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Abstract 

Recent articles have discussed the current 
trend towards designing raster graphics algorithms 
into VLSI chips. The purpose of these design 
efforts is to capture some of the real-time 
animation capability found in vector graphics 
systems. Currently, real-time vector graphics 
animation is limited primarily to operations 
involving coordinate transformations. In order to 
enhance this animation capability, frequently 
encountered vector graphics algorithms that 
require the high speed, parallel computation 
capability of VLSI must be identified. Real-time 
contour display generation from grid data is one 
such algorithm. This paper describes the 
specifics of a contour display generation 
algorithm, the architectural framework of a 
processor that performs this algorithm and the 
architectural requirements of such a processor. 

The contouring algorithm is based on a data 
structure, the contouring tree, whose regularity 
and amenability for parallel computation make it 
an ideal candidate for VLSI. The architectural 
framework for a contouring processor chip that 
performs this algoritkm for the real-time 
environment of interactive graphics is discussed, 
particularly the issues of memory size and data 
distribution. A model of the contouring process 
is created in order to determine the necessary 
physical parameters of the contouring processor in 
this architectural framework. Conclusions are 
drawn concerning the feasibility of producing a 
VLSI chip that performs this contouring algorithm. 
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1.O INTRODUCTION 

Recent articles have discussed the current 
trend towards designing graphics algorithms into 
VLSI chips [3,6,8]. Most of these efforts have 
concerned limited functions, such as frame buffer 
control. Of these efforts, the majority are 
directed towards raster graphics because of the 
simplicity and regularity of pixel operations. 
These projects have aimed at capturing some of the 
real-time animation capability found in currently 
produced vector graphics systems. In vector 
graphics, real-time animstion is seen primarily as 
object rotation and translation. This is because 
most vector graphics systems sre based on 
minicomputers that have little hardware for 
special graphics other than a matrix multiplier. 
Sophisticated examples of vector graphics 
animation are usually relegated to the non 
real-time environment of motion picture film. 

The trend towards the design of graphics 
algorithms into VLSI chips can change this 
situation for vector graphics systems. VLSI 
offers the possibility of multiple, computational 
units operating in parallel within the boundaries 
of a single chip. Because both processing 
elements and memory elements can be easily 
implemented in VLSI, one is encouraged to find 
structures formed from these elements that can use 
this available concurrency [5J. In order to take 
advantage of these VLSI capabilities with respect 
to vector graphics, one must identify graphics 
algorithms that are partitionable into relatively 
simple subproblems capable of the type of paralleI 
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solution VLSI has to offer. Candidates for this 
treatment are the graphics algorithms frequently 
encountered in graphics programs and, of this 
group, those that require more than one-thirtieth 
of a second to compute. One algorithm that has 
both of these characteristics is contour display 
generation from grid data [11]. This paper 
discusses the specifics of this contouring 
algorithm, the architectural framework of a 
processor that performs this algorithm and the 
architectural requirements of such a processor. 

As a graphics algorithm, contour display 
generation is frequently used in X-ray 
crystallography, computer-aided tomography, and 
other applications for which grid data is 
collected. It is generally depicted as a 
computationally slow operation whose output is 
sent to a plotter or film recorder. A number of 
papers have been written documenting 
"breakthroughs" that increase the speed of such 
contouring algorithms. One author has recently 
reported that his contouring subroutine used one 

second of central processor time on NCAR's Control 
Data 7600 [10]. Although a contour generation 

program of this speed is useful for static 
situations, it is found to be lacking when user 
interaction is important and the succession of 
images caused by contour level changes is 
meaningful. 

One application in which real-time animation 
is important is the determination of molecular 
structures from the electron density data 
generated by X-ray crystallography [2]. Such an 
operation is executed interactively by using a 
computer graphics program that displays a Dreiding 
(stick) model of the working molecule, inside a 
contour display of the corresponding region of the 
molecule's electron density grid. In addition to 
the graphics function, the computer program 
monitors a series of signals generated by the 
user, while turning the various knobs on a control 
console [12]. The values read from these knobs 
are interpreted by the program as modifications to 
either the working molecule or the contour 
display. Modifications to the molecule cause 
flexible bonds to be rotated and bonds to be 
lengthened; modifications to the contour display 
produce an increase or decrease of the contour 
level. The goal of this process is to produce the 
stick model of the molecule that best fits inside 
the given electron density data set. The user can 
determine whether or' not the model fits the 
density grid by modifying the contour level, 
shrinking the contour surface to the working 
molecule. Similarly, the user can expand the 
contour surface from the stick model for better 
visibility. This function requires that the 
hardware have the capability to rapidly change the 
contour display as its contour level changes. 

Another application that requires the 
real-time animation of contour displays is 
connected with the systematic search procedures 
used in Drug Design research at Washington 
University, St. Louis, Missouri [4]. In this 
project, all possible conformers of a molecule are 
generated by a systematic, incremental rotation of 
the flexible bonds hypothesized for the molecule. 

Each molecular conformation generated by this 
process is checked against steric (Van der 
Waals's) constraints and various user set, 
geometric constraints. The molecular 
conformations of the molecules that pass the 
constraints during a run of this systematic search 
process are visually examined by a drug 
designer/bench chemist for classification and 
verification. One of the steps in verification is 
to generate an energy surface for passing 
molecular conformations. This surface is 
constructed through a contouring process. Because 
it outputs several thousand passing conformations, 
the process must be performed rapidly. 

A VLSI chip that generates contour displays 
for such demanding applications must be able to 
produce and distribute a new picture in the amount 
of time it takes the graphics hardware to change 
display frames. This is less than one-thirtieth 
of a second. Any greater amount of time is 
discernable by the viewer, either as a flicker or 
a hesitation in the picture update. In fact, 
one-thirtieth of a second is diseernable to many 
people, making one-sixtieth of a second a more 
desirable time for the change of display frames. 
[7]. 

2.0 CONTOURING ALGORITHM 

2.1 Contour Display 

The contouring algorithm is best described 
within the context of a contour display. A 
contour display is a graphic representation of all 
the isovalued points in a given region of space. 
The region of space for this algorithm is a 
two-dimensional grid of data values. Its graphic 
representation is a set of line segments that run 
through interpolated equivalued points on this 
two-dimensional sheet. A three-dimensional grid 
can be contoured by this algorithm by graphically 
combining the line segments generated from all 
possible orthogonal, two-dimensional sheets of the 
three-dimensional grid. This produces a 
chicken-wire-like view of the three-dimensional 
surface at a particular contour level. 

The contour level is the value at which a 
particular sheet is contoured. A given, 
two-dimensional sheet has a continuous series of 
contour displays between its minimum and maximum 
grid values. The difference between contour 
displays from one level to the next is not large 
if the difference in levels is not large. This is 
the basis for the formulation of a data structure 
that represents the continuum of contour 
displays-- the contouring tree [11~. The 
contouring algorithm proposed in this paper is 
based upon a reduction in the scope of the 
contouring tree. 
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2.2 Contouring Data Structure 

For this discussion a contouring tree is a 
data structure that represents a 2 x 2 grid region 

in a form that permits the user to easily retrieve 
the contour display for any given contour level. 
A contouring tree is generated for every 2 x 2 

subgrid of a larger, two-dimensional sheet. The 
creation and use of the contouring tree is best 
described with an example of a small grid. 

Figure I depicts the line segments for 
contour levels 50 and 1OO. The contour at level 
100 is a closed contour that forms a single, 
connected loop. The contour at level 50 is an 
open contour. Figure 2 presents a contouring tree 

for the lower, lefthand 2 x 2 subgrid of Figure I. 
The edges of the contouring tree correspond to the 
directed, downhill edges inscribed on the 2 x 2 
subgrid. The edges of the tree are ordered, 
maintaining the same counterclockwise ordering as 
in the original grid. The dashed lines in Figure 
2 indicate the order in which the coordinates are 
generated from the contouring tree for the display 
at levels 100 and 50. The boxed "[]" under nodes 
2 and 5 indicates that a setpoint display command 
should be generated for any coordinate that is 
created along the edges I-2 and 2-5, respectively. 
We can best describe the features of the 
contouring tree in the course of the following 
description of the processes of tree creation and 

display generation. 

2.3 Creation Of Contouring Trees 

The first step in the process of creating 
contouring trees is to choose which of the four 
points that border the 2 x 2 region is to be 
designated the maxima. The purpose of a maxima 
point is to have a point to serve as the root of 
the contouring tree. In this context, the maxima 
can be the point that has: (I) the maximum value 
for the entire two-dimensional grid, or (2) the 
maximum value only for the concerned 2 x 2 

subgrid, or (3) the first encountered point of 
multiple equal maximum values for the 2 x 2. This 
latter condition can be basis for the maxima 
because, in an ordered consideration of grid 
points, with the maxima set to the first 

encountered maximum valued point, all equal and 
maximum valued points appear as roots of 
contouring trees in other 2 x 2 regions. For the 
selection of maxima in this illustration, we have 

considered the four grid points in 
counterclockwise order. 

The selection of a local maxims for the 2 x 2 
region determines a large part of the 
configuration of the contouring trees. The root 
of the tree is the maxima and the remaining three 
points are the immediate descendent nodes of that 
root. The selection of the root also determines 
the order in which the three descendent nodes are 
added onto the root. In fact, once the root is 
chosen the descendent pointers are easily indexed 
from a small table. 

At this point in the procedure, only two 
edges of a total of five remain unattached to the 
descendent nodes of the root. The first of the 
two remaining edges can be attached as the 
descendent of either the first node attached to 
the root or the second node attached to the root 
in counterclockwise order. To select the 
attachment for the first edge, one compares the 
grid values on both ends of the free edge. The 
free edge is attached to the node that has the 
highest value. This attaches the fourth edge of 
the 2 x 2. The fifth and remaining free edge is 
attached like that the fourth. It can be added 

onto either the second node attached to the root 
or the third node attached to the root in 
counterclockwise order. The conditions for this 
final step differ from the latter only in the 
possibility that this fifth edge would be the 
second descendent edge added to the second 
descendent node of the root. The addition of this 
edge completes the formation of the contouring 
tree for the 2 x 2 grid section. 

Display pen command information must be 
placed in the contouring tree when the edges are 
attached during tree construction. Two display 
commands are required for drawing the contour 

display: setpoint and drawto. The setpoint 
command causes the display pen to be moved in a 
non-drawing mode and set on a specified 
coordinate. The drawto command causes the display 
pen to draw from the current position of the pen 
to a specified coordinate. One must place a 
setpoint command in the contouring tree on the 
lower valued node of each perimeter edge whose 
downhill direction is counterclockwise. This 
command appears in Figure 2 as a boxed "~3" on 
nodes 2 and 5, with respect to edges I-2 and 2-5. 
All other nodes have drawto commands. The display 
pen command information indicates when a line 
enters the 2 x 2 from a neighboring 2 x 2. This 
portion of the algorithm is described in greater 
detail in [117 . After this information has been 
entered, the contouring tree can be used for the 
generation of coordinates and display pen commands 
at the selected contour level. 

2.4 Display Generation From A Contouring Tree 

0nly four configurations of the ordered tree 
can be created for any 2 x 2 subgrid (Figure 3). 
Because of this limited number, one can select the 
tree configuration during the tree construction 

process and use that configuration information to 
create a list containing the order in which the 
tree's nodes should be considered for display 

generation. This list is termed the "enumeration 
list." The order of the nodes on this list is 
top-down from the root and counterclockwise. 

Generated with the enumeration list is a second 
list that specifies the "next node" to consider if 
one places a coordinate on an edge of the tree. 
With this second list one can skip over nodes 
lower on the path formed by the connected set of 
nodes from the root to an external node. The edge 
under consideration list of Figure 2 serves to 
remind the user that when one is considering node 
2 one is determining if a coordinate is to be 
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generated along the edge I-2. 

The nodes on the enumeration list are 
sequentially examined. If the grid value 

contained at a node is less than or equal to the 
currently selected contour level, a coordinate is 
generated, via linear interpolation, for the edge 
under consideration. At the same time a display 
pen command is issued. This display pen command 
is for the operation contained at the lower valued 
node of the edge from which the coordinate was 
generated. After the generation of the coordinate 
and display pen commands, the position in the 
enumeration list is advanced according to the 
value of the next node list element for that lower 
valued node. If the grid value contained at a 
node is greater than the currently selected 
contour level, consideration is given to the next 
node on the enumeration list. This process 
continues until either the enumeration list is 
exhausted or the next node list causes it to be 
exhausted. 

2.5 Algorithm Parallelism 

To this point we have described the method 
for the generation and use of the contouring tree 
for a single 2 x 2 grid region. In order to 
generate the contour display for a larger plane, 
this algorithm must be executed for every 2 x 2 
subgrid of this plane. The processing involved in 
the display generation for each of these 2 x 2 
subgrids is independent of that performed for any 
of the neighboring 2 x 2 grid regions. One may 
think of the computation for each 2 x 2 as 
occurring in a "cellular" processor only concerned 
with that 2 x 2 subgrid. Synchronization during 
the contour generation process is not required, 
nor is complex data communication. The only 
communication necessary is that of transmitting 
grid endpoints, contour levels, and control 
signals to each 2 x 2 cellular processor and that 
of retrieving the display coordinates and commands 
from each cellular processor. Because data 
communication is minimal and there is no 
requirement for synchronization of the contouring 
procedures for each 2 x 2 subgrid, the potential 
for concurrency is quite large. 

3.0 ARCHITECTURAL FRAMEWORK 

From the above discussion of algorithm 

parallelism, we can determine the type of VLSI 
layout necessary for the 2 x 2 cellular processor 
and its interconnections (see Figures 4 and 5). 
Before describing this VLSI architecture, we must 
first understand how the capability for real-time 
contouring is to be used. For this discussion, we 
describe the necessary characteristics of a 
"contouring processor." For initial consideration, 

we should think of this processor as a single VLSI 
chip, although examination may show that the 
processor might require multiple chips because of 
VLSI density limitations. 

The architectural framework of this 
contouring processor is that of a device used in 
conjunction with the typical display 
processor/minicomputer system. In this system, 
the host minicomputer initiates the contouring 
processor whenever a new contour level is detected 
or a new grid is delivered. The contouring 
processor computes the new display according to 
the algorithm discussed and deposits the resulting 
coordinates and display pen commands into the 
picture memory of the display processor. A 
display system can contain several contouring 
processors. The number of contouring processors 
required depends on two factors: the maximum size 
of the grids that one chooses to contour in 
real-time and the total number of the maximum size 
grids that must be contoured by each processor. 

In order to specify these factors for a 
particular display system, we must choose a 
problem requiring contouring. Using the molecular 
modeling program presented in the introduction as 
the typical application, we find that the largest 
three-dimensional grid of concern is a cube of 30 
units on each side [2]. As discussed, a 
three-dimensional grid is contoured by generating 
the display for all of the possible orthogonal 
planes that compose the grid. One must therefore 
contour 90, 30 x 30 planes in order to complete 
the picture representing the 30 x 30 x 30 cube. 

3.1 Architectural Modeling 

After the selection of a target application 
and a figure for its maximum grid size, one must 
compute a value for the maximum contouring 
capability of a single contouring processor, i.e., 
the number of 30 x 30 sheets it can contour in 
one-thirtieth of a second. To obtain this value 
for the contour generation process, one constructs 
a model of this process and monitors the behavior 
of this model while it simulates the performance 
of the contouring processor. 

Aho's [I] discussion of algorithm analysis 
methods is pertinent to this formulation. In 
Aho's computational models the key to analyzing 
the time complexity of an algorithm is the ability 
to assign a time cost on an instruction by 
instruction basis for the process under 
consideration. Central to his modeling 
methodology are the assumptions of a uniform time 
cost for each instruction and a varying time cost, 
depending on the operands required at each 
instruction. Although the computational models of 
[I] are generally used for determining the 
time-order of magnitude of simple algorithms, they 
can be extended to produce a modeling methodology 
for more complex processes. The design under 
consideration in this paper takes this approach, 
rejecting, however, Aho's analytical method of 
determining time costs in favor of an explicit 
totaling of the memory reference costs for a 
series of randomly generated grids. This choice 
is based on the assumption that the execution of a 
single memory reference takes the same time or 
longer than the execution of a single instruction. 
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For this model, the memory reference totals 
are recorded in three parts. These are the grid 
to contouring processor transfer time, the actual 
display generation time, and the 
coordinate/display pen command delivery time. 
Upon the assumption that the transfer is 
accomplished serially, the grid transfer time is 
computed by totaling the number of grid elements 
to be transferred to the contouring processor from 
the host minicomputer. The display generation 
time is computed by totaling the memory references 
required to compute the display for a single 2 x 2 
subgrid. In this case, all the 2 x 2 subgrid 
displays are understood to be computed in 
parallel. The time for the delivery of the 
coordinate/display pen commands is computed by 
totaling the maximum number of coordinates 
possible from a single 30 x 30 sheet and 
multiplying this value by four. The value of four 
was determined upon the assumption that each 
coordinate/display pen command set is 
representable by a quadruple of memory locations. 

One can easily compute the first memory 
reference total-- the transfer of a single 30 x 30 
grid from the host minicomputer to the contouring 
processor. Assuming that each element of this 
grid is representable by one memory location and 
allowing additional references for overhead, one 
finds 1OO0 memory references to be a reasonable 
approximation of the reference total for this 
transfer operation. 

It is more difficult to compute the second 
memory reference total-- the actual time for 
display generation. In order to accomplish this 
task within the modeling framework discussed, one 
must program the contouring algorithm as it would 
be written for the contouring processor. One then 
evaluates the probable memory reference 
contribution at each branch point of that program. 
Having performed these two steps, one executes the 
contouring program with imbedded memory reference 
counters. The number of references, approximately 
2500 per 2 x 2 subgrid, is generally constant for 
all 2 x 2 subgrid configurations. This number is 
constant because the algorithm consists primarily 
of table lookups derived from the initial maxims 
choice. 

The third memory reference total-- the 
coordinate/display pen command transfer from the 
contouring processor to the picture memory of the 
display processor, is the largest part of the 30 x 
30 memory reference count. This reference total 
depends on the maximum number of coordinates and 
display pen commands that can be generated for a 
single 30 x 30 grid. The maximum number of 
coordinates and display pen commands for a single 
2 x 2 subgrid is four. Given 841 2 x 2 subgrids 
in a single 30 x 30 sheet, there are a maximum of 
3364 coordinate/display pen command quadruples. 
Tests with randomly generated grids, however, have 
shown 3364 to be too large a number. The largest 
number encountered is 2600 coordinate/display pen 
commands. Using 2600 coordinate/display pen 
commands as the limit and multiplying by the size 
of the quadruple, we find that approximately 
11,OOO references are needed to transfer the 
largest display for a single 30 x 30 grid. 

Summing the three reference counts, the 
memory reference total for contouring a single 30 
x 30 grid is approximately 15,OOO. Assuming a 
rather fast memory and comparable processor and 
using IOO,0OO references as the maximum number of 
references to be allowed in one-thirtieth of a 
second, one finds that six, 30 x 30 grids can be 
contoured by each contouring processor. This 
means that fifteen contouring processors are 
needed to contour the 90, 30 x 30 grids that make 
up the display for the 30 x 30 x 30 cube. 

3.2 Architectural Problems 

This model poses two serious architectural 
problems: (I) There are difficulties of memory 
contention in the delivery of the contour display 
to the picture memory; and (2) assuming that the 
data can be delivered, there are possibly more 
vectors than currently available vector graphics 
systems can draw. Because the second problem is 
more serious, we consider it first. The maximum 
number of vectors that we expect to generate for 
the 90, 30 x 30 grids is 234,000. The computer 
graphics manufacturer Evans and Sutherland claims 
for its latest product, the PS-3OO, the capability 
to display 95,000 vectors. The difference between 
the two numbers, although not an order of 
magnitude, is sufficiently large for concern. The 
total number of vectors produced by the contouring 
processor must be reduced to a quantity that the 
display device can handle. The ideal location for 
this reduction is in the contouring processor, 
before the delivery of the coordinate and display 
pen commands. 

One method by which to reduce the total 
number of vectors is based on the actual 
visibility of the object after it has been 
transformed by a viewing matrix. In this method, 
coordinates that are output from the contouring 
process would be transformed by that matrix and 
examined to determine whether they were visible 
within the boundaries of the display screen. 
Vectors entirely out of range of the screen's 
boundaries would not be passed on, and vectors 
inside the boundaries would be passed on. Vectors 
that cross the screen's boundaries would be 
clipped inside the contouring processor and the 
clipped version of the coordinates would be sent 
to the display device. 

This method, however, provides only a partial 
solution. A problem occurs when the viewing 
matrix projects the entire picture within the 
screen's boundaries. Under these conditions, it 
would be necessary to make a second visibility 
check in order to determine if the vectors 
generated from the transformed coordinates could 
be plotted as single points, i.e. degenerate 
vectors. The procedure for making this check 
would depend upon the limitations of the display 
device. If the display device could not handle 
the required number of vectors, it might be 
necessary to provide a degeneracy window value as 
a tuning device. This window value would allow 
one to map small lines into single points. The 
test for degenerate vectors would be performed at 
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the same time as the check for visibility within 
the screen's boundaries. The most difficult part 
of this solution would be the actual coordinate 
transformation operation. Assuming that floating 
point operations were performed as part the 
contouring process, this reduction would not be 
difficult. The additional capabilities of 
coordinate transformation and the check for vector 
visibility and degeneracy could be accommodated in 
a total of approximately 4000 references. 

The other architectural problem is the memory 
contention during the delivery of the contour 
display to the picture memory of the display 
processor. This problem arises from the original 
architectural framework. The framework is that of 
a typical display processor/minicomputer system. 
Current display processor systems have only one 
picture memory. This picture memory is accessed 
by the display processor, in order to refresh the 
screen, and by the host minicomputer, in order to 
deposit the latest display update. A problem 
occurs when fifteen contouring processors access a 
single picture memory. Under these conditions the 
contention for memory is significant, preventing 
the delivery of the latest picture and the display 
of the current picture. 

One solution to the problem of memory 
contention would be to partition the picture 
memory. A memory partition would be provided for 

each contouring processor, insuring that each 
contouring processor only shares its portion of 
display memory with the display processor. The 
memory could be organized so that it logically 
appeared as one memory to the display processor. 
To resolve any remaining contention between the 
single contouring processor and the display 
processor one would provide a precedence mechanism 
that favors the display processor, because display 
refresh must occur on time. 

The architectural problems encountered in the 
design of the contouring processor appear 
resolvable. The addition of coordinate 
transformation as an integral part of the 
contouring processor is an easily 
compartmentalized and isolated system change. It 
can be imbedded in the contouring processor with 
little impact on the framework of the display 
system. The only effect foreseen occurs in 
passing the viewing matrix to the contouring 
processor. By contrast, the architectural problem 
of display memory partitioning significantly 
affects the design of the display system. This 

was expected, because experience with current 
vector graphics systems has shown that the most 
frequent bottleneck in updating a display is the 
transfer of data from the host computer to the 
display memory via a single, serial pathway. This 
is the most serious impediment to the animation 
capability of current vector graphics systems. 
The advent of special graphics processors, such as 
the contouring processor, will require the 
reconsideration and redesign of the commonly used 
display processor system. 

3.3 VLSI Perspectives 

In the preceding sections we have defined the 
architectural framework and required capabilities 
of the contouring processor. With this overview 
of the architectural requirements, we can begin to 
describe how such an architecture can be 
implemented in VLSI. Figure 4 is a schematic view 
of the 2 x 2 cellular processor. The 
interconnection scheme for a set of these 2 x 2 
cellular processors is shown in Figure 5, which is 
derived from the discussion of algorithm 
parallelism in Section 2.5. In reference to these 
two figures, the VLSI decision that must be made 
is how much can be placed on a single VLSI chip. 
It would be ideal to be able to place all the 
cellular processors for all six planes of the 30 x 
30 grids described at the end of the modeling 
discussion in Section 3.1 onto a single chip. 
This would require a single chip total of 5,O46 
cellular processors, each of the complexity shown 
in Figure 4. This is clearly impossible for 
reasons of VLSI density limitations. The 
practical question, then, is how many 2 x 2 
cellular processors can be put on a single chip. 
In order to answer this, we must first consider 
the hardware requirements, as sketched in Figure 

4. 

3.4 Hardware Requirements 

There are 5 functions that the 2 x 2 cellular 
processor has to be able to perform on external 
command: (I) collect grid data from the system 
bus, (2) collect the view matrix from the system 
bus, (3) receive the contour level from the system 
bus, and execute the contouring/ coordinate 
transformation procedure, (4) output the generated 
coordinates to the system bus for transfer to the 
picture memory of the display processor, and (5) 
reset and count. Three of the five functions 
require very little in the way of special hardware 
because they are only operations that transfer 
data to/from the cellular processor's memory 
from/to the system bus. The only special 
requirement for this data transfer operation is 
that it be capable of addressing each cellular 
processor. When collecting grid data from the 
system bus, the cellular processor needs to be 
able to ignore all grid data not specifically 
addressed for it. The cellular processor also 
needs to be able to ignore output commands on the 
system bus. This implies that each cellular 
processor has knowledge of which 2 x 2 subgrid it 
represents and, further, that the external system 
bus control line indicates, at some time, which 
cellular processor is being addressed. The 
external address presentation to the cellular 
processor is containable within 15 bits, given the 
30 x 30 x 30 limitation discussed earlier. This 
external address is placed into the External Data 
Register of each cellular processor upon the 
initiation of each grid data delivery cycle and 
each coordinate retrieval cycle. The actual data 
delivery/retrieval then follows the address 
indication. The next question is how does the 
cellular processor receive and maintain its copy 
of this address. There are two possibilities. 
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The first possibility is to have the address 
of each cellular processor permanently contained 
within the cellular processor in a small ROM. 
This would require a slightly different VLSI 
layout for each cellular processor. This is 
clearly unsuitable because we can benefit the most 
from VLSI if we strive towards "regularity." 
Regularity, at least for VLSI, means many copies 
of the same thing. The best mechanism, then, for 
assigning addresses to the cellular processors is 
one in which the layout for each cellular 
processor is identical. 

The second possibility for cellular processor 
address assignment is that of a chain of "count 
enabling" wires, one input to and one output from 
each cellular processor. With this wire, each 
processor is sequentially addressed in the 
following fashion: simultaneous to the initiation 
of the external reset function, the first cellular 
processor in the chain has its Enable In line set 
high. The reset/enable combination causes the 
cellular processor to increment the address held 
in the External Data register by one. This 
address is then returned to the system bus at the 
same time that the Count Enable Out line is set 
high. This enables the neighboring cellular 
processor, which follows the same procedure. The 
end result is that each cellular processor has a 
unique "address" which can be used, through 
judicious upper level control, to deliver~retrieve 
data on an individual cellular processor basis. 
In addition to meeting the regularity criterion 
mentioned above, this mechanism is one that can 
easily travel across the multiple chip boundaries 
necessary in the composition of the contouring 
processor. 

Having shown that four of the five functions 
the cellular processor performs on external 
command can be accomplished with a minimum of 
special hardware, we now examine the requirements 
of the final function. The hardware requirements 
for this function, that of executing the 
contouring and coordinate transformation 
procedures, are not substantial, although the 
execution sequence for this hardware is not 
trivial. The cellular processor needs an ALU 
capable of integer multiplication, division, 

addition, and subtraction. From the description 
of the algorithm it appears as if floating point 
arithmetic were required. The contouring 
procedure, however, was originally implemented 
using entirely integer arithmetic and should 
therefore present no problem for such a limited 
function ALU. Coordinate transformations are 
likewise capable of simulation via integer 
arithmetic. 

Another piece of hardware important when 
considering the contouring~transformation function 
is that of memory. Figure 4 shows a 128 word (16 
bit) RAM that should suffice for all contouring 
tree construction, grid collection, coordinate 
generation, and coordinate transformation 
operations expected in the cellular processor. 
There are other pieces of hardware that take up 
space on the VLSI chip, such as the ALU input and 
output registers, the ALU and Cell flags, and the 
previously mentioned External Data register. But 

the hardware that takes up the most space is that 
concerned with control. The control section is 
made up of the External Instruction register, the 
Microprogrsm counter logic, the Decoder, and the 
Microcode Memory. The amount of chip space taken 
up by the External Instruction register, the 
Microprogram counter logic, and the Decoder is not 
large in comparison to that taken up by the 
Microcode memory. The Microcode memory holds the 
sequence of hardware execution instructions for 
the 2 x 2 contouring tree creation, coordinate 
generation, and coordinate transformation 
procedures. The Microcode memory also holds the 
instruction sequences for the other externally 
initiated functions previously mentioned. Using 
the figures from the architectural modeling 
section, it is estimated that approximately 4096 
16 bit words are needed to accommodate the 
operations necessary for all of the functions of 
the cellular processor. Making comparisons on a 
byte-by-byte basis with devices such as the 
MC68000 [9] or the available 64K RAMs, we estimate 
from two to four cellular processors on a single 
chip. 

Without actually completing the VLSI design, 
there is no adequate way to estimate the amount of 
space it requires on a VLSI chip other than to 
roughly compare the hardware requirements with 
already existing VLSI devices. The presentation 
of a complete VLSI design, however, is not within 
the scope of this paper. We have been concerned 
here to examine the extent to which the presented 
contour display generation algorithm can benefit 
from the highly concurrent capabilities suggested 
by the VLSI technology. 

4.0 CONCLUSION 

This paper has presented an algorithm whose 
VLSI implementation can greatly increase the 
animation capability of current vector display 
systems. The algorithm for contour display 
generation was selected for examination because of 
its frequent use in computer graphics programs. 
Two applications have been introduced in which the 
need for a real-time contour display generation 
capability is evident. For such applications we 
have discussed the development of a contouring 
algorithm that can use the highly parallel 
computation capability available in the VLSI 
technology. In connection with this algorithm, we 
have examined the architectural framework for a 
contouring processor that performs the contouring 
algorithm. This discussion serves to highlight 
features of the contouring algorithm that are not 
easily recognized from its serial description. 
The architectural requirements of the contouring 
processor have been formulated with respect to the 
hardware necessary for its VLSI implementation. A 
question of the feasibility of using multiple 
cellular processors on a single VLSI chip has also 
been addressed. We have concluded from our 
research that the number of cellular processors 
per chip, though low, is sufficiently large to 
warrant further development. 
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Figure 2 

Sample Contouring Tree for 2 x 2 Subgrid 
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Figure 3 

All Possible Configurations of the Contouring Tree 
Generated for a 2 x 2 Subgrid 
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Figure 4 
Schematic View of 2 x 2 Cellular Processor 
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Figure 5 

2 x 2 Cellular Processor Interconnection Scheme 
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No'te: Each cellular processor has a copy of the 
4 grid points and grid point coordinates 
it represents. The cellular processor is 
responsible for generating the coordinates 
and drawing instructions for its assigned 
2 x 2 subgrid on each receipt of a new 
contour level. 
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