
benefit an application. Imagine launching Bamboo by
executing the runtime with just the GUI module (see
Figure 8 for an illustration of the GUI’s initial state). At
this point the user might go to File->Load Module and
select one of the initial modules in the distribution, a
VRML [4] viewer for instance. This module might
depend on the keyboard and a mobility model, both
defined in separate modules. Furthermore, the mobility
module may depend on the mouse for input. All of these
modules are loaded into both the kernel and the GUI.

At this point, the user interacts with one of the newly
defined GUI panels to load a VRML file and the user
begins to fly through the world. A bounding box to some
Bamboo node might be just inside the far clipping plane,
however this node is not found locally and therefore must
be downloaded from the network. A thread is spawned to
asynchronously download the module, verify its
signature, and unpackage it in its own “shoots ”
directory (see Section 7).

Assuming that this module defines a physically-based
model of a flag, its directory might not only contain the
geometry, textures, and sounds associated with the flag,
but also the executable code defining its physically-based
logic and a GUI panel enabling interaction with its local
attributes (See Physically-Based Modeling above).
Because the flag requires global variables such as gravity,
wind direction, and wind magnitude to be defined, the
environment module is also loaded into both the kernel
and the GUI, thus enabling interaction with these
variables as well. This example scenario will be a
demonstration shipped with the final release distribution.

7: The Release Distribution

Extending the “bamboo” analogy, the release
distribution is partitioned into two main sections: roots
and shoots . The roots directory contains internally
developed or officially adopted mechanisms, upon which
a plethora of offshoots may be developed. The shoots
directory, initially empty, contains external mechanisms
and supporting structures (geometry, textures, sounds,
etc) which may be downloaded during the course of a
typical networked scenario. Both the roots and the
shoots directories contain modules, each module
represented by a single directory, the name of which
defines the name of the module itself. A module’s
directory may contain the subdirectories include , lib ,
and src (if included by author); among others such as
geometry , sounds , and textures . The purpose of
this segmentation is for easy user identification and
deletion of no longer needed modules, thus reclaiming
potentially scarce storage space.

A few other root-level directories, main and demos,
are also shipped with the release distribution. The main
directory holds the default executable. As will be seen,
source code available, the main routine is less then a
hundred lines long – just enough code to initialize an
execution loop (a callback handler) and read in command
line arguments (modules) - loading them into the system.
The demos directory holds a few example modules for
using the mouse, keyboard, and graphics.

8: Cross-Platform Compatibility

Bamboo is portable to many platforms because it
uses only standard APIs (C++, Java, STL, JGL, and
OpenGL) and other multi-platform toolkits (OpenGL++
and ACE). Although this approach does not necessarily
secure portability, the current system’s concurrent
development on several platforms has not been hindered
thus far.

9: Availability

Bamboo is scheduled for a mid-1998 release,
although beta versions are currently being made available.
As previously suggested, the distribution is a collection of
header files, dynamically linkable libraries, Java class
files, and an extensible runtime environment. This
distribution will be (not yet implemented) available on the
WWW in platform-specific installation formats (e.g.
SGI's tardist image and Window's installation wizard).
Also, a mailing list has been established for interested
developers to freely exchange comments. There will be
no licensing fee or shareware charge. Plans are being
made to provide ongoing support and maintenance;
developments will be announced on the mailing list, as
they become known. Additional papers and information
may be found at http://npsnet.nps.navy.mil/Bamboo.

10: Conclusions

Bamboo overcomes many common VE system
architecture pitfalls by providing modular components
and a dynamically extensible runtime executable. These
two features enable a flexible framework on which a
variety of applications may be written.

Although it is hoped to be a significant contribution
to the VE community, only large-scale adoption will
reveal how the system responds to widespread use.
Furthermore, only through the widespread use of a
common framework can the efforts of unrelated groups be
integrated seamlessly, which is imperative if truly robust
networked VEs are ever to be achieved.

Acknowledgements

Bamboo has evolved over time as the result of the
efforts of the main author and colleagues Joel Brand and
Andrzej Kapolka,. Furthermore, the patience of Dr. Mike
Zyda and the NPSNET Research Group has been
appreciated. Finally, this effort could not have been
without the generous support of our sponsors: DARPA,
ONR, and ANS.

References

[1] Adobe (1997). Photoshop Software Development Kit,
ftp://ftp.adobe.com/pub/adobe/devrelations/sdk/photoshop.

[2] Ben-Natan, R. (1995). CORBA : A Guide to the Common
Object Request Broker Architecture, McGraw Hill Text.

[3] Bricken, W. and G. Coco (1994). “The VEOS Project.”
Presence 3(2): 111-129.

[4] Carey, R. and G. Bell (1997). The Annotated Vrml 2.0
Reference Manual, Addison-Wesley.

[5] Carlsson, C. and O. Hagsand (1993). “DIVE - A Platform
For Multi-User Virtual Environments.” Computer and
Graphics 17(6): 663-669.

[6] Coryphaeus Software (1997). EasyScene,
http://www.coryphaeus.com/products_dir/es.html

[7] Deering, M. and H. Sowizal (1997). Java 3D API
Specification, Addison-Wesley.

[8] Deline, R. (1993). Alice: A rapid prototyping system for
three-dimensional interactive graphical environments.
Computer Science Department. Charlottesville, University
of Virginia.

[9] Division (1997). dVISE,
http://www.division.com/5.tec/a_papers/uvp.htm.

[10] Green, M., C. Shaw, et al. (1993). Minimal Reality Toolkit.
Department of Computer Science, University of Alberta.

[11] Greenhalgh, C. and S. Benford (1995). MASSIVE: a
Distributed Virtual Reality System Incorporating Spatial
Trading. Distributed Computing Systems (DCS'95),
Vancouver, Canada, IEEE Computer Society.

[12] Horstmann, C. S. and G. Cornell (1997). Core Java 1.1 :
Fundamentals, Prentice Hall Computer Books.

[13] Macedonia, M. R., M. J. Zyda, et al. (1994). “NPSNET: A
Network Software Architecture for Large Scale Virual
Enivornments.” Presence 3(4): 265-287.

[14] Microsoft (1997). Direct 3D Immediate Mode.
[15] Microsoft (1997). Direct3D Retained Mode.
[16] Musser, D. R. and A. Saini (1996). STL Tutorial and

Reference Guide: C++ Programming with the Standard
Template Library. Reading, Massachusetts, Addison-
Wesley Publishing Company.

[17] Neider, J., T. Davis, et al. (1993). OpenGL Programming
Guide, Addison-Wesley.

[18] Netscape (1997). Navigator 4.0 Plug-in Guide,
http://developer.netscape.com/library/documentation/comm
unicator/plugin/contents.htm

[19] ObjectSpace (1997). Systems<Toolkit>,
http://www.objectspace.com/toolkits.

[20] Paradigm (1997). Vega,
http://www.paradigmsim.com/vega.html.

[21] Rohlf, J. and J. Helman (1994). IRIS Performer: A Hign-
Performance Multiprocessing Toolkit for Real-Time 3D
Graphics. SIGGRAPH'94.

[22] RogueWave (1997). The Total Solution Suite,
http://www.roguewave.com/products/products.html.

[23] Schmidt, D. (1993). The ADAPTIVE Communication
Environment: Object-Oriented Network Programming
Components for Developing Client/Server Applications.
11th and 12th Sun Users Group.
http://www.cs.wustl.edu/~schmidt/SUG-94.ps.gz

[24] Sense8 (1997). WorldToolkit,
http://www.sense8.com/products/worldtoolkit.html.

[25] Silicon Graphics (1997). OpenGL Scene Graph /
OpenGL++, http://www.sgi.com/cosmo/cosmo3d

[26] Singh, G., L. Serra, et al. (1994). “BrickNet: A Software
Toolkit for Network-Based Virtual Worlds.” Presence 3(1):
19-34.

[27] Snowdon, D. N. (1994). “AVIARY: Design Issues for
Future Large-Scale Virtual Environments.” PRESENCE
3(4): 288-308.

[28] Sridhar, M. A. (1995). Building Portable C++ Applications
with YACL, Addison-Wesley.

