
Dynamic Discovery of Simulation Entities Using Bamboo and HLA

CPT Stewart Liles
Kent Watsen
Michael Zyda

NPSNET Research Group
Naval Postgraduate School

Monterey, CA 93943

Keywords:
Bamboo, HLA, RTI

ABSTRACT: This paper describes a program module that administrates the RTI communication functions for the
Bamboo virtual environment tool kit. The program module and its associated object model allow users to write
Bamboo modules that dynamically load at runtime and promulgate to all members of the federation without explicit
user interaction.

Bamboo is a portable architecture supporting arbitrary virtual environments. Its design focuses on the ability to
dynamically configure itself without explicit user interaction, allowing applications to take on new functionality after
execution. In particular this framework facilitates the discovery of virtual environments on the network at runtime.

Bamboo is ideally suited for its role in this HLA application. This simple demonstration virtual environment uses
Bamboo and the developed HLA module to demonstrate the flexibility of Bamboo and HLA. The system uses a FOM
that defines a simple object that is similar to a DIS entity state PDU. After the module loads and the simulation entity
updates, the RTI object discovery mechanism updates all HLA administration modules in the federation. This unique
use of the RTI allows large simulations to run in an ad hoc fashion allowing exercise coordinators greater flexibility in
runtime configuration. Should a federate load a module that other members in the federation do not have local access
to, Bamboo and the HLA administration module provide the means to retrieve and load the module from a remote
server using the hypertext transfer protocol.

1. Introduction

The design and execution of a networked virtual
environment (NVE) are challenging tasks made even
more difficult by the fact that NVEs are becoming more
complex and difficult to manage. In an HLA
environment this includes the Federation Development
Process (FEDEP). In a distributed environment a
federate not only computes its own behaviors and
publishes them to the network, but it also accurately
represents all other federation entities participating in
the simulation. HLA provides the network
communication capabilities. Until now there was no
way to ensure all federates had the proper polygonal
and behavioral representation for all entities
participating in the virtual environment. Bamboo
provides such a capability by providing federates a
framework to dynamically load and unload program
modules as the situation changes in the virtual
environment. By implementing federations as a group
of program modules, designers solve the problem of
ensuring that every site running in the federation is
consistent with the every other. The designer just

ensures every participant in the federation knows the network
location of all the program modules making up the
federation. Then, as the federation executes, each site loads
and unloads modules as needed. All federates have the same
representations for each entity as well as its associated
behaviors and controls.

This paper describes an implementation that uses a new
system called Bamboo to handle the dynamic nature of
modern NVEs and HLA that handles the communication
between federates. HLA is not discussed in detail; however,
the following section provides an overview of Bamboo’s
features and how they apply to this implementation.

2. Bamboo

Bamboo enables dynamically scaleable virtual environments
hosted on a network. It achieves this goal by an efficient
implementation that provides direct support for the key
issues pertaining to VE development. These issues include
dynamic extensibility, multithreading and event handling.
[1]

2.1 Dynamic Extensibility

Bamboo’s most notable feature is its ability to
dynamically extend its capabilities during run time. It
achieves this goal by implementing the plug-in
metaphor used by commercial packages like Netscape
[2] and PhotoShop [3]. Bamboo then extends this
metaphor by adding inter-module dependencies.
Tracking inter-module dependencies could be a
complex task. Fortunately, as Bamboo loads each
module, it verifies that modules it depends on load
first. If they are not, it automatically loads them
without specific interaction with the user. Using
Figure 1 as an example, assume M3 is already loaded.
If M4 loads later, the system verifies the presence of
M2 in memory. Bamboo loads M2 if it is not in
memory. As M2 is being loaded Bamboo verifies the
presence of M1. M4 finally loads because Bamboo
verified all its dependencies [4].

Figure 1: Module Dependency View

Dynamic loading of program modules does not in itself
ensure dynamic extensibility. Each module has the
opportunity to attach itself and remove itself from the
process's execution loop. Bamboo uses a callback
handler that allows each module to attach and remove
itself from the process’s execution loop when being
paged in and out of memory. The callback handler
derives from objects that can be named so it is easily
located and manipulated. The callback itself is
recursive and provides two callback handlers, one just
before callback execution and one directly after. This
allows grouping of like functionality. For example,
rendering engines implement some form of app, cull
and draw as a pipeline. Users refer to these areas as pre
and post app, pre and post cull, and pre and post draw.
The executable begins to resemble a tree of callbacks
(see Figure 2). It follows, that any pruning or pausing

of subtrees would automatically do the same to its children.

Figure 2: Extending the Executable

2.2 Multi-Threading

Bamboo also implements a system of light threads that cycle
at a user defined rate. Each of these threads embeds a callback
handler that is cycled when the thread is swapped in by the
process scheduler. This mechanism simplifies the
development of asynchronous operations while maintaining a
consistent user interface.

2.3 Event Handling
The event handler simply provides an abstraction for
handling system generated events. The event handler uses
the callback handler to notify registered parties of an event.
Bamboo receives this notification as a callback. Bamboo
uses callback handlers so multiple callbacks respond to a
single event.

3. Implementation

The implementation requires two major functions. There
must be a system for communicating changes in player state
from one work station to the next and for tracking all the
players in the environment. The network communication
system is the High Level Architecture (HLA) and the Run
Time Infrastructure (RTI). They will not be discussed in
detail except to describe how different services are used to
accomplish the required communication tasks. The second
system loads modules, captures user input, and passes the
correct entity state information to the communication
system. This mechanism essentially administrates the
virtual environment at the work station level and ensures all
functionality needed to execute the simulation is available to
the user. That system is the HLA Administration Module
(HLAAdmin).

CORE

M

M M M M

M1 M

M2 M3

M4

Figure 3 shows the module dependency tree for this
implementation. Notice that the HLAAdmin module
depends on the Page module. This module allows
users to load and unload modules during simulation
execution. This figure also illustrates that all modules
that represent simulation entities must depend on the
HLAAdmin module in order to function as a member
of the federation. This requirement means modules not
written for the system will not be promulgated to the
other federates.

Figure 3: Implementation Dependency Model

3.1 HLA Administration Module

The HLAAdmin module is the main module and must
be present on all workstations at the start of the
simulation. The HLAAdmin module manages the
following tasks: HLA federation management, loads
and unloads system modules, opens the execution
window, manages lists of the objects in the
environment, and provides the mechanism for objects
to update their state. Recall that Bamboo implements
a system that enforces module dependencies, so all the
above tasks are not part of the HLAAdmin module but
are separate modules loaded at runtime or at the users
request.

Federation management is this module’s simplest task.
Here the module creates and joins the federation. Next
it publishes and subscribes to the objects and
interactions needed for execution. Finally it provides a
mechanism to register new simulation entities with the
RTI.

The HLAAdmin module loads and unloads modules in
two ways: either automatically at the request of the
system or explicitly at the request of the user. The
HLAAdmin module loads user requested modules
using a separate module called the Page module on

which it depends. This module loads automatically when
the HLAAdmin module loads. The Page module’s only
task is to make the Bamboo calls that load and unload user
requested modules. It also installs two event handlers tied
to keyboard events that the user can make to accomplish the
loads and unloads.

The HLAAdmin module manages of all the simulation
entities. Functionality related to this task includes HLA
object management tasks like registering and deleting
objects and ensuring state updates transmit to the correct
entity. We used a pure virtual base class that all objects
inherent from to allow the HLAAdmin module to iterate its
list of simulation entities and update the objects based on an
identification number provided by the RTI.

Each module’s capability means nothing without a model
showing how Bamboo extends the executable in this
implementation. Figure 4 illustrates the three execution
threads used in this implementation. HLAAdmin module
created the symbols in bold outline when the module
loaded. A1 is a callback attached to the main callback
handler created by the Bamboo core. A1 ticks the RTI
providing CPU time to the RTI ambassador and the
Federate ambassador. This callback drives the federate by
processing all updates and providing them to the correct
simulation entity. A2 is a callback attached to the draw
callback handler of the Visual module. This callback calls
the display function of all simulation objects using a call to
a pure virtual function defined in the base object all
simulation entities must implement. Finally AK is the
callback representing all keyboard events that are processed
by the HLAAdmin module.

Figure 4: Execution Callback Tree

The HLAAdmin module is only a manager that
administrates the federates participation in the simulation.

Bamboo

Visual Keyboard amPageModule

amHLAAdmin

amBoid amTerrain

HLAAdmin
Module(A)

Entity
Module(B)

Visual Module

Keyboard Module

D
ra

w

B
am

bo
o

A2

A
K

C
ul

l

A
pp

A1

B1

B
K

Page
Module(P)

P
K

The simulation entities are the players and make up
what the user interacts with during simulation
execution.

3.2 Simulation Entities

As the VE executes, if an entity is updated that is not
currently represented on the local machine, the RTI
initiates the discovery process. The UserSuppliedTag,
a character string that is transmitted with each update
handle value pair, represents the module name. If this
module is already loaded then another object from this
module is instantiated. If the module does not exist,
then Bamboo loads it and instantiates an object that
represents the newly discovered entity.

Each simulation entity is a Bamboo module. Each
module has two major components: the object’s
polygonal representation and its general behavior.
Therefore, when a module loads as a result of a remote
object update, the user collects all the controls of that
module. Then Bamboo plugs the module into the
local event loop so local processing can compute entity
appearance and behavior. Figure 4 shows the entity
module loaded and inserted in the executable with two
sets of callbacks. B1 is the preapp callback that gives
the user the ability to control the object with keyboard
input. BK is the callback for all the keyboard inputs
defined by the module.

Because this system passes behaviors along with
polygonal representation we reduce network traffic by
reducing the details of entity behavior that previous
systems transmitted via the network. This occurs
because each entity computes its behavior locally not
from a remote location. For instance, each entity
provides collision event behavior locally without the
need for multiple interactions transmitted across the
network. Now the entity module notifies the federation
that a collision occurred not the detailed state changes
resulting from the collision. Each entity computes
those state changes locally as a result of the interaction.
The result is a series of simulation actors whose
behaviors and polygonal representations load
dynamically at runtime. This allows simulation
managers to easily experiment with the content of the
environment by adding and subtracting functionality at
runtime. The tendency is to think that this applies
only to the graphically represented entities but it could
mean that data loggers or analysis modules
dynamically load and unload to collect and analyze
simulation data. Bamboo provides an unprecedented
method of adding functionality to an executing
networked virtual environment.

3.3 Graphics Rendering

Bamboo’s Visual module renders the graphical objects in
the scene. The HLAAdmin module and the entity modules
update the object's position and orientation. Each entity
module registers callbacks with the Visual module to ensure
accurate rendering of the simulation entity. These callbacks
call the appropriate functions when the system needs to
render the graphical representation of each entity. See Figure
4 for the callback tree representing this implementation.

4. Conclusions

The result of this work is a dynamically extensible
distributed virtual environment that ensures consistency
between distributed locations. Each federate operating in the
simulation has an accurate representation of the environment
without explicit interaction of the user. Users can add and
delete functionality on an individual or federation wide level
depending on the situation.

Bamboo is a highly extendible tool that finally allows
designers the flexibility to design networked virtual
environments without an overarching, monolithic structure
that is unchangeable after it is compiled. Bamboo provides
the flexibility to design large scale distributed environments
in a modular fashion. This gives the user the ability to
decide during simulation execution how to represent the
environment and its actors.

5. Acknowledgments

This work is the result of many extended conversations with
the co-authors and colleagues at the Naval Postgraduate
School. It would never have compiled without the help of
Kent Watsen, who also created Bamboo. Furthermore, the
patience of Dr. Mike Zyda is appreciated. Finally, this effort
is made possible by our sponsors: DMSO, DARPA and
Advanced Network and Services.

6. Web Pointers

NPSNET Research Group
http://www.npsnet.nps.navy.mil

Bamboo
http://www.npsnet.nps.navy.mil/Bamboo

Implementation
http://www.stl.nps.navy.mil/~swliles

7. References

[1] Watsen, K. and M. Zyda (1998), Bamboo - A
Portable system for Dynamically Extensible, Rea l-
time, Networked Virtual Environments . 1998 IEEE
Virtual Reality International Symposium (VRAIS
’98), Atlanta, Georgia.

[2] Adobe(1997). Photoshop Software Development Kit,
ftp://ftp.adobe.com/pub/adobe/devrelations/sdk/photosho
p.

[3] Netscape(1997). Navigator 4.0 Plug-inGuide,
http://developer.netscape.com/library/documentation/co
mmunicator/plugin/contents.html

[4] Watsen, K. and M. Zyda (1998), Bamboo -
Supporting Dynamic Protocols for Virtual
Environments . 1998 IMAGE Conference, Scottsdale,
Arizona.

[5] High Level Architecture Run-Time Infrastructure
Programmer’s Guide Version 1.0 , 15 May 1997

Author Biographies

CPT STEWART W. LILES is pursuing a M.S.
degree in Modeling Virtual Environments and
Simulation under Professor Zyda. CPT Liles received
his B.S. from Oklahoma State University in 1988 in
Management Sciences and Computer Systems. After
graduation he has spent the next eight years in the
Army as an Ordnance Officer until arriving at the Naval
Postgraduate School in 1996. CPT Liles’ last
assignment was in command of the 178th Maintenance
Company, Ft. Lewis Washington, responsible for the
maintenance and spare parts supply of a PATRIOT Air
Defense Battalion. He can be emailed at
liless@cs.nps.navy.mil.

KENT WATSEN is pursuing a Ph.D. under
Professor Mike Zyda while acting as project manager of
the NPSNET Research Group in the Computer Science
department at the Naval Postgraduate School in
Monterey. He is the lead architect and developer of
Bamboo, a virtual environment toolkit supporting,
among other things, the next generation of NPSNET.
His relevant experience includes the design and
development of the character animation and 3D ocean
modules for EasyScene, another virtual environment
toolkit that he co-developed while working with
Coryphaeus Software. He also developed Visual World,
the rendering engine for a DIS simulator, while with

DCS Corporation. Finally, He is responsible for a
raytracing-for-animation package developed as his
undergraduate thesis. He holds Computer Science and
Applied Mathematics engineering degrees from the
University of Virginia. He is currently a co-chair of the
VRML symposium and is actively publishing and presenting
papers at both IEEE and ACM sponsored conferences. He can
be emailed at kent@watsen.net.

MICHAEL ZYDA is a Professor in Department of
Computer at the Naval Postgraduate School, Monterey,
California. Professor Zyda is also the Academic Associate
and Chair of the NPS Modeling, Virtual Environments and
Simulation curriculum. He has been at NPS since February
of 1984. Professor Zyda's main focus in research is in the
area of computer graphics, specifically the development of
large-scale, networked 3D virtual environments. Professor
Zyda was a member of the National Research Council's
Committee on Virtual Reality Research and Development.
Professor Zyda was the chair of the National Research
Council's Computer Science and Telecommunications Board
Committee on Modeling and Simulation: Linking
Entertainment & Defense. Professor Zyda is also the Senior
Editor for Virtual Environments for the MIT Press quarterly
PRESENCE, the journal of teleoperation and virtual
environments. He is a member of the Editorial Advisory
Board of the journal Computers & Graphics. Professor Zyda
is also a member of the Technical Advisory Board of the
Fraunhofer Center for Research in Computer Graphics,
Providence, Rhode Island. Professor Zyda has been active
with the Symposium on Interactive 3D Graphics and was the
chair of the 1990 conference, held at Snowbird, Utah and the
chair of the 1995 Symposium, held in Monterey, California.
Professor Zyda began his career in Computer Graphics in
1973 as part of an undergraduate research group, the Senses
Bureau, at the University of California, San Diego.
Professor Zyda received a BA in Bioengineering from the
University of California, San Diego in La Jolla in 1976, an
MS in Computer Science/Neurocybernetics from the
University of Massachusetts, Amherst in 1978 and a DSc in
Computer Science from Washington University, St. Louis,
Missouri in 1984. He can be emailed at zyda@siggraph.org.

