
ABSTRACT

We describe a network software architecture for solving the
problem of scaling very large distributed simulations. The
fundamental idea is to logical ly part i t ion vir tual
environments by associating spatial, temporal, and
functionally related entity classes with network multicast
groups. We exploit the actual characteristics of the real-
world large- scale environments that are simulated by
focusing or restricting an entity’s processing and network
resources to its area of interest via a local Area of Interest
Manager (AOIM). Finally, we present an example of how
we would implement this concept for ground vehicles. We
have begun design and construction of the AOIM for use
with the NPSNET 3D vehicle simulator. NPSNET is
currently the only Distributed Interactive Simulation (DIS)
protocol compl iant s imulator using IP Mul t icast
communications and is suitable for operation over the
Internet.

KEYWORDS: Virtual Reality, Distributed Interactive
Simulation, Internet Protocol Multicast, Distributed
In te rac t i ve En te r ta inment , La rge-sca le Vi r tua l
Environments.

INTRODUCTION

This paper outlines the problems and a proposed solution to
the design and construction of large-scale distributed
simulations. In particular this paper addresses the
networking software architecture for large-scale virtual
environments (VEs). We suggest a method that exploits the
spatial, functional, andtemporal relationships of real-world
entities for partitioning VEs by associating network
multicast groups with entity areas of interest.

The motivation for our effort is to expand the capability of
virtual environments to serve large numbers (more than
1,000) of simultaneous users. Interest by the government,
academic researchers, military, and telecommunications
industry in large distributed virtual environments has been
rapidly growing. In particular, distributed interactive

entertainment applications such as multiplayer games,
whether in-home or location-based, will require scalable
network architectures in order to provide both rich
environments and profitable returns.

Advances in computer architectures and graphics, as well as
standards such as the IEEE 1278 Distributed Interactive
Simulation (DIS) and BBN SIMNET protocols have made
small scale (less than 300 players) realistic man-in-the-loop
simulations possible [5,6,11]. These standards have been
used by the military for several years. Unfortunately,
SIMNET, which was developed for small unit training, and
its descendant, DIS, are currently not suitable for large-scale
multiplayer VEs.

PRACTICAL PROBLEMS WITH THE DIS PROTOCOL

We list several major problems associated with scaling the
current suite of DIS protocols in order to illustrate the
difficulties of building large-scale VEs:

Enormous bandwidth and computational requirements
for large-scale simulation. In schemes such as SIMNET
and DIS, a simulation with 100,000 players would require
375 Mbit per second (Mbps) of network bandwidth to each
computer participating in the simulation, an unrealistic
requirement for an affordable system in this decade[7].
Maintaining the state of all other entities, particularly with
dead-reckoning algorithms (which use second-order
kinematics equations), will be a major bottleneck for large-
scale simulation. Recent experiences with the U.S. Army’s
Simulated Theater of War (STOW) have shown this to be
the case.

Faster computers and networks will not necessarily satisfy
these needs. First, faster networks require faster processors
merely to copy packets from the network into user space
even before the application touches the protocol data unit
(PDU). Second, the creeping demand for more realism (i.e.
collision detection and constraint satisfaction) will introduce
a rapid rise in computational and space complexity with

Exploiting Reality with Multicast Groups: A Network
Architecture for Large-scale Virtual Environments

Michael R. Macedonia, *Michael J. Zyda, David R. Pratt, Donald P. Brutzman, Paul T. Barham
Computer Science Department

Naval Postgraduate School
Monterey, California 93943-5118 USA

+1-408-656-2305
{macedonia, zyda, pratt, brutzman, barham}@cs.nps.navy.mil

In Proceedings of VRAIS ‘95.

even modest size VEs [21].

We conjecture that 1000 entities are the limit to which a
single host can realistically manage despite future advances
in computer and graphics architectures.

Multiplexing of different media at the application layer.
The current DIS protocol requires the application to
multiplex and demultiplex different types of real-time data
(e.g. simulation packets, audio, and video) at the application
layer rather than at the network or transport layers.
Therefore, the virtual environment must treat continuous
video streams identically to bursty simulation traffic, i.e.
allocation of buffers and timing at the application layer[20].

Lack of an efficient method of handling static objects.
Large numbers of static entities such as bridges and
buildings may change with respect to an event (e.g. an
explosion). These and other stationary objects must send
update messages at regular intervals to inform the
participants of their current state. For example, a tank that
has been destroyed must constantly inform the world that it
is dead to inform new entrants or other entities that may
have missed the original state change message.

Models and world databases must be replicated at each
simulator. No mechanism in DIS exists to distribute objects
on demand. For large-scale simulation, this is a necessity,
particularly when the simulators are heterogenous,
controlled by different organizations, and little coordination
is expected prior to an exercise. Furthermore, it is not
feasible nor efficient for each simulator to store every model
and database for a 100,000 entity simulation. For example, a
human simulation (e.g. a dismounted infantryman) on land
normally does not need to concern itself with naval vessels,
unless some unique scenario has the human near enough to
the ocean so that it is visible.

REASONS FOR PROBLEMS

Event and State message paradigm. A basic requirement
for DIS has been that the simulation of the VE must be, as a
whole, stateless - data is fully distributed among the
participating hosts and entities are semi-persistent.
Therefore, every entity must be made aware of every event
(e.g. a missile detonation communicated by a Detonation
Protocol Data Unit or DPDU) just on the chance it may need
to know it. According to the protocol, an entity must, on a
regular basis, communicate all of its state information (an
Entity State Protocol Data Unit or ESPDU) to every
member of the group - even though the data contained in the
ESPDU is often redundant and unnecessary (e.g. aircraft
markings). More importantly, these “keep alive” messages
can comprise 70% of the traffic for large-scale simulations
[13].

This paradigm as applied in DIS does not take into
consideration that different simulated systems have different
real-world sensing capabilities that translate into each
entity’s VE data requirements. In a large VE, it is unlikely
that two entities representing ground vehicles separated by
200 Km need to be aware of each other. Yet, under the
current architecture they must inform each other of state
changes and updates.

The rationale for this is to avoid the reliability problems of a
central server, to simplify communication protocols, and
minimize latency while guaranteeing that hosts entering a
simulation would eventually build their entity database
through entity state and event messages. Furthermore, the
use of broadcast ESPDU updates is part of the effort to
maintain consistent view among the simulators within a
particular tolerance.

Real-time system trade-off’s. Reliability (guarantees that
data sent is received) normally is compromised for real-time
performance in large distributed groups. This is because in
order to be truly reliable the system requires the use of
acknowledgment schemes such as the one used in Transport
Control Protocol (TCP) which defeats the notion of real-
time, particularly if a player host must establish a virtual
connection with every other entity host to ensure that each
received data correctly. Therefore, large-scale environments
must rely on connectionless (and therefore unreliable)
network protocols such as the User Datagram Protocol
(UDP) for wide-area communications.

The corollary is that a real-time environment should avoid
transactions between entities since this requires reliable
communications. Furthermore, schemes that use a central
database do not work well in a large VE due to I/O
contention. For example, AT&T’s Imagination network
limits the number of concurrent players in a game to four
because they are centrally served and bandwidth is limited
to the speed of modems (less than 28 Kbps).

No “middleware” layer. There does not exist a DIS
protocol component that mediates between distributed VE
applications and the network. The current DIS paradigm
implies the use of a bridged network because every message
is broadcast to every entity. However, internetworking
(routing over the network layer) is necessary for large-scale
simulations because it provides the capability to use
commercial services as opposed to private networks to bring
together diverse, geographically dispersed sites; use
different local network topologies and technologies (e.g.
Ethernet and FDDI); and take advantage of “r ich”
topologies for partitioning bandwidth, providing robustness
and optimization of routes for minimizing latency.
Confining DIS to the data link layer requires the use of

bridges which are on order of magnitude slower to
reconfigure after a topological change than routers while the
number of stations are limited to the tens of thousands. A
network w i th rou ters i s l im i ted to the numbers
accommodated by the address space [10].

Origins as small unit training systems for Local Area
Networks (LANs). Many of these problems devolve from
the fact that until recently DIS and SIMNET were used
exclusively for small scale training simulations. In this
mode it has been relatively easy to insure that the VE
components have homogenous sets of models and terrain
databases by replicating them at each host. The lack of
middleware stems from the monolithic nature of these small
scale environments which could be distributed using a
single LAN. Hence,broadcastcommunication was
sufficient for these limited environments.

These origins have also influenced the current assumptions
about the density and rates of activity of entities in large-
scale simulations that do not necessarily match the real
world. Players in SIMNET participated for short periods
(several hours) and were highly active because the purpose
of the simulation was to train crews in coordinated drills.
Furthermore, the density of entities with respect to the
simulated area of play was high because that best
represented a small unit engaged in close combat and
because of the difficulty in using large terrain data bases.

EXPLOITING REALITY

Increasing the number of entities by more than two orders of
magnitude requires us to think beyond these artificial
situations. We believe that it is incorrect to strictly
extrapolate the SIMNET and DIS experience (or any of the
small-scale research VEs) to large-scale VEs. Moreover,
large VEs are l ikely to be domain specific in their
requirements. We can exploit aspects of the real-world such
as areas of interest and movement rates to efficiently use
multicast groups, eliminate ESPDU keep-alive updates,
enhance the reliability of large-scale VEs, and reduce
overall bandwidth requirements.

In the real world, which virtual environments emulate,
entities have a limited area of interest. For example, a tank
on a battlefield can effect and observe other entities out to a
range of less than 10 Km. On the other hand, a person on
foot typically has an area of interest of only several hundred
meters. This would be the case for a dismounted
infantryman or a human simulated for a typical role-playing
adventure game. The entities whose areas of interest overlap
are members of aspatial class or group in the VE.

With respect to the military domain, group membership
within these classes would change relatively slowly.

Helmbold in his study on the rates of advance rates for land
operation found that land combat operations stand still 90-
99% of the time [16]. The world’s record for aggregate
movement in modern warfare was 92 Km/day for 4 days (or
about 6 Km/hour) by the 24th Mechanized Infantry Division
in Desert Storm [15,17]. Individual vehicles may move
much faster, but they would not continue at high rates very
long because they fight as part of units in which movement
must be coordinated.

RELATED WORK

The partitioning of virtual worlds into spaces is a common
metaphor for VEs. Multi-User Dungeons (MUDs) have
used this idea and projects likeJupiter from Xerox PARC
have extended this to associating “rooms” with multicast
video and audio teleconferences [24]. Lockheed has
developed a similar concept for spatial partitioning that
assumes the use of ATM multicast “channels”, i.e. mapping
relevant groups to ATM’s Virtual Channel Identifiers.
Though ATM multicast technology is not yet mature, (few
vendors support i t) , these ideas present exci t ing
possibilities.

Benford has described a concept for the spatial interaction
of objects in a large-scale VE [22]. The spatial model uses
different levels of awareness between objects based on their
relative distance and mediated through a negotiation
mechanism. An implementation using DIVE (Distributed
Interactive Virtual Environment) uses “standard VR
collision detection” to determine when the transitions
between awareness levels should occur [26]. The
MASSIVE project also uses this approach. However, the
need for collision detection, reliable communication, and
strong data consistency have made it difficult for DIVE and
MASSIVE to scale beyond a handful of users [25]. This
may be changing as their developers pursue the use of
multicast communications and weaker data consistency.

APPROACH

Our approach is computationaly efficient--constant time
versusO(log n) for simple collision detection using octrees
or bounding volumes--and takes advantage of multicast
networks for par t i t ion ing the envi ronment [19] .
Additionally, we consider two other criteria for establishing
relevance among entities and their communication in the
VE.

Entities also may belong to afunctional class in which an
entity may communicate with a subset of entities. Therefore,
simulated radio traffic should be restricted only to the
interested parties of the group. Other types of functional
classes could be related to system management or services
such as time.

Another example of a functional class in the military
domain would be a VE “air control” group. The group
would include entities that are primarily concerned with
entities or events occurring in the air. Therefore, air defense
and aircraft entities would comprise the majority of the
group. Aircraft and air defense systems are relatively sparse
in the whole as compared to other combat systems such as
tanks. Air defense systems would also belong to a small
subset of the spatial class. Aircraft which are interested in a
particular area of ground can “focus” and join a spatial
group associated with its area of interest.

Finally, entities can belong to atemporal class. For
example, some entities do not require real-time updates of
all state changes. A system management entity might only
need updates every several minutes. Similarly, a simulator
of a space-borne sensor only needs a general awareness of
ground vehicle entities and therefore can accept low-
resolution updates. When there is a need for more
resolution, the simulator, like aircraft entities, can focus and
become part of a spatial group.

DIS AREA OF INTEREST MANAGER

We propose the use of a software “glue” between the DIS
event and state PDU paradigm and the network layers that is
wedded to reality. The area of interest manager (AOIM)
partitions the VE into a set of workable, small scale
environments or classes to reduce computational load on
hosts, minimize communications on network tail links, and
localize reliability problems. Furthermore, the AOIM exists
with every simulator to distribute partitioning processing

among hosts.

MULTICAST

The AOIM uses spatial, temporal, and functional classes for
establishing membership in multicast network groups.
Multicast services allow arbitrarily sized groups to
communicate on a network via a single transmission by the
source [10]. Multicast provides one-to-many and many-to-
many del ivery serv ices for appl icat ions such as
teleconferencing and distributed simulation in which there is
a need to communicate wi th severa l o ther hosts
simultaneously. For example, a multicast teleconference
allows a host to send voice and video simultaneously to a set
of (but not necessarily all) locations. With broadcast, data is
sent to all hosts while unicast or point-to-point routes
communication only between two hosts.

The Internet Protocol (IP) Multicast protocol provides an
addressing scheme that permits unreliable, connectionless,
multicast service that is routable over the Internet [2,19].
From the perspective of the AOIM, IP Multicast allows the
creation of transient multicast groups that can be associated
with an entity’s area of interest (AOI).

In this context, IP Multicast addresses can essentially be
used as context labels instead of physical destinations.
Figure 1 shows this. Players X, Y, and Z send data to the IP
Multicast group address 224.11.22.56 rather than explicitly
forwarding packets to each and every player. The network
takes over this requirement. Players A and B send and
receive traffic relevant only to their group, 224.11.22.33,

Multicast Group 224.11.22.33
Multicast Group 224.11.22.56

Player X Player B

Player C

Player Y

Player A

Player Z

Figure 1. Simple illustration of multicast communications. Groups are expressed as IP Multicast Addresses. Note
that Player C is a member of both multicast groups.

Multicast Network

while C is a member of both and participates in each
session.

Therefore, multiplexing and demultiplexing is done at the
network level. This naturally provides a way of separating
classes of traffic such as audio, video and simulation data.
For example, the radio communications functional class
would be mapped to a particular multicast group address or
“channel”.

As stated before, this partitioning is necessary to reduce the
enormous computational requirements of large-scale
(100,000 player) simulations. For a 1000 object exercise
conducted in 1990 with SIMNET, the limiting factor was
not network bandwidth, with loads running at 50%, but the
local host processor performance [1]. Network simulations
done by Van Hook have shown that a 90% reduction in
traffic to a particular node is achievable for a 10,000 player
exercise using multicast services [13].

ASSOCIATIONS

To illustrate our ideas, we examine using the AOIM to
associate spatial classes with multicast addresses. We
suggest for this example part i t ioning the VE with
appropriately sized hexagonal cells. Each cell is associated
with a multicast group. In Figure 2 we associate a vehicle
with 19 hexagons that represent its AOI. Hence, it is also a
member of 19 network multicast groups. The entity’s host
listens to all 19 groups but, with two exceptions, it sends
PDUs only to the one associated with the cell in which it is
located.

There are several reasons we use hexagons. First, they are
regular, have a uniform orientation, and have uniform
adjacency [18]. As the vehicle moves through the VE, it
uniformly adds and deletes the same number of cells/
multicast groups.

Secondly, a vehicle’s AOI is typically defined by a radius -
much like signal of transmitter in a cellular telephone
system. If squares were used, we would either need to
include more area than was necessary (and thus include
more entities in our AOI) or use smaller grids - requiring
more multicast groups - and compute which grids the
vehicle should be associated with. Using hexagons with a
2.5 km radius, the AOI above ranges from 12.5 to 8.6 km
and the area is 411 km2. If the average density of vehicles
was 2 per km 2, then the entity host communicates with
approximately 800 other entities. As mentioned previously,
the AOI varies with respect to the capabilities of the system
simulated.

GROUP CHANGES

Entities can belong to several groups at a time to avoid
boundary or temporal aliasing. There will likely be few
group transitions by a ground-based entity within an hour
because, on average, groups of vehicles will move slowly
relative to the entire VE. If a vehicle was moving at the
Desert Storm record advance rate, it would transition on
average a cell once an hour. The vehicle portrayed in Figure
2 must join and leave 5 multicast groups which are
associated with cells at the periphery of its AOI where
change is less critical - ameliorating the effects of latency

Figure 2. Area of Interest for vehicle mapped to a subset of multicast groups.

caused by joining and leaving new groups. The outlined
clear cells are removed and the outlined grey cells are added
as the entity transitions to a new cell.

We use group changes as an opportunity for database
updates -- similar to a paged memory scheme -- in order to
eliminate regular ESPDU updates. We do this in a logical,
distributed manner using knowledge about the age of
entities with respect to their particular group.

An entity joins a group as a passive or active member.
Active members send as well as receive PDUs within the
group, are located in the cell associated with the group, and
can become the group leader. Passive members normally do
not send PDUs to the group except when they join or leave.
They are associated with the group because the cell is within
their AOI, yet they are not located within the cell.

When an entity joins a new group it notes the time it entered
and issues aJoin RequestPDU to the cell group. The PDU
has a flag indicating whether it is active or passive. The
group leader replies with aPointer PDU that references the
request and in turn multicasts a PDU containing a pointer to
itself or another active entity. The new member sends a
Data RequestPDU to the referenced source which issues a
Data PDU containing the aggregate set of active entity
PDUs. A passive entity becomes an active member of a
group by reissuing theJoin RequestPDU with a flag set to
active when entering a cell. Departures from the group are
announced with aLeave RequestPDU.

We use the oldest member of the group as the election
method for group leader. We make use of timestamps to
determine the oldest member. The first active member of a
group will issue several Join Request PDUs before
concluding that its is the sole member of the group and
therefore the oldest. When a passive entity determines that
there is no leader, it merely listens for active members. A
new active member of an established group issues a Join
Request PDU, receives the Data PDU, notes the join
timestamps of the members, and keeps track of those who
enter and leave.

RATIONALE

The Data PDU may be sent reliably to the issuer of the Join
Request PDU via a unicast protocol as a heavy-weight
object. With a large member distributed simulation,
reliability, as provided in the Transmission Control Protocol
(TCP), would normally penalize real-time performance
merely by having to maintain timers for each host’s
acknowledgment. Moreover, flow control is also not
appropriate for DIS since systems with humans in the loop
can recover from a lost state message more gracefully than
from late arrivals. Fortunately, within the context of DIS, a

certain amount of unreliability is tolerable and is mediated
through the use of the dead-reckoning and smoothing
algorithms [4,8]. Other applications such as packet voice
and video can use adaptive techniques to handle lost packets
and delays [9]. However, we can reliably send the Data
PDU because the entity will normally be joining a group
that is at the periphery of its AOI where latency is not as
critical.

Communications model. We conjecture that a large-scale
real-time VE cannot guarantee strong data consistency and
reliable communication among al l i ts part icipants
simultaneously. Instead, four types of communication can
be established which, used together, allow stronger
consistency than simply broadcasting state messages. They
provide for a much richer world through a mechanism for
sending large objects rel iably and support ing VE
partitioning.

In our model there exists four methods for communication
within the context of VEs:

Light-weight interactions. These messages are composed of
the same state, event, and control PDUs used in the DIS
paradigm but implemented with multicast. They are light-
weight because the complete semantics of the message are
encapsulated in the maximum transfer unit (MTU) of the
underlying data link to permit asynchronous real-time
interactive use. Therefore, these PDUs are not segmented.
They are either received completely or not at all because
they are communicated via connectionless and unreliable
(unacknowledged data) networks. The MTU for Ethernet is
1500 bytes and 296 bytes for 9600 point-to-point (PPP)
links.

Network pointers. Proposed are light-weight references to
resources, in a similar way to Uniform Resource Identifier
(URI) as defined in the Hypertext Transfer Protocol
(HTTP)[27]. Pointers are multicast to the group so that they
can be cached by members. Therefore, common queries
need not be resent and the server can direct the responses to
other members of the group. We make a distinction between
pointers and light-weight interactions (e.g. Join Request
PDU) because they do not completely contain a object but
rather its reference. Pointers provide a powerful mechanism
for referencing not only the current aggregate state of the
group but also terrain, model geometry, and entity behaviors
defined by a scripting language. In the context of the World
Wide Web, network pointers have revolutionized Internet
communication.

Heavy-weight objects. These objects require reliable,
connection-oriented communication. For example, an entity
may require model geometry after joining a group that does

not exist in its database. The entity would multicast a
request for the geometry and the response would be a
multicast pointer to the source. If efforts such as the Virtual
Reality Modeling Language (VRML) are successful,
heterogeneous systems may be able to exchange this type of
information [28].

Real-t ime streams. Video and audio traffic provide
continuous streams of data that require real-time delivery,
sequencing and synchronization. Moreover, these streams
will be long-lasting, persisting from several seconds to days.
They are multicasted on a particular “channel” to a
functional class. In contrast with the current DIS protocol,
we propose the use of pointers to direct entities to these
channels rather than, for example, forcing the VE, which
may be as simple as a text-based application, to receive both
light-weight DIS PDUs as well as video streams. Moreover,
the VE can spawn a separate process which incorporates an
adaptive receiver and which separates the handling of bursty
simulation message from real-time streams.

ENTITY INTERACTIONS

Entities can only interact if they are aware of and can
communicate with each other. Entity A becomes aware of
entity B only if B is an active member of a group that A
belongs to -- and therefore, in the AOI of A. If both are only
passive members of the same groups then each one is
beyond the view or influence of the other.

In a combat simulation, it is possible that if tank A fired a
non-guided munition (which is not instantiated as an entity)
at tank B, then B’s AOI might not overlap the cell in which
A was an active member tank. A must become an active
member of the target area cell and forward a detonation
PDU to that cell. According to the DIS protocol, entities
assess for themselves the effects of the detonation and report
via an ESPDU any state changes which are the result.

ADVANTAGES

Reduced latency for new entrant learning. Assuming an
even distribution of entities in our example, for each cell
joined an entity must receive data for about 40 other
entities--approximately 40 Kbits. At 10 Mbps data transfer
rates, it would take 4 ms to update a new entrant versus 5
seconds under the current DIS scheme.

Reduced bandwidth requirements. This architecture
eliminates the need for entity keep-alives. New entrants are
informed by the Join procedure of who exists in their
particular groups. Multicast association further reduces the
traffic demands on the tail links by confining the scope of an
entity’s communication to its area of interest and implicitly
directing it traffic to a subset of hosts on the network.

No need for a centralized server. Using the oldest member
of a group to serve Join requests is logical because it is the
entity that should know all of the other entities and the past
events that have occurred in the group. We expect that
serving the group will be relatively undemanding with
respect to Input/Output processing for the group leader
because of the small number of active members in a group/
cell and relatively slow transitions due to the expected real
world transition rates for vehicles. Moreover, the server,
through the pointer mechanism, can assign other entities to
the task of serving the request. This provides an opportunity
for exploring different algorithms for load balancing
purposes.

Solves the static and dead entity problem. Likely
candidates for the group leader will be static entities such as
those representing buildings or bridges which can change
state (i.e. collapse). Servers for these destructible entities
will be the originating members of a spatially associated
group and remain with the group for its entire existence.
Moreover, static or dead entities are no longer a major
burden to the VE with respect to wasting bandwidth with
update ESPDUs. They need only to transmit PDUs upon
initialization and when changing state.

Localization of reliability problems. large-scale VEs will
naturally have some degree of unreliability. Partitioning the
VE into groups prevents problems from impacting on the
entire simulation. Currently, an entire DIS simulation
involving hundreds of entities can fail because of a single
rogue application because all communication is broadcast.

Maintains the current DIS semantics. The AOIM can be
run as a separate thread or process and eliminates the need
to change current DIS PDU semantics. The application
simulating an entity is not required to have knowledge of
the partitioning or the AOIM.

STATUS OF WORK

We have developed an IP Multicast version of the NPSNET-
IV 3D vehicle simulator using a network library developed
by Paul Barham and John Locke that supports multiple
threads and dynamic creation of multicast groups [23].
Furthermore, we are including the algorithms to support the
AOIM concept presented here and developing a simulation
to predict the results.

CONCLUSION

This paper describes a concept that provides a network
software architecture for solving the problem of scaling very
large distributed simulations. The fundamental idea behind
our approach is to logically partition virtual environments
by associating spatial, temporal, and functionally related
entity classes with network multicast groups. This is

accomplished by exploiting the actual characteristics of the
real-world large-scale environments that are to be simulated,
and by focusing an entity’s processing and network
resources to its area of interest via an Area of Interest
Manager.

Finally, we present an example of how we would implement
this concept for spatial classes. We have begun design and
construction of the AOIM for use with the NPSNET 3D
vehicle simulator. NPSNET is currently the only DIS
compliant simulator using IP Multicast communications and
is suitable for operation over the Internet.

ACKNOWLEDGMENTS

This work would not have been possible without the support
of our research sponsors: USA ARL, ARPA, DMSO, USA
STRICOM, USA HQDA AI Center-Pentagon, USA TRAC.

RESOURCES

Many of the references noted below are available via the
NPSNET Research Group’s WWW home page:

ftp://taurus.cs.nps.navy.mil/pub/NPSNET_MOSAIC/
npsnet_mosaic.html

1. Chung, J.W., An Assessment and Forecast of
Commercial Enabling Technologies for Advanced
Distributed Simulation, technical report, Institute for
Defense Analysis, Arlington, VA (October 1992).

2. Deering, S.Host Extensions for IP Multicasting.
RFC 1112 (Aug 1989).

3. Doris, K. Issues Related to Multicast Groups. In
Proceedings of the Eighth Workshop on Standards for the
Interoperability of Defense Simulation (March 1993), pp.
269-302.

4. Harvey, E.P., Schaffer, R.L.,The Capability of the
Distributed Interactive Simulation Networking Standard to
Support High Fidelity Aircraft Simulation, technical report,
BMH Associates, Inc. and BBN Systems and Technologies,
Norfolk VA, Cambridge, MA. (July 1992).

5. Institute of Electrical and Electronics Engineers,
International Standard, ANSI/IEEE Std 1278-1993,
Standard for Information Technology, Protocols for
Distributed Interactive Simulation (March 1993).

6. Institute for Simulation and Training, IST-TR-93-20,
Communication Architecture for Distributed Interactive
Simulation (CADIS) [Final Draft], University of Central
Florida, Orlando, FL. (June 1993).

7. Loral Systems Company,Strawman Distributed
Interactive Simulation Architecture Description Document
Volume 1, technical report, Advanced Distributed
Simulation Technology Program Office, Orlando, FL
(March 1992).

8. Miller, D.C., Pope, A.C., and Waters, R.M. Long-
Haul Networking of Simulators. InProceedings of Tenth
Interservice/Industry Training Systems Conference
(December 1989), p. 2.

9. Partridge, C.Gigabit Networking. Addison-Wesley.
Reading, MA. 1994, pp. 191-193

10. Perlman, R.Interconnections: Bridges and Routers.
Addison-Wesley, NY, 1992, p. 258.

11. Pope, A., BBN Report No. 7102,The SIMNET
Network and Protocols, technical report, BBN Systems and
Technologies, Cambridge, MA, (July 1989).

12. Pratt, D.R., A Software Architecture for the
Construction and Management of Real Time Virtual
Environments, dissertation, Naval Postgraduate School,
Monterey, CA, (June 1993).

13. Van Hook, D.J.Simulation Tool for Developing and
Evaluating Networks and Algorithms in Support of STOW
94. Presented for Scalability Peer Review, (August 1993).

14. Zyda, M.J., Pratt, D.R., Falby, J.S. Barham, P.T.,
Kelleher, K.M. The Software Required for the Computer
Generation of Virtual Environments. Presence, 2, 2
(Summer 1993) 130-140.

15. Dunnigan, J. and Macedonia, R.M.Getting It Right,
Morrow. New York, NY, 1993, p. 211.

16. Helmbold, R. L. Rates of Advance in Historical Land
Combat Operations, technical report, CAA-RP-90-1, US
Army Concepts Analysis Agency, Bethesda, MD, (June
1993), pp. 5-2,3.

17. McQuie, R.Historical Characteristics of Combat for
Wargames, technical report, CAA-RP-87-2, US Army
Concepts Analysis Agency, Bethesda, MD, (July 1988), p.
13.

18. Samet, H.The Design and Analysis of Spatial Data
Structures. Addison-Wesley. Reading, MA, 1989, pp. 20-21.

19. Macedonia, M.R., Brutzman, D.P. MBone Provides
Audio and Video Across the Internet.IEEE Computer, 27, 4
(April 1994), 30-34.

20. Feldmeier, D. C., Multiplexing Issues in
Communication System Design. InProceedings of ACM
SIGCOMM ‘90 (September 1990), ACM, pp. 209-19.

21. Pentland, A.P., Computational Complexity versus
Simulated Environments.Computer Graphics. 1990
Symposium on Interactive 3-D Graphics 24, 2 (March
1990), 185-192.

22. Benford, S., Fahlen, L.E. and Bowers, John.
Supporting Social Communication Skills in Multi-Actor
Artificial Realities. In Proceedings of The Fourth
International Conference on Artificial Reality and Tele-
Existence (July 14-15,Tokyo, Japan), 1994, pp. 205-223.

23. Macedonia, M. R., Zyda M.J., Pratt D.R., Barham
P.T., Zeswitz S. NPSNET: A Network Software
Architecture for Large-scale Virtual Environments.
Presence 3,4 (Winter 94).

24. Curtis, P., Nichols, D.A. MUDs Grow Up: Social
Virtual Reality in the Real World. 1994. ftp://
ftp.parc.xerox.com/pub/MOO/papers/MUDsGrowUp.ps.

25. Benford, S., Bowers, J., Fahlen, L. and Greenhalgh,
C. Managing Mutual Awareness in Collaborative Virtual
Environments. In Proceedings of VRST ‘94, World
Scientific Publishing Company, NJ, pp. 223-236.

26. Carlsson, C. and Hagsand, O. (1993). DIVE - a Multi
User Virtual Reality System. InProceedings of VRAIS ‘93
(September 18-22, Seattle, WA) IEEE, NJ, 1993. pp. 394-
400.

27. Berners-Lee, T. Hypertext Transfer Protocol (HTTP),
A Stateless Search, Retrieve and Manipulation Protocol,
Internet Engineering Task Force Draft, ftp://nic.ddn.mil/
internet-drafts/draft-fielding-http-spec-01.ps, (19 December
1993).

28. Pesce, M. The Virtual Reality Modeling Language.
http://www.eit.com/vrml/vrmlspec.html.

