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Abstract 

Human error arguably accounts for more than half of all 
security vulnerabilities, yet few frameworks for testing 
secure systems take human actions into account. We 
describe the design of an experimentation platform that 
models human behaviors through intelligent agents. Our 
agents share some desired features with believable agent 
systems, but believable interaction with a human is less 
important than accurate reproduction of security-related 
behaviors. We identify three main components of human 
behavior that are important in such a system: (1) models of 
emotion and other cognitive state that may increase the 
probability of errors, (2) flexible reasoning in the face of a 
compromised system and (3) realistic task-based patterns of 
communication among groups. We describe an agent 
framework that can support these behaviors and illustrate its 
principles with a scenario of an insider attack. We are 
beginning the implementation of the framework, and finish 
with a discussion of future work. 

 Introduction   

Human error is widely recognized as one of the most 

important sources of vulnerability in a secure system. In a 

survey taken in 2006, approximately 60% of security 

breaches were attributed to human error by security 

managers (Crawford 06, Cranor 08). Humans often ignore 

or misunderstand warnings, underestimate danger, and 

download infected files or simply disable security 

mechanisms because of their slowness or complexity 

(Whitten and Tygar 99). Consider the old statement that 

the only secure computer is one that is turned off and/or 

disconnected from the network. A social engineering attack 

exploiting the human element would simply be to convince 

someone to plug it back in (Mitnick 02) . 

But frailties are only one aspect of human behavior that 

impacts our understanding of security. Compared with 
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software systems, humans are flexible and resourceful 

problem solvers, able to find alternate ways to accomplish 

their tasks despite failures of resources or services. 

Different people often perform the same task in different 

ways, providing a diversification defense from some 

attacks. Dourish and Redmiles (02) introduce the concept 

of “effective security” as a more realistic measure of the 

security of a system than a formal evaluation of the 

security mechanisms installed. The level of effective 

security is almost always below the level of theoretical 

security that is technically feasible in a system, largely due 

to human error. On the other hand, effective security must 

be measured end-to-end, taking into account the entirety of 

the system and the purpose it solves. In this context a high 

level of theoretical security may be both expensive and 

unnecessary. 

Cranor (08) proposes a framework for reasoning about 

the security of systems with humans in the loop. She 

models the human as an information processor based on 

the warnings science literature (Wogalter 06). However, 

this model only captures the human response to warning 

messages and ignores many important aspects of human 

behavior, such as the task being performed, collaboration 

that leads to structured communication, and stress, 

emotions and tiredness that will affect a human’s 

propensity to make errors. Cranor’s approach allows a 

checklist-style evaluation of a security system. 

In this paper we outline a research agenda to enable a 

more detailed and encompassing evaluation of human-in-

the-loop security systems, using intelligent agents 

(Giampapa and Sycara 02, Chalupsky et al. 01). We are 

designing agents capable of simulating a shared task, in 

which individual agents have different roles, different basic 

skills and also different emotional responses. Such a 

framework should be able to answer far more detailed 

questions about the effective security of a system in a 

range of different scenarios. One of our goals is to capture 

those aspects of human nature that often prove to be crucial 

in the security of modern systems, for use in large-scale 

simulations at a level of fidelity that allows for end-to-end 

scientific evaluation. 



Given this goal, what aspects of human behavior are 

important to capture? We focus on three aspects of human 

behavior that have an important influence on the likelihood 

of success and severity of cyber attacks: (1) errors, 

particularly under time-related stress, (2) flexibility of 

response to problems and (3) non-random patterns of 

communication centered around a collaborative task. 

While many believable agent-based simulation systems 

have been built (Bates 93, Choi et al 07, Marsella and 

Gratch 09), many of them are concerned with believability 

to humans through interaction (Tambe et al 95). None of 

these systems have the specific goal of capturing the 

human element that proves to be the weakness in computer 

security. Here, we are not so concerned with believable 

human-to-agent interaction, but in sufficiently similar 

action compared with human behavior to make simulation 

results valid. This is why we have used the term 

“unbelievable agents” to describe our approach. 

Scenario 
As we describe our agents’ desired properties and 

architecture we will make reference to the following 

scenario: Three organizations are working on a joint 

project. Within their respective companies, there are team 

leaders, workers, and IT professionals. Each company may 

have a point of contact with the others and knowledge of 

how to communicate with other workers.  

Two of the organizational teams gather information 

from different sources and primarily communicate between 

themselves. After gathering data, they update a cloud 

service spreadsheet with data they have collected and 

packaged for analysis. The third organizational team 

simply reviews the data, analyzes it, and updates with 

results. 

There is a worker who is interested in infecting company 

computers for financial gain.  He is a part of one of the 

teams and is aware of trust relationships within the work 

groups.  He waits until another worker goes on lunch break 

and jumps on his computer, uses a password that was 

written on a post-it, and uploads a worm that propagates 

through email. An outsider coordinating with the malicious 

insider then gains access to information on various 

systems. At some point, a normal worker notices 

something is not right and contacts an IT worker he is 

familiar with. The IT workers attempt to coordinate and fix 

the issue.  

Some security questions that may be answered through 

agent simulations are: What kinds of organizational 

structures are more resilient to cross-organizational attacks 

such as this one? What kind of policy is most effective? 

Was a piece of security hardware effective? How much of 

legitimate vs. malicious traffic is blocked by our security 

systems? How does this affect productivity? What kind of 

procedures can IT professionals take to mitigate damages 

once they are done? 

Importance of Human Behavior in Security 

Given that human frailties are an important aspect of 

computer security, to what degree do they need to be 

reproduced in software agents in order improve end-to-end 

evaluation? 

To achieve our research goals, we need to model frailties 

in context of human-computer interaction .  This does 

embody some understanding of how humans communicate, 

consume information, publish information and distribute 

information without a computer, but not the full scope of 

human behavior. 

For experimenters, the ability to capture human behavior 

at different levels of fidelity is important.  The benefit of 

accurately capturing the full range of human behavior on 

computers is clear.  For partial capture of human behavior, 

we believe an experiment may want to focus on a specific 

phenomenon related to just a few human traits and 

capturing too much may add too much complexity and 

hinder analysis. 

One of the open questions we aim to answer is whether 

there is an equivalent “uncanny valley” in simulating 

humans in such a manner.  In other words, are there 

simulations which appear better but actually get worse 

results because we fall into specific errors near a good 

simulation?  

Agent Properties 
We divide the different properties we consider into 

properties of individual agents, and properties that govern 

patterns of communication within and between groups. 

Attributes of individuals are important to achieve a base 

level of fidelity as well as to provide a way to incorporate 

human frailties and behavioral diversity into the 

simulations. We will extend a standard BDI agent (beliefs, 

desires, intentions)  (Bratman 87; Rao and Georgeff 91) in 

two main ways. First, we will incorporate modular goal-

based planners. Second, we will integrate a 

cognitive/emotional state including several factors such as 

emotional response based on appraisal theory (Gratch 

Marsella 04), biorhythems (e.g. hunger, fatigue) focus 

level, stress, creativity/agility, and technical competency to 

adjust the planning and execution processes. For example, 

an agent who is more creative would be able to devise new 

plans to achieve their goals; or one who is fatigued and less 

technically competent might incorrectly override security 

mechanisms. These influences are dynamic. For example, 

as the simulation progresses, the agents will become more 

fatigued or if agents were given training, their technical 

competency could rise. 

In order to model realistic patterns of communication, 

we will create and keep track of a social network for our 

agents. This will track whom they may be familiar with, 

the types of relationships they have, and their 

understanding of the other agents in the simulation. Agents 

can then reason about who they may think would be 

interested in a funny Youtube video or who they would 

contact first for help.  In our scenario, a worker who 

suspects a worm would contact a person in IT he knows as 



a friend, who then may be more inclined to listen and 

investigate rather than be annoyed. This aspect is important 

to simulate attacks that traverse a social network such as 

Facebook viruses or old Trojan viruses which used 

victim’s instant messaging account to propagate. This 

happens in our example scenario where a worm propagates 

itself through email using the victim’s address book.

When the network under attack contains an organization 

performing a task, as in our scenario, the needs of the task 

itself probably dominate the patterns of communication. In 

this case, one would expect denser communication within 

working groups than between them. The temporal pattern 

of communication will probably follow the working day 

and also the organization’s deadlines. The social network 

is important within the organization for modeling leisure

related communication and determining who an agent is 

likely to approach for help with technical or security 

concerns. 

Detailed tracking of an agent’s social network is 

important for its emotional influence on decision making.  

For example, humans will sometimes avoid 

to co-workers or superiors in an attempt to maintain the 

best possible relationship with others, because of pride.  

Alternatively, a person might also admit fault because of 

moral traits or feelings of guilt.  Certain prejudices towards 

people such as those claiming to be from IT 

to an agent being more compliant to requests such as 

deleting files or turning on a machine. 

The timing of agent behaviors is another important 

aspect for realistic simulations. Cyber attacks can take 

place over very short periods of time, far too quickly for 

humans to react. Our agents’ decision-act cycles must 

match those of humans well enough to capture this. 

Similarly, changes to our agents’ cognitive states, e.g. 

tiredness, hunger and frustration, should take place ove

reasonably human time scales. 

Many of these desired properties are shared with agents 

that behave in a believable fashion in other domains, for 

example in games and for training, and we intend to make 

use of this work where possible. However the security

domain makes some properties of believable agents almost 

irrelevant and other properties that have not been much 

studied are more important. For example, interaction with 

other humans is not, at least initially, a required aspect of 

believability in this domain, allowing us to finesse natural 

language understanding and generation or body language. 

There are also properties that we do not intend to model in 

the first version of our framework although they are 

important in the long run. These include the abi

from observations of the world and of each other, and the 

ability to influence the views and beliefs of another agent.

An interesting example of these differences is in the 

diversification of agents, i.e. to what extent different agents 

should perform the same tasks differently. In our domain, 

one way this is important is in how many individuals are 

vulnerable to an attack that relies on using a particular 

, who then may be more inclined to listen and 

This aspect is important 

traverse a social network such as 

Facebook viruses or old Trojan viruses which used 

gate. This 

happens in our example scenario where a worm propagates 

itself through email using the victim’s address book. 

network under attack contains an organization 

performing a task, as in our scenario, the needs of the task 

itself probably dominate the patterns of communication. In 
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The social network 

important within the organization for modeling leisure-

related communication and determining who an agent is 
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domain makes some properties of believable agents almost 

irrelevant and other properties that have not been much 
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language understanding and generation or body language. 

There are also properties that we do not intend to model in 

the first version of our framework although they are 

important in the long run. These include the ability to learn 

from observations of the world and of each other, and the 

ability to influence the views and beliefs of another agent. 

An interesting example of these differences is in the 

to what extent different agents 

In our domain, 

one way this is important is in how many individuals are 

vulnerable to an attack that relies on using a particular 

feature of some software that has a vulnerability. In the 

real world, it may be that a third of the users use this 

feature, while the rest perform the task in other ways. 

Without some diversification, all or none of the agents 

might be vulnerable to the attack. This can be contrasted 

with the game Halo, where players found the actions of the 

automated agents to be less believable if they were too 

varied. The designers made adjustments reducing the 

diversification of the agents. 

 

Architecture and Implementation
Our agents are based on a well known BDI model, 

however we are extending it with what we call the 

cognitive state.  The cognitive state will influence normal 

intentions, goals, and possibly available actions and 

methods.  Other modules such as plan

and learners may be integrated as plug

intended to allow for extensibility for specialized needs.  

The agent architecture is shown in figure 1.

 

Figure 1.Our agent architecture is based on a BDI model 

with a cognitive state that includes emotions and aptitudes

A separate desktop interface provides an abstraction 

through which the agent interacts with its software 

environment

 

Each agent is initialized with goals, beliefs, 

and a cognitive state; depending on the role that agent 

plays in the overall simulation. In the case of our scenario, 

the inside attacker’s goals would be to make money, it has 

certain beliefs about information that flows through 

company machines and the technical competencies 

coworkers, and its intentions are to use a worm to gather 

feature of some software that has a vulnerability. In the 
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the inside attacker’s goals would be to make money, it has 

certain beliefs about information that flows through 

company machines and the technical competencies of its 

coworkers, and its intentions are to use a worm to gather 



information for financial gain.  With cognitive state, 

however, if the agent had sufficient laziness, for example, 

he may never follow through with his intentions or choose 

to pursue an easier path. It should be noted that these 

choices within the agent are stochastic and will rely on a 

psychological model of how different factors affect 

reasoning. This model may vary between agents to account 

for more flexibility and variance in behavior. 

state is shown in figure 1. 

Example attributes in the cognitive state include 

tiredness and stress level. As agents complete tasks without 

a break their tiredness increases. The stress level may 

increase if they notice evidence that the computer 

environment may be compromised, or if goals are 

obstructed.  Elevated levels of tiredness and stress increase 

the probability that an agent will make mistakes, for 

example ignoring warning messages, or turning off 

security software to save time. The reason for this change 

in behavior is agent’s reaction to their feelings and 

decision to cope with these feelings by becoming more 

careless.  The need to cope with certain feelings may lead 

to other decisions such as taking breaks or giving up.  

Carelessness could be a primary reason the worm in our 

scenario goes unnoticed for a certain length of time. 

Eventually someone, perhaps from the IT group,

suspect a strange email or notice strange system behavior.

For the actual implementation of our agen

leverage either Soar or SPARK (Morley and Myers 04)

Soar is based on a unified cognitive architecture. In Soar, 

knowledge (actions and methods) is specified in a series of 

statements roughly in “if…then” form commonly seen 

expert systems. Agents built on Soar have been shown

be very robust in the face of failure or uncertaint

important in our domain. Agents based on Soar are also 

capable of abstraction and learning from experience.

SPARK is a descendent of Georgeff et al.’s Procedural 

Reasoning System (Georgeff and Lansky 87) that was 

central in the development of BDI systems. SPARK is 

much smaller in scope than SOAR and concentrates on an 

efficient, flexible language for agent behaviors with a 

sound formal basis. Its representation for agent operators is 

more procedural, and similar to that of RAP systems (Firby 

89). SPARK supports multiple execution threads for agents 

and the interruption and resumption of tasks.

Much of the reasoning about cognitive state concerns 

emotions. In common with several research groups, we 

view emotions as arising from goal achievement or failure 

and modifying the agent’s actions. Relatively simple 

models have been implemented that have validity from 

cognitive science, for example Em (Neal Reilly 96), which 

is based on the models of Ortony et al (88) or EMA 

(Marsella and Gratch 09) based on appraisal theory

and Lazarus 90). 

Emotions in our agents are based on the work (Gratch 

Marsella 04) which is based on the appraisal variables of 

relevance, desirability, causal attribution, likelihood, 

information for financial gain.  With cognitive state, 

however, if the agent had sufficient laziness, for example, 

he may never follow through with his intentions or choose 

It should be noted that these 

choices within the agent are stochastic and will rely on a 

psychological model of how different factors affect 

reasoning. This model may vary between agents to account 

for more flexibility and variance in behavior. The cognitive 

Example attributes in the cognitive state include 

tiredness and stress level. As agents complete tasks without 

a break their tiredness increases. The stress level may 

increase if they notice evidence that the computer 

goals are 

Elevated levels of tiredness and stress increase 

the probability that an agent will make mistakes, for 

, or turning off 
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much smaller in scope than SOAR and concentrates on an 
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ng about cognitive state concerns 

emotions. In common with several research groups, we 

view emotions as arising from goal achievement or failure 

and modifying the agent’s actions. Relatively simple 

models have been implemented that have validity from 

tive science, for example Em (Neal Reilly 96), which 

or EMA 

(Marsella and Gratch 09) based on appraisal theory (Smith 

are based on the work (Gratch 

Marsella 04) which is based on the appraisal variables of 

relevance, desirability, causal attribution, likelihood, 

unexpectedness, urgency, ego involvement, and coping 

potential.  Every time an observation is made, appraisals 

are generated for these variables which

affective state, and lead to coping behavior 

cognitive state.  

The flexible behavior required of 

implemented through planning systems. Although both

SOAR and SPARK are capable of simple planning, we 

anticipate the need for more sophisticated planning tools to 

operate quickly in large domains. These can be included as 

plug-in tools, as shown in Figure 1, where the agent will 

invoke a planner to help choose a next step, allowing the 

planner a filtered view of its beliefs and goals, and 

incorporating the result as intentions. For this reason we 

plan to use a Blackboard model for the agent’s dynamic 

state (Engelmore and Morgan 86). 

 

To work in teams, groups communicate in a hierarchical 

structure as shown in figure 2. Organizations are 

represented by agents who act as team 

leaders are assigned high level tasks or sets of tasks and 

decompose them into finer grain tasks which are delegated 

to team members.  This not only reflects organizational 

structures in our scenario, but also 

structures. Workers in the scenario will also rely on this 

organizational structure to collaboratively produce a 

spreadsheet. 
 

 

Figure 2. A Hierarchical agent communication framework

is realistic and also supports scalability.

 

One agent is distinguished as the scenario director 

keeps track of critical events that place as the scenario 
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of the Oz project, which used adversarial search to ensure 

that plot points were met while the user explored an 

interactive world (Weyhrauch 97, Kelso et al 93). 

In our scenario, each of the three companies is created as a 

separate team, each with a team leader, workers, and IT 

professionals respectively. Two of the teams are designed 

to gather, collect and package data, and the other team 

reviews, analyzes, and updates with a final result. The 

outsider can be defined as his own team, but simply stays 

out of the story until the inside attacker is triggered by the 

scenario director. Most of the agents in this example have 

the ability to manipulate the data as a spreadsheet saved on 

a cloud service. 

The inside attacker is given a special set of goals that 

can be triggered directly, and at a given time will 

compromise another agent’s computer. This begins the 

attack phase of the simulation in which we can model and 

measure a number of features, including the size and speed 

of the attack, the amount of data compromised before IT 

professionals can re-secure, and the loss in overall 

productivity.  

 

Conclusions and Future Work 
Understanding the human element is critical in evaluating 

systems for security. We have outlined an architecture 

based on autonomous agents that will improve researchers’ 

ability to incorporate human behavior into experiments 

with security systems. By allowing all the agents to be 

simulated, the approach maintains the benefits of automatic 

testing, such as scale and potentially accelerated timelines. 

We have also outlined a scenario in which team oriented 

behavior, human frailties and human flexibility of 

approaches play an important role and shown how it will 

be modeled within our framework. 

We are currently in process of implementing a prototype 

of the framework. We intend to perform full evaluation on 

the system and improve upon our current design decisions. 

Two of our central questions moving forward will be 

scalability and user authoring of agents and behaviors.  

We want to support experiments with perhaps thousands 

of agents performing loosely coupled tasks over a realistic 

hardware and network landscape. We believe our approach 

will scale, even with a single scenario director, if we allow 

the scenario director to offload the oversight of key plot 

events to team leaders as necessary. Experiments of 

security systems may take days or weeks to run, creating a 

challenge to the longevity of our autonomous agents.  

In the long term we intend to construct a toolkit for 

security researchers, allowing them to instantiate human 

behaviors as appropriate for their experiment. This will 

rely on powerful authoring tools that will allow users to 

define the key plot points of a scenario and a set of agents, 

probably by retrieving agents from a library and modifying 

their capabilities and profile. We intend to build on earlier 

work in procedure editing already integrated with Spark as 

a starting point (Blythe 05). 

Important questions remain about how to evaluate 

systems such as this and what conclusions can be drawn 

from experiments run with this system. Here we intend to 

follow work from other multi-agent or believable agent 

systems. Ultimately we aim to enable useful research 

making security tests that incorporate human error, the 

probable vulnerability point of more than half of all 

successful cyber attacks. 
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