
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
Sandbox Symposium 2008, Los Angeles, California, August 9–10, 2008.
© 2008 ACM 978-1-60558-173-6/08/0008 $5.00

GOGS: USC GamePipe Online Game Server
Michael Zyda

USC GamePipe Laboratory
941 W. 37th Pl., SAL 300

Los Angeles, CA 90089-0781
+1-310-463-5774

zyda@usc.edu

Devin Rosen
USC GamePipe Laboratory

941 W. 37th Pl., SAL 300
Los Angeles, CA 90089-0781

+1-310-463-5774

devinpro@usc.edu

Bharathwaj Nandakumar
USC GamePipe Laboratory

941 W. 37th Pl., SAL 300
Los Angeles, CA 90089-0781

+1-310-463-5774

nandakum@usc.edu

ABSTRACT
Massively multiplayer online games (MMO) are at the height of
interest and growing in popularity in the commercial video game
market. New development studios are vying for the position of
top MMO, both in the number of users and market value.
Recently, interest in online games has entered the realm of
educational practitioners and researchers. It was as researchers, as
well as game developers and designers in mind, that the USC
GamePipe Laboratory has developed its initial version of the
academic, open source USC GamePipe Online Game Server
(USC GOGS).

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose and
application-based systems; real-time and embedded systems.

General Terms
Networked games

Keywords
Networked games; massively multiplayer online games.

1. INTRODUCTION
Online games provide new and exciting ways for educators to
disseminate knowledge. Online education opens up new avenues
of teaching by allowing customization of material tailored to the
needs of students in a controlled fashion. By freeing the
conventional, spatial boundaries of education, new forms of
collaborative efforts are facilitated. Online digital communities
allow new forms of interaction to emerge.

In addition to provoking new forms of interaction in education,
online games and communities open up new opportunities for the
study of social behavior. The goal, with respect to new research,
involves studying the patterns of established and emergent groups
in online games. With an open MMOG, researchers would be
able to create and test social models in the digital world that could
lead to insight in the actual world.

The USC GamePipe Laboratory, in assessing these growing
needs, while striving to educate the engineers pursuing the games
industry, has developed an initial version of an open source,
academic online game server. In the effort to develop an MMOG,
we found that there currently are not any freely available, open
source solutions to help bridge the technological gap between
single player and large-scale networked games. The goal was to
provide a simple to use, intuitive software toolkit to allow
researchers and small independent designers and developers to
create multiplayer networked games. The priority was to
eliminate technical challenges, to allow developers to take new or
single player games and easily bring them to the online
multiplayer community.

2. The Technology
In the USC GamePipe Laboratory, the majority of games are
developed in C++. The libraries most-often used are OGRE
(Object-Oriented Graphics Rendering Engine) [1] and the FMOD
sound engine [2]. Development is done on Windows based PCs.
During the course of an average semester about twelve unique
games are produced to the point of being a functionally complete
and entertaining demo. In addition to these original concepts, a
few games are continued from the previous semester for further
development. The combination of C++ and OGRE has been so
successful that we have created the GamePipe Game Engine
(GGE) based around OGRE. The primary target of users for
GOGS is the student developer in GamePipe.

By focusing on having the network package tightly integrate with
the GGE, we chose to only support Windows based operating
systems for both the network server and network databases. This
decision may be expanded to support other platforms in future
versions. All development of GOGS was in C++ using Microsoft
Visual Studio and the database was Microsoft Access. All of the
design choices for the engine were to support the Object Oriented
design paradigm used in production in the lab.

3. The Design
The design of GOGS is a multilayered pattern to help support the
rapidly scaling requirements of networked games. The
architecture consists of the Authentication Layer, Game State
Layer, VOIP Layer, Client Layer, and Accounting Database, and
a Player Persistence Database. Each layer was conceptualized to
allow for simple horizontal scaling.

The Authentication Layer is responsible for handling the initial
connection of clients as well as verifying the clients. The
Authentication Layer validates Clients. After correct validation, it

51

sends both required player information from the Player
Persistence Database and the current state of the game. The state
sent takes into account the entry point of the player from the
Game State Layer. This layer also allows a client to transfer from
one Game State Server to another. This verification from the
Authentication Layer to switch between servers was chosen to
increase the security of the networked system.

The Game State Layer handles all game simulation calculations.
The architecture of the system treats the clients as a proxy. This
means the players make requests to the actual game characters
being simulated on the server. The choice to use a proxy allows
for stricter security policies to ensure the clients are limited from
cheating the game. This method of control also allows for all
game state inconsistencies between clients to be handled by the
Game State Layer. By choosing to have a proxy system, we give
up faster client side simulation speeds for the sake of having a
consistent state of the game for all clients.

The addition of the VOIP Layer was added after the initial design
of the system. The decision to include VOIP in the engine was
based on the observation that if an MMOG did not support verbal
communication in the game, players would turn to outside
software packages to facilitate group communication and
collaboration. The VOIP Layer only supports direct
communication and group communication. This decision was
based on two pieces of information. The first mitigating factor
was the amount of bandwidth required to support the constant
flow of audio data. We wanted to limit the amount of data sent to
clients in similar geographic regions within a game, so we did not
provide the capability to transmit voice to general players in an
area. The second reason for limiting the communication to
individuals or groups was for the security of the players if the
engine was to be used for an academic game or as an academic
tool. This decision was based on the safety of the player. We
limited verbal communication to players in the client's friend list
or groups that were chosen by the client.

The Client Layer was designed to be thin, lightweight, and easy to
use by developers requiring network support. From the
developers' standpoint, GOGS is an event-based system. This
means that every object sent over the network is treated in the
same fashion. All developers have to do to integrate networking
is send and receive events. The decision to make all objects

consistent was for ease of design. In order to use any object as an
event, it just has to use the Event Interface and be serializable. In
addition to simplifying the use of objects, we made the login
process of clients easy by limiting the amount of code required
connect to the engine.

The Player Persistence Database is responsible for keeping a
cached copy of the client status on disk in the event of a system
failure. This database maintains persistence between client
sessions.

As a whole, GOGS features an event-based system with global
time. Maintaining a global time eliminates any playback or packet
flooding attacks. GOGS includes Lobby code that allows players
to communicate by either text or verbal chat with other players in
the lobby, as well as players in the current game.

4. Current State
The current version of the GOGS system was designed and
implemented over the course of one semester. A team of eight
graduate level computer science students in the USC GamePipe
Laboratory created it. In order to facilitate the rapid design and
testing of GOGS in a condensed timeframe, we limited the scope
of the project to a single server for each of the layers. Taking an
existing, session based network game and replacing all network
code with GOGS compliant code initially tested this version of the
engine. This allowed the game to maintain state between sessions
and also enabled easy integration of VOIP.

5. The Games
The games developed using GOGS helped in determining the
efficiencies and deficiencies of the initial design and
implementation of the system. ystem.

Penguins is a multilayer snowball throwing game. The game
revolves around groups of penguins engaging in a friendly
snowball fight. Each player controls a group of matching
penguins. The player controls one individual penguin in the group
while the rest of the penguins on the team are there for supporting
snowball attacks. The team penguins are controlled by AI to
throw snowballs at the nearest threatening penguin or defend the
player. During this snowball fight, no blood is shed, but rather
penguins slowly turn into ice-cubes as opponents’ snowballs hit

them.

Originally the game was based on rounds in short individual
sessions. It supported a maximum of four individual players
during any given session. The particular challenge in designing
the game was to minimize the number of packets sent while still
allowing a large amount of data to be passed over the network.
Every snowball thrown in the game generated data that needed to
be sent to maintain a consistent state in the game. We had to

52

primarily optimize the way snowball information was sent in
order to allow players to throw snowballs as rapidly as they could
click the mouse button. We intentionally did not want to place a
limit on the number of snowballs created in any given game
session. The reason for not limiting this was to see how far we
could push the capability of the network software as well as
maximize the level of fun in the game. This first version of the
game was created using RakNet [3].

The second version of Penguins was converted to use the GOGS
architecture. By switching over the network code, we were able
to take advantage of several of the features that were built into the
engine. The first noticeable benefit was the addition of player
persistence and the Authentication Layer. After integration, we
were able to create client accounts with passwords. In addition to
these accounts, the player persistence database maintained the
player preferences when re-entering the game. Players could
maintain the costumes they had previously selected for their
penguin squad. In the game, you could choose a hat and costume
for your team to differentiate between the penguin groups.
Statistics of the rounds were also collected on the player
persistence database.

Another benefit of GOGS that related to gameplay was the easy
addition of VOIP. With the addition of verbal communication, we
saw changes in the way alliances were formed during game
sessions. The second version of Penguins included a lobby that
supported both text and verbal chat between players in the lobby
as well as in the game. The most significant improvement to the
Penguins game was the increase in the number of supported
players.

Lockdown is currently in development in the USC GamePipe
Laboratory. This game is a training simulation for first responders
in hostile situations. The purpose of the simulation is to assess the
players on their level of performance in handling threatening
situations. The game is a squad-based game where multiple
players are on a single team with the primary goal of securing a
hostile environment. While the first objective of the game is to
secure the environment, secondary goals include a triage mini-
game in which players assess and classify any injured non-playing
characters (NPC). Players are ranked based on their accuracy of
classifying these NPCs in addition to the amount of time it takes

them to perform the triage and to secure the environment.
Lockdown was a prime candidate for GOGS due to the
requirement of allowing the squad to have verbal communication
during the simulation.

One of the bigger challenges in Lockdown, which we did not have
to address in Penguins was the size and scope of the terrain.
Penguins took place in a relatively small piece of terrain that was
essentially a flat, confined, outside area. Lockdown in contrast
occurs in a building with multiple floors. Each floor contains a
variety of rooms, doors, hallways, and stairs. The game also
supports both interior and exterior gameplay in relation to the
building. The diverse terrain had no immediate impact on the
performance of GOGS. Lockdown also features more
simultaneous clients than Penguins supported. Lockdown will
support eight to sixteen human players in addition to countless
NPCs that are controlled in the Game State Layer.

6. Conclusion
As a team, we are thrilled about the successful use of GOGS in
both of these games. The most important part is that the interest
to continue to design and develop GOGS is spreading among
graduate level students. These students realize the importance of
having a successful open source solution to this challenging
problem. There are a variety of technical improvements that will
be made in the next iteration of GOGS. These improvements
include a variety of optimizations. We plan to include increased
threading support for buffering threads on both the client and
server layers. Another step is to implement the horizontally
scalable layers with a distributed server system that uses the
publisher/subscriber model over TCP/IP channels. We would like
to expand upon the level of packet compression and optimization.
The next version will also include dynamic area-of-interest
management (AOI).

We plan to extend GOGS beyond the USC GamePipe Lab to the
general game development community in order to promote
creativity and community in game design and development [4].

7. ACKNOWLEDGMENTS
We wish to thank all the students involved in the development of
GOGS, including Bharathwaj Nandakumar, Devin Rosen,
Praveen Kansara, Balakrishnan Ranganathan, Apar Suri, Ivan
Chen, Sunil Shenoy, Pravin Babar and Nathan Greenfield. We
additionally thank the National Science Foundation for its support
of this project through the USC Integrated Media Systems Center.

8. REFERENCES
[1] Ogre3d http://ogre3d.org
[2] Fmod http://fmod.org
[3] RakNet – http://www.jenkinssoftware.com/
[4] USC GamePipe Laboratory web site http://gamepipe.usc.edu

53

54

