
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
Sandbox Symposium 2008, Los Angeles, California, August 9–10, 2008.
© 2008 ACM 978-1-60558-173-6/08/0008 $5.00

Enabling a Voice Modality in Mobile Games through VoiceXML

Michael J. Zyda Dhruv Thukral
 GamePipe Labs GamePipe Labs

University of Southern California University of Southern California
 zyda@usc.edu thukral@usc.edu

 James C. Ferrans Jonathan Engelsma Mat Hans
 Motorola Labs Motorola Labs Motorola Labs
 Schaumburg, IL Schaumburg, IL Schaumburg, IL
james.ferrans@motorola.com jonathan.engelsma@motorola.com mat.hans@motorola.com

Abstract

The use of speech recognition in gaming applications is not
entirely new. The growth of voice as a part of gaming has
exploded largely due to the popularity of online player
matchmaking services such as Xbox Live. Yet, the majority of
its use is only limited to communications between players to
coordinate game play activities through the use of a headset and
a microphone.

To further explore the possibilities of using speech recognition
to affect game play directly, Motorola has partnered with
GamePipe Labs at the University of Southern California. This
collaboration aims at leveraging the capabilities of VoiceXML
(VXML), and use interactive voice dialogues to directly affect
game play on mobile phones. This short paper describes the
efforts taken under this initiative, and the results of this
collaboration.

Author Keywords:

Mobile gaming, voice recognition, VoiceXML, multi-modal
interaction, speech recognition, GamePipe Labs, Motorola Labs,
multiplayer multimodal mobile games.

ACM Classification Keywords

H.5.2. [Information interfaces and presentation]: Multimedia
Information Systems--Audio input/output; H5.2. User Interfaces-
--interaction techniques, input devices and strategies, Screen
design H.5.3. Group and Organization Interfaces---collaborative
computing; J.5 [Arts and Humanities] Fine Arts, Performing
arts (e.g., dance, music); K.3.2 [Computer and Information
Science Education]: computer science education, mobile games
curriculum.
 

I. Introduction

Over the past few years traditional forms of input in PC and
console gaming have evolved dramatically. The recent advent of
the Wii Remote is just one of the many changes we have
witnessed when it comes to novel ways of interacting with
games. Before the Wii Remote came into the picture, legacy
input devices such as the keyboard, mouse, game controllers and
joysticks, have also had to contend with another addition; the
headset and the microphone. Voice is increasingly becoming the
preferred way of hardcore gamers to give them the edge in a
tight situation where complex keyboard shortcuts can be
replaced by simple to remember voice commands.

Such is the force of this new demand that every Xbox Live
Starter Kit comes with a headset and microphone as standard.
Xbox Live is an online multiplayer gaming service created and
operated by Microsoft Corporation, and has the highest
subscription base of any console based online service. The
inclusion of the headset and microphone to the kit is meant to
cater only to online multiplayer games, where teams of players
use voice to coordinate game related activities by talking to each
other instead of having to tediously type inside chat windows.

This trend however, has led to interesting experimentation in
trying to incorporate voice during game play and introducing it
into various aspects of gaming not limited to the above usage
scenario. As mentioned already, this is mostly limited to PC
based gaming right now. Games such as Unreal Tournament and
SOCOM3. U.S. Navy Seals use speech recognition to affect the
in game behavior of Non Playable Characters or NPC’s. For
instance, every SOCOM3 game package includes a Logitech
Headset that allows for real time in-game voice communication
in single player mode. And it does so quite effectively by
allowing players to completely side step layers of command
menus and button presses to control their AI teammates. Based
on professional game reviews this piece of voice technology is
considered the best and most user friendly mode of interaction in
the entire game.

One of the most recent advocates of voice in gaming is
Nintendo, with the introduction of the voice component in their
popular Nintendo DS portable game console. The most
encouraging development that came out of this is the fact that
two of Nintendo’s most successful games for the above
platform, BrainAge and Nintendogs, use simple voice
commands as an inherent part of their game play.

143

To expand on the use of voice in gaming, Motorola Labs has
formed a partnership with GamePipe Labs at the University of
Southern California to provide a platform that will enable the
use of voice modality in mobile games. This platform was built
on top of Motorola Linux framework for software development
to develop applications on their mobile phones.

The introduction of voice modality in mobile games is of a
genuine interest to determine how one overcomes the bottleneck

created by the tiny input interfaces on mobile devices. It makes a
lot of sense to leverage the existing audio interfaces of these
phones and give game players a choice of both visual and voice
modalities while playing mobile games. This can be an attractive
alternate to the tiny keypad that is the primary form of
interaction in almost all of today’s mobile games.

 
 
 

Figure 1: Multimodal Server Architecture
 

II. The Technology

Our multimodal, multiplayer, mobile games are built on top of a
proprietary Motorola Linux platform provided to us by Motorola
Corporation. This platform is Motorola’s framework for
software development to develop applications on their mobile
devices.

The Motorola Linux platform is built upon a Linux Kernel 2.4
core. The framework comes with a range of APIs for standard
telephony applications such as communications and multimedia.

This framework was modified with the aid of Motorola for the
specific needs of this class. The framework comes with Qt, a
C++ based Graphical User Interface (GUI) toolkit that has been
used to build complex interfaces such as the KDE desktop
environment on Linux. Although not originally intended for use
in game programming, the powerful ability of Qt to build
widgets and other GUI based elements has led to a branch of
interested developers to use Qt for game development. The Qt
API consists of various useful graphics related classes that,
when used effectively, can be used to build 2D games. However
Qt has no support for perspective 3D with the version that came
pre-deployed on the Motorola SDK.

For games that require networked capabilities, the Motorola
SDK has support for the BlueZ Bluetooth stack, which is
licensed under the GNU General Public License (GPL). For 3D

and multimedia support, The Motorola Linux platform provides
the use of the Simple Direct Media Layer (SDL) API. SDL is a
multimedia library written in C that abstracts over various
graphics platforms and is widely used for many Linux based
games. SDL along with SDL Mixer, SDL’s audio component,
were ported by Motorola and us to their platform to allow the
option of 3D development which was not available on QT.

The speech and voice recognition backbone of all our games is
the Qt + VoiceXML framework which consists of a small
Qt/C++ based client (or mobile phone) that communicates with
a VoiceXML 2.0 Server (Figure 1). The VoiceXML 2.0 server is
a commercial grade Multimodal voice server. The server
consists of a speech recognizer in the form of Nuance’s OSR 3.0
and Motorola’s VoxGateway, a VoiceXML 2.0/2.1 interpreter.

The client side consists of a Qt/C++ based framework modified
to incorporate voice and hence named the Qt + V framework.
This provides us the ability to add voice functionality to any Qt
based application. Each voice enabled Qt application or game
communicates with the voice server through a WiFi link. The
phones were modified to provide support for standard SDIO Wi-
Fi cards which would then connect to the same subnet that the
voice server is connected to. The application would read in a
Qt+V properties configuration file which is used to pass a
configuration object to the Qt+V application. A typical file
would look like the following. For readability purposes, we are
showing the configuration file as an image.

144

Figure 2: A sample VoiceXML configuration file.

The above would then enable the client to create a session to
connect to the voice server. Once the session is created it would
allow the application to load VoiceXML documents and also
create various dialogs for the documents loaded. Each game had
a single session with the voice server with a maximum of four
parallel sessions allowed on the voice server itself due to
licensing restrictions.

III. The Games

The games created had to take into consideration the unique
position of mobile games in the commercial market. Mobile
games tend to be a spare time medium and require a lot of
design considerations such as a small learning curve and short
play times. Adding the element of voice creates more challenges
when you factor in voice recognition accuracy and latency from
the voice server which can affect game play. In addition to
testing the technical maturity of the platform, we also tried to
analyze the results of acceptance when using voice for playing
games, and whether they were a value addition or a deterrent to
the medium.

The results of our months of efforts led to the creation of the
following three games.

GunPowder

Gunpowder is a Wild West Duel and Shoot em up Game. The
game includes two modes: Multiplayer mode and Single Player
mode. Multiplayer mode is a duel which takes place between
two phones over a Wi-Fi network. Single player is a traditional
wild west shooting game between the player and simulated
Game AI.

Figure 3: Gunpowder main screen

For the purpose of relevance we will discuss the multiplayer
version in which two players play this voice enabled game
against each other. The game consists of the following steps:

1. Players are notified that the game countdown is about
to begin.

2. "1" appears on the screen. Players must say "1" in to
the microphone. When the game detects that the
number has been said, it can proceed to the next step.

3. "2" appears on the screen. Players must say "2" in to
the microphone.

4. "3" appears on the screen. Players must say "3" in to
the microphone.

5. After the word "3" is detected, the player turns around,
and sees the other player on the phone screen.

6. Players must tap the screen to shoot the opponent.
7. After a shot has been made on the opponent's body,

bullets flies in slow motion (Matrix style) while Wi-fi
synchronization is completed. The games then waits
for an OK signal that both games have ended.

8. Time is compared for both games to determine the
winner. Once a winner is decided, words "You Lose!",
"You Win!" or "Draw!" appear on the screen.

This game simulates the countdown style of old Wild West
shootouts and makes it an inherent part of the game play.
Therefore once voice is factored in the, the game provides a
really engaging and challenging medium because the player who
speaks more clearly gets past the 3-2-1 countdown faster and
had more time to shoot the opponent. Hence the game becomes
a competition of accuracy and speed which was found
challenging by many players who played this game.

Bejeweled

Figure 4: Bejeweled game screen

145

Bejeweled is a classic puzzle game and one of the most popular
games on today’s mobile phones. For the unfamiliar, the
purpose this game is to swap and line up jewels of the same
color to make combinations of three or more in row or column.
The jewels will disappear and the player will earn points
according to the jewels destroyed, the combos made, and the
level of difficulty. The player will advance to the next level
when an in-game progress bar is full and the player will lose if
there is no time left or no moves can be made.

Bejeweled also has a feature to provide the players hints on their
next move. For the purpose of our demonstration, we decided to
highlight the use of voice input to activate in game hints and
cheats. The game play element that made this decision
interesting was the fact that requesting a hint usually took
around three seconds to get a feedback from the voice server,
and in a fierce multiplayer competition three seconds can make a
huge difference, thus making the player think twice before
requesting a hint.

The game also added a basic speech to text engine in which
players would use the voice functionality to record and hurl
comments/taunts at each other while playing the game, which
added another interesting social aspect of using voice in games.
Many online multiplayer puzzle games provide the above
mentioned feature in the form of chat windows or predefined
templates, but none of them have ever used voice to enable this
function.

Deja-Hue

Figure 5: Deja-Hue multiplayer game screen

Deja Hue is memory based puzzle game in which players are
given a pyramid of colored blocks such as the one shown above.

The purpose is to match the pyramid blocks with the exact same
colors. The player with the most accurate representation of the
original colored pyramid wins the game.

The role of voice was to choose the various colors from the
pyramid and try to match the original pyramid representation. It
was an interesting experiment to note the role of voice in
memory games, and to see a player remembers more when
he/she says out the pattern loud or when he/she is just using the

stylus. There was no conclusive evidence because the players
had an equal win/loss ratio whether they were using voice or
not.

IV. The Challenges

Despite the success of having created three voice enabled
multiplayer mobile games, there were many obstacles in
reaching to that point.

Firstly our current licensing restrictions only allowed up to four
parallel sessions with the voice server and we could not scale the
games to include a vast multiplayer base. This of course, would
not be an issue if we were to use voice applications in a more
commercial environment.

The applications we created were also very sensitive to
background noise and therefore in game music or sound effects
would effectively come in the way of proper voice recognition.
Therefore all the games we created had to do away with voice
effects or background music to make way for more accurate
recognition.

Finally, limitations in the audio module were inherited from
another project and integrated into the Qt + VoiceXML client
framework on the E680i mobile phone introduced an
approximate three second delay into the recognition latency.
Had we enough time to go back in and re-code parts of the audio
module, this issue could have been eliminated. The latency issue
in our implementation further emphasized a fact we already
were quite aware of – in order to be used in competitive
multiplayer game, speech recognition must be very fast as well
as accurate! Fortunately, researchers at Motorola have already
demonstrated multimodal “+ VoiceXML” client frameworks on
other devices that can consistently deliver recognition results
over wide area networks in less than one second. Hence we are
not aware of any significant technical barriers preventing the
implementation and deployment of networked-based speech
modalities for mobile games on existing mobile phones and
wireless networks, using the approach we have described in this
paper.

V. Conclusion

In comparison to what we have achieved, the above challenges
look very trivial because they are mostly a matter of
optimization and some smart design decisions on the part of
mobile game designers and developers.

We are very happy with the results of our efforts and have
proved the maturity of this platform by creating three games
which in a sense are very commercially viable. In fact when
these games were showcased to various industry representatives,
they responded with a very positive and enthusiastic feedback
which we find very encouraging.

Having proved out the viability of incorporating a standardized
network-based speech recognition modality into a mobile game,
and having established a platform upon which we can do further
experimentation, in the future we intend to explore how this
enabler can be incorporated into mobile game design in more

146

creative and novel ways. In particular, with the increased
bandwidth and affordability of emerging wide area networking
technologies, speech-enabled mobile clients to 3D massive
multiplayer online games is one area we are interested in
pursuing.

We plan to take our results further and explore the combination
of multimodality and context awareness in the mobile games of
tomorrow. This also would make for some very interesting use
cases, which hopefully are also very much viable in a
commercial environment.

VI. Acknowledgements

We would like to thank Dr. Fred Kitson, Vice President of
Applications Research at Motorola Corporation for providing
the initial support to get the mobile component of the GamePipe
Program running. Under his support, we were provided the
entire gamut of resources, financial and technical available at
Motorola Corporation and come up with such a strong
technological framework.

We would also like to thank Mitch Lasky and Zack Norman
from EA Mobile who helped us kick start the mobile component
of our program and provide us real world industry wisdom,
which has driven the design and development of every project in
this course. These principles have helped us establish credibility
in all our projects when we showcase them to the industry and
prepare our students for real world challenges.

Finally we would like to thank Gabi Artzi from Nuance who
provided us the much needed licensing and support for their
speech recognition products which have helped us make these
games possible.

References

Zyda, Thukral et al., “Educating the Next Generation of Mobile
Game Developers” for IEEE Computer Graphics and
Applications, March 2007

J.R. Engelsma et al., "Ubiquitous Mobile Gaming," Proc.
System Support for Ubiquitous Computing Workshop (UbiSys),
2006; http://www.magic.ubc.ca/ubisys/positions engelsma.pdf.

D. Pearce et al., "An Architecture for Seamless Access to
Distributed Multimodal Services," Proc. 9th European Conf.
Speech Communication and Technology, Int'l Speech
Communication Assoc., 2005, pp. 2845–2848.

S. McGlashan et al., "Voice Extensible Markup Language
(VoiceXML) Version 2.0," World Wide Web Consortium
(W3C)recommendation,Mar.2004,
http://www.w3.org/TRvoicexml20/ 
 
Jim Ferrans and Jonathan Engelsma. “Software architectures for
networked mobile speech applications", in Automatic Speech
Recognition on Mobile Devices and over Communication
Networks, Zeng-Hua Tan, ed., Springer Press, 2008.

147

148

