
A Contour Display Generation Algorithm for VLSI Implementation

Michael J. Zyda
Department of Computer Science

Washington University
St. Louis, Missouri 63130

Abstract

Recent articles have discussed the current
trend towards designing raster graphics algorithms
into VLSI chips. The purpose of these design
efforts is to capture some of the real-time
animation capability found in vector graphics
systems. Currently, real-time vector graphics
animation is limited primarily to operations
involving coordinate transformations. In order to
enhance this animation capability, frequently
encountered vector graphics algorithms that
require the high speed, parallel computation
capability of VLSI must be identified. Real-time
contour display generation from grid data is one
such algorithm. This paper describes the
specifics of a contour display generation
algorithm, the architectural framework of a
processor that performs this algorithm and the
architectural requirements of such a processor.

The contouring algorithm is based on a data
structure, the contouring tree, whose regularity
and amenability for parallel computation make it
an ideal candidate for VLSI. The architectural
framework for a contouring processor chip that
performs this algoritkm for the real-time
environment of interactive graphics is discussed,
particularly the issues of memory size and data
distribution. A model of the contouring process
is created in order to determine the necessary
physical parameters of the contouring processor in
this architectural framework. Conclusions are
drawn concerning the feasibility of producing a
VLSI chip that performs this contouring algorithm.

CR Categories and Subject Descriptors: 1.3.1
~omputer Graph--i-cs~: Hardware Architecture -
vector display devices; 1.3.3 [Computer
Graphical: Picture/Image Generation display
algorithms;

Permissiofl to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 A C M 0-89791-076-1/82/007/0135 $00.75

1.3.5 [Computer Graphics~: Computational Geometry
and Object Modeling - Curve, surfaces, solid and
object representations; Geometric algorithms,
languages and systems; 1.3.7 [Computer Graphical:
Three-Dimensional Graphics and Realism -
Animation; B.7.1 [Integrated CircuitsJ: Types
and Design Styles - VLSI (very large scale
integration); E.I [Data StructuresT: Trees

General Terms: contouring, VLSI

This work has been supported by the following
grants: NIHI P01 GM 24483-01AI and
NIH5 T32 GM07564.

1.O INTRODUCTION

Recent articles have discussed the current
trend towards designing graphics algorithms into
VLSI chips [3,6,8]. Most of these efforts have
concerned limited functions, such as frame buffer
control. Of these efforts, the majority are
directed towards raster graphics because of the
simplicity and regularity of pixel operations.
These projects have aimed at capturing some of the
real-time animation capability found in currently
produced vector graphics systems. In vector
graphics, real-time animstion is seen primarily as
object rotation and translation. This is because
most vector graphics systems sre based on
minicomputers that have little hardware for
special graphics other than a matrix multiplier.
Sophisticated examples of vector graphics
animation are usually relegated to the non
real-time environment of motion picture film.

The trend towards the design of graphics
algorithms into VLSI chips can change this
situation for vector graphics systems. VLSI
offers the possibility of multiple, computational
units operating in parallel within the boundaries
of a single chip. Because both processing
elements and memory elements can be easily
implemented in VLSI, one is encouraged to find
structures formed from these elements that can use
this available concurrency [5J. In order to take
advantage of these VLSI capabilities with respect
to vector graphics, one must identify graphics
algorithms that are partitionable into relatively
simple subproblems capable of the type of paralleI

135

solution VLSI has to offer. Candidates for this
treatment are the graphics algorithms frequently
encountered in graphics programs and, of this
group, those that require more than one-thirtieth
of a second to compute. One algorithm that has
both of these characteristics is contour display
generation from grid data [11]. This paper
discusses the specifics of this contouring
algorithm, the architectural framework of a
processor that performs this algorithm and the
architectural requirements of such a processor.

As a graphics algorithm, contour display
generation is frequently used in X-ray
crystallography, computer-aided tomography, and
other applications for which grid data is
collected. It is generally depicted as a
computationally slow operation whose output is
sent to a plotter or film recorder. A number of
papers have been written documenting
"breakthroughs" that increase the speed of such
contouring algorithms. One author has recently
reported that his contouring subroutine used one

second of central processor time on NCAR's Control
Data 7600 [10]. Although a contour generation

program of this speed is useful for static
situations, it is found to be lacking when user
interaction is important and the succession of
images caused by contour level changes is
meaningful.

One application in which real-time animation
is important is the determination of molecular
structures from the electron density data
generated by X-ray crystallography [2]. Such an
operation is executed interactively by using a
computer graphics program that displays a Dreiding
(stick) model of the working molecule, inside a
contour display of the corresponding region of the
molecule's electron density grid. In addition to
the graphics function, the computer program
monitors a series of signals generated by the
user, while turning the various knobs on a control
console [12]. The values read from these knobs
are interpreted by the program as modifications to
either the working molecule or the contour
display. Modifications to the molecule cause
flexible bonds to be rotated and bonds to be
lengthened; modifications to the contour display
produce an increase or decrease of the contour
level. The goal of this process is to produce the
stick model of the molecule that best fits inside
the given electron density data set. The user can
determine whether or' not the model fits the
density grid by modifying the contour level,
shrinking the contour surface to the working
molecule. Similarly, the user can expand the
contour surface from the stick model for better
visibility. This function requires that the
hardware have the capability to rapidly change the
contour display as its contour level changes.

Another application that requires the
real-time animation of contour displays is
connected with the systematic search procedures
used in Drug Design research at Washington
University, St. Louis, Missouri [4]. In this
project, all possible conformers of a molecule are
generated by a systematic, incremental rotation of
the flexible bonds hypothesized for the molecule.

Each molecular conformation generated by this
process is checked against steric (Van der
Waals's) constraints and various user set,
geometric constraints. The molecular
conformations of the molecules that pass the
constraints during a run of this systematic search
process are visually examined by a drug
designer/bench chemist for classification and
verification. One of the steps in verification is
to generate an energy surface for passing
molecular conformations. This surface is
constructed through a contouring process. Because
it outputs several thousand passing conformations,
the process must be performed rapidly.

A VLSI chip that generates contour displays
for such demanding applications must be able to
produce and distribute a new picture in the amount
of time it takes the graphics hardware to change
display frames. This is less than one-thirtieth
of a second. Any greater amount of time is
discernable by the viewer, either as a flicker or
a hesitation in the picture update. In fact,
one-thirtieth of a second is diseernable to many
people, making one-sixtieth of a second a more
desirable time for the change of display frames.
[7].

2.0 CONTOURING ALGORITHM

2.1 Contour Display

The contouring algorithm is best described
within the context of a contour display. A
contour display is a graphic representation of all
the isovalued points in a given region of space.
The region of space for this algorithm is a
two-dimensional grid of data values. Its graphic
representation is a set of line segments that run
through interpolated equivalued points on this
two-dimensional sheet. A three-dimensional grid
can be contoured by this algorithm by graphically
combining the line segments generated from all
possible orthogonal, two-dimensional sheets of the
three-dimensional grid. This produces a
chicken-wire-like view of the three-dimensional
surface at a particular contour level.

The contour level is the value at which a
particular sheet is contoured. A given,
two-dimensional sheet has a continuous series of
contour displays between its minimum and maximum
grid values. The difference between contour
displays from one level to the next is not large
if the difference in levels is not large. This is
the basis for the formulation of a data structure
that represents the continuum of contour
displays-- the contouring tree [11~. The
contouring algorithm proposed in this paper is
based upon a reduction in the scope of the
contouring tree.

136

2.2 Contouring Data Structure

For this discussion a contouring tree is a
data structure that represents a 2 x 2 grid region

in a form that permits the user to easily retrieve
the contour display for any given contour level.
A contouring tree is generated for every 2 x 2

subgrid of a larger, two-dimensional sheet. The
creation and use of the contouring tree is best
described with an example of a small grid.

Figure I depicts the line segments for
contour levels 50 and 1OO. The contour at level
100 is a closed contour that forms a single,
connected loop. The contour at level 50 is an
open contour. Figure 2 presents a contouring tree

for the lower, lefthand 2 x 2 subgrid of Figure I.
The edges of the contouring tree correspond to the
directed, downhill edges inscribed on the 2 x 2
subgrid. The edges of the tree are ordered,
maintaining the same counterclockwise ordering as
in the original grid. The dashed lines in Figure
2 indicate the order in which the coordinates are
generated from the contouring tree for the display
at levels 100 and 50. The boxed "[]" under nodes
2 and 5 indicates that a setpoint display command
should be generated for any coordinate that is
created along the edges I-2 and 2-5, respectively.
We can best describe the features of the
contouring tree in the course of the following
description of the processes of tree creation and

display generation.

2.3 Creation Of Contouring Trees

The first step in the process of creating
contouring trees is to choose which of the four
points that border the 2 x 2 region is to be
designated the maxima. The purpose of a maxima
point is to have a point to serve as the root of
the contouring tree. In this context, the maxima
can be the point that has: (I) the maximum value
for the entire two-dimensional grid, or (2) the
maximum value only for the concerned 2 x 2

subgrid, or (3) the first encountered point of
multiple equal maximum values for the 2 x 2. This
latter condition can be basis for the maxima
because, in an ordered consideration of grid
points, with the maxima set to the first

encountered maximum valued point, all equal and
maximum valued points appear as roots of
contouring trees in other 2 x 2 regions. For the
selection of maxima in this illustration, we have

considered the four grid points in
counterclockwise order.

The selection of a local maxims for the 2 x 2
region determines a large part of the
configuration of the contouring trees. The root
of the tree is the maxima and the remaining three
points are the immediate descendent nodes of that
root. The selection of the root also determines
the order in which the three descendent nodes are
added onto the root. In fact, once the root is
chosen the descendent pointers are easily indexed
from a small table.

At this point in the procedure, only two
edges of a total of five remain unattached to the
descendent nodes of the root. The first of the
two remaining edges can be attached as the
descendent of either the first node attached to
the root or the second node attached to the root
in counterclockwise order. To select the
attachment for the first edge, one compares the
grid values on both ends of the free edge. The
free edge is attached to the node that has the
highest value. This attaches the fourth edge of
the 2 x 2. The fifth and remaining free edge is
attached like that the fourth. It can be added

onto either the second node attached to the root
or the third node attached to the root in
counterclockwise order. The conditions for this
final step differ from the latter only in the
possibility that this fifth edge would be the
second descendent edge added to the second
descendent node of the root. The addition of this
edge completes the formation of the contouring
tree for the 2 x 2 grid section.

Display pen command information must be
placed in the contouring tree when the edges are
attached during tree construction. Two display
commands are required for drawing the contour

display: setpoint and drawto. The setpoint
command causes the display pen to be moved in a
non-drawing mode and set on a specified
coordinate. The drawto command causes the display
pen to draw from the current position of the pen
to a specified coordinate. One must place a
setpoint command in the contouring tree on the
lower valued node of each perimeter edge whose
downhill direction is counterclockwise. This
command appears in Figure 2 as a boxed "~3" on
nodes 2 and 5, with respect to edges I-2 and 2-5.
All other nodes have drawto commands. The display
pen command information indicates when a line
enters the 2 x 2 from a neighboring 2 x 2. This
portion of the algorithm is described in greater
detail in [117 . After this information has been
entered, the contouring tree can be used for the
generation of coordinates and display pen commands
at the selected contour level.

2.4 Display Generation From A Contouring Tree

0nly four configurations of the ordered tree
can be created for any 2 x 2 subgrid (Figure 3).
Because of this limited number, one can select the
tree configuration during the tree construction

process and use that configuration information to
create a list containing the order in which the
tree's nodes should be considered for display

generation. This list is termed the "enumeration
list." The order of the nodes on this list is
top-down from the root and counterclockwise.

Generated with the enumeration list is a second
list that specifies the "next node" to consider if
one places a coordinate on an edge of the tree.
With this second list one can skip over nodes
lower on the path formed by the connected set of
nodes from the root to an external node. The edge
under consideration list of Figure 2 serves to
remind the user that when one is considering node
2 one is determining if a coordinate is to be

137

generated along the edge I-2.

The nodes on the enumeration list are
sequentially examined. If the grid value

contained at a node is less than or equal to the
currently selected contour level, a coordinate is
generated, via linear interpolation, for the edge
under consideration. At the same time a display
pen command is issued. This display pen command
is for the operation contained at the lower valued
node of the edge from which the coordinate was
generated. After the generation of the coordinate
and display pen commands, the position in the
enumeration list is advanced according to the
value of the next node list element for that lower
valued node. If the grid value contained at a
node is greater than the currently selected
contour level, consideration is given to the next
node on the enumeration list. This process
continues until either the enumeration list is
exhausted or the next node list causes it to be
exhausted.

2.5 Algorithm Parallelism

To this point we have described the method
for the generation and use of the contouring tree
for a single 2 x 2 grid region. In order to
generate the contour display for a larger plane,
this algorithm must be executed for every 2 x 2
subgrid of this plane. The processing involved in
the display generation for each of these 2 x 2
subgrids is independent of that performed for any
of the neighboring 2 x 2 grid regions. One may
think of the computation for each 2 x 2 as
occurring in a "cellular" processor only concerned
with that 2 x 2 subgrid. Synchronization during
the contour generation process is not required,
nor is complex data communication. The only
communication necessary is that of transmitting
grid endpoints, contour levels, and control
signals to each 2 x 2 cellular processor and that
of retrieving the display coordinates and commands
from each cellular processor. Because data
communication is minimal and there is no
requirement for synchronization of the contouring
procedures for each 2 x 2 subgrid, the potential
for concurrency is quite large.

3.0 ARCHITECTURAL FRAMEWORK

From the above discussion of algorithm

parallelism, we can determine the type of VLSI
layout necessary for the 2 x 2 cellular processor
and its interconnections (see Figures 4 and 5).
Before describing this VLSI architecture, we must
first understand how the capability for real-time
contouring is to be used. For this discussion, we
describe the necessary characteristics of a
"contouring processor." For initial consideration,

we should think of this processor as a single VLSI
chip, although examination may show that the
processor might require multiple chips because of
VLSI density limitations.

The architectural framework of this
contouring processor is that of a device used in
conjunction with the typical display
processor/minicomputer system. In this system,
the host minicomputer initiates the contouring
processor whenever a new contour level is detected
or a new grid is delivered. The contouring
processor computes the new display according to
the algorithm discussed and deposits the resulting
coordinates and display pen commands into the
picture memory of the display processor. A
display system can contain several contouring
processors. The number of contouring processors
required depends on two factors: the maximum size
of the grids that one chooses to contour in
real-time and the total number of the maximum size
grids that must be contoured by each processor.

In order to specify these factors for a
particular display system, we must choose a
problem requiring contouring. Using the molecular
modeling program presented in the introduction as
the typical application, we find that the largest
three-dimensional grid of concern is a cube of 30
units on each side [2]. As discussed, a
three-dimensional grid is contoured by generating
the display for all of the possible orthogonal
planes that compose the grid. One must therefore
contour 90, 30 x 30 planes in order to complete
the picture representing the 30 x 30 x 30 cube.

3.1 Architectural Modeling

After the selection of a target application
and a figure for its maximum grid size, one must
compute a value for the maximum contouring
capability of a single contouring processor, i.e.,
the number of 30 x 30 sheets it can contour in
one-thirtieth of a second. To obtain this value
for the contour generation process, one constructs
a model of this process and monitors the behavior
of this model while it simulates the performance
of the contouring processor.

Aho's [I] discussion of algorithm analysis
methods is pertinent to this formulation. In
Aho's computational models the key to analyzing
the time complexity of an algorithm is the ability
to assign a time cost on an instruction by
instruction basis for the process under
consideration. Central to his modeling
methodology are the assumptions of a uniform time
cost for each instruction and a varying time cost,
depending on the operands required at each
instruction. Although the computational models of
[I] are generally used for determining the
time-order of magnitude of simple algorithms, they
can be extended to produce a modeling methodology
for more complex processes. The design under
consideration in this paper takes this approach,
rejecting, however, Aho's analytical method of
determining time costs in favor of an explicit
totaling of the memory reference costs for a
series of randomly generated grids. This choice
is based on the assumption that the execution of a
single memory reference takes the same time or
longer than the execution of a single instruction.

138

For this model, the memory reference totals
are recorded in three parts. These are the grid
to contouring processor transfer time, the actual
display generation time, and the
coordinate/display pen command delivery time.
Upon the assumption that the transfer is
accomplished serially, the grid transfer time is
computed by totaling the number of grid elements
to be transferred to the contouring processor from
the host minicomputer. The display generation
time is computed by totaling the memory references
required to compute the display for a single 2 x 2
subgrid. In this case, all the 2 x 2 subgrid
displays are understood to be computed in
parallel. The time for the delivery of the
coordinate/display pen commands is computed by
totaling the maximum number of coordinates
possible from a single 30 x 30 sheet and
multiplying this value by four. The value of four
was determined upon the assumption that each
coordinate/display pen command set is
representable by a quadruple of memory locations.

One can easily compute the first memory
reference total-- the transfer of a single 30 x 30
grid from the host minicomputer to the contouring
processor. Assuming that each element of this
grid is representable by one memory location and
allowing additional references for overhead, one
finds 1OO0 memory references to be a reasonable
approximation of the reference total for this
transfer operation.

It is more difficult to compute the second
memory reference total-- the actual time for
display generation. In order to accomplish this
task within the modeling framework discussed, one
must program the contouring algorithm as it would
be written for the contouring processor. One then
evaluates the probable memory reference
contribution at each branch point of that program.
Having performed these two steps, one executes the
contouring program with imbedded memory reference
counters. The number of references, approximately
2500 per 2 x 2 subgrid, is generally constant for
all 2 x 2 subgrid configurations. This number is
constant because the algorithm consists primarily
of table lookups derived from the initial maxims
choice.

The third memory reference total-- the
coordinate/display pen command transfer from the
contouring processor to the picture memory of the
display processor, is the largest part of the 30 x
30 memory reference count. This reference total
depends on the maximum number of coordinates and
display pen commands that can be generated for a
single 30 x 30 grid. The maximum number of
coordinates and display pen commands for a single
2 x 2 subgrid is four. Given 841 2 x 2 subgrids
in a single 30 x 30 sheet, there are a maximum of
3364 coordinate/display pen command quadruples.
Tests with randomly generated grids, however, have
shown 3364 to be too large a number. The largest
number encountered is 2600 coordinate/display pen
commands. Using 2600 coordinate/display pen
commands as the limit and multiplying by the size
of the quadruple, we find that approximately
11,OOO references are needed to transfer the
largest display for a single 30 x 30 grid.

Summing the three reference counts, the
memory reference total for contouring a single 30
x 30 grid is approximately 15,OOO. Assuming a
rather fast memory and comparable processor and
using IOO,0OO references as the maximum number of
references to be allowed in one-thirtieth of a
second, one finds that six, 30 x 30 grids can be
contoured by each contouring processor. This
means that fifteen contouring processors are
needed to contour the 90, 30 x 30 grids that make
up the display for the 30 x 30 x 30 cube.

3.2 Architectural Problems

This model poses two serious architectural
problems: (I) There are difficulties of memory
contention in the delivery of the contour display
to the picture memory; and (2) assuming that the
data can be delivered, there are possibly more
vectors than currently available vector graphics
systems can draw. Because the second problem is
more serious, we consider it first. The maximum
number of vectors that we expect to generate for
the 90, 30 x 30 grids is 234,000. The computer
graphics manufacturer Evans and Sutherland claims
for its latest product, the PS-3OO, the capability
to display 95,000 vectors. The difference between
the two numbers, although not an order of
magnitude, is sufficiently large for concern. The
total number of vectors produced by the contouring
processor must be reduced to a quantity that the
display device can handle. The ideal location for
this reduction is in the contouring processor,
before the delivery of the coordinate and display
pen commands.

One method by which to reduce the total
number of vectors is based on the actual
visibility of the object after it has been
transformed by a viewing matrix. In this method,
coordinates that are output from the contouring
process would be transformed by that matrix and
examined to determine whether they were visible
within the boundaries of the display screen.
Vectors entirely out of range of the screen's
boundaries would not be passed on, and vectors
inside the boundaries would be passed on. Vectors
that cross the screen's boundaries would be
clipped inside the contouring processor and the
clipped version of the coordinates would be sent
to the display device.

This method, however, provides only a partial
solution. A problem occurs when the viewing
matrix projects the entire picture within the
screen's boundaries. Under these conditions, it
would be necessary to make a second visibility
check in order to determine if the vectors
generated from the transformed coordinates could
be plotted as single points, i.e. degenerate
vectors. The procedure for making this check
would depend upon the limitations of the display
device. If the display device could not handle
the required number of vectors, it might be
necessary to provide a degeneracy window value as
a tuning device. This window value would allow
one to map small lines into single points. The
test for degenerate vectors would be performed at

139

the same time as the check for visibility within
the screen's boundaries. The most difficult part
of this solution would be the actual coordinate
transformation operation. Assuming that floating
point operations were performed as part the
contouring process, this reduction would not be
difficult. The additional capabilities of
coordinate transformation and the check for vector
visibility and degeneracy could be accommodated in
a total of approximately 4000 references.

The other architectural problem is the memory
contention during the delivery of the contour
display to the picture memory of the display
processor. This problem arises from the original
architectural framework. The framework is that of
a typical display processor/minicomputer system.
Current display processor systems have only one
picture memory. This picture memory is accessed
by the display processor, in order to refresh the
screen, and by the host minicomputer, in order to
deposit the latest display update. A problem
occurs when fifteen contouring processors access a
single picture memory. Under these conditions the
contention for memory is significant, preventing
the delivery of the latest picture and the display
of the current picture.

One solution to the problem of memory
contention would be to partition the picture
memory. A memory partition would be provided for

each contouring processor, insuring that each
contouring processor only shares its portion of
display memory with the display processor. The
memory could be organized so that it logically
appeared as one memory to the display processor.
To resolve any remaining contention between the
single contouring processor and the display
processor one would provide a precedence mechanism
that favors the display processor, because display
refresh must occur on time.

The architectural problems encountered in the
design of the contouring processor appear
resolvable. The addition of coordinate
transformation as an integral part of the
contouring processor is an easily
compartmentalized and isolated system change. It
can be imbedded in the contouring processor with
little impact on the framework of the display
system. The only effect foreseen occurs in
passing the viewing matrix to the contouring
processor. By contrast, the architectural problem
of display memory partitioning significantly
affects the design of the display system. This

was expected, because experience with current
vector graphics systems has shown that the most
frequent bottleneck in updating a display is the
transfer of data from the host computer to the
display memory via a single, serial pathway. This
is the most serious impediment to the animation
capability of current vector graphics systems.
The advent of special graphics processors, such as
the contouring processor, will require the
reconsideration and redesign of the commonly used
display processor system.

3.3 VLSI Perspectives

In the preceding sections we have defined the
architectural framework and required capabilities
of the contouring processor. With this overview
of the architectural requirements, we can begin to
describe how such an architecture can be
implemented in VLSI. Figure 4 is a schematic view
of the 2 x 2 cellular processor. The
interconnection scheme for a set of these 2 x 2
cellular processors is shown in Figure 5, which is
derived from the discussion of algorithm
parallelism in Section 2.5. In reference to these
two figures, the VLSI decision that must be made
is how much can be placed on a single VLSI chip.
It would be ideal to be able to place all the
cellular processors for all six planes of the 30 x
30 grids described at the end of the modeling
discussion in Section 3.1 onto a single chip.
This would require a single chip total of 5,O46
cellular processors, each of the complexity shown
in Figure 4. This is clearly impossible for
reasons of VLSI density limitations. The
practical question, then, is how many 2 x 2
cellular processors can be put on a single chip.
In order to answer this, we must first consider
the hardware requirements, as sketched in Figure

4.

3.4 Hardware Requirements

There are 5 functions that the 2 x 2 cellular
processor has to be able to perform on external
command: (I) collect grid data from the system
bus, (2) collect the view matrix from the system
bus, (3) receive the contour level from the system
bus, and execute the contouring/ coordinate
transformation procedure, (4) output the generated
coordinates to the system bus for transfer to the
picture memory of the display processor, and (5)
reset and count. Three of the five functions
require very little in the way of special hardware
because they are only operations that transfer
data to/from the cellular processor's memory
from/to the system bus. The only special
requirement for this data transfer operation is
that it be capable of addressing each cellular
processor. When collecting grid data from the
system bus, the cellular processor needs to be
able to ignore all grid data not specifically
addressed for it. The cellular processor also
needs to be able to ignore output commands on the
system bus. This implies that each cellular
processor has knowledge of which 2 x 2 subgrid it
represents and, further, that the external system
bus control line indicates, at some time, which
cellular processor is being addressed. The
external address presentation to the cellular
processor is containable within 15 bits, given the
30 x 30 x 30 limitation discussed earlier. This
external address is placed into the External Data
Register of each cellular processor upon the
initiation of each grid data delivery cycle and
each coordinate retrieval cycle. The actual data
delivery/retrieval then follows the address
indication. The next question is how does the
cellular processor receive and maintain its copy
of this address. There are two possibilities.

140

The first possibility is to have the address
of each cellular processor permanently contained
within the cellular processor in a small ROM.
This would require a slightly different VLSI
layout for each cellular processor. This is
clearly unsuitable because we can benefit the most
from VLSI if we strive towards "regularity."
Regularity, at least for VLSI, means many copies
of the same thing. The best mechanism, then, for
assigning addresses to the cellular processors is
one in which the layout for each cellular
processor is identical.

The second possibility for cellular processor
address assignment is that of a chain of "count
enabling" wires, one input to and one output from
each cellular processor. With this wire, each
processor is sequentially addressed in the
following fashion: simultaneous to the initiation
of the external reset function, the first cellular
processor in the chain has its Enable In line set
high. The reset/enable combination causes the
cellular processor to increment the address held
in the External Data register by one. This
address is then returned to the system bus at the
same time that the Count Enable Out line is set
high. This enables the neighboring cellular
processor, which follows the same procedure. The
end result is that each cellular processor has a
unique "address" which can be used, through
judicious upper level control, to deliver~retrieve
data on an individual cellular processor basis.
In addition to meeting the regularity criterion
mentioned above, this mechanism is one that can
easily travel across the multiple chip boundaries
necessary in the composition of the contouring
processor.

Having shown that four of the five functions
the cellular processor performs on external
command can be accomplished with a minimum of
special hardware, we now examine the requirements
of the final function. The hardware requirements
for this function, that of executing the
contouring and coordinate transformation
procedures, are not substantial, although the
execution sequence for this hardware is not
trivial. The cellular processor needs an ALU
capable of integer multiplication, division,

addition, and subtraction. From the description
of the algorithm it appears as if floating point
arithmetic were required. The contouring
procedure, however, was originally implemented
using entirely integer arithmetic and should
therefore present no problem for such a limited
function ALU. Coordinate transformations are
likewise capable of simulation via integer
arithmetic.

Another piece of hardware important when
considering the contouring~transformation function
is that of memory. Figure 4 shows a 128 word (16
bit) RAM that should suffice for all contouring
tree construction, grid collection, coordinate
generation, and coordinate transformation
operations expected in the cellular processor.
There are other pieces of hardware that take up
space on the VLSI chip, such as the ALU input and
output registers, the ALU and Cell flags, and the
previously mentioned External Data register. But

the hardware that takes up the most space is that
concerned with control. The control section is
made up of the External Instruction register, the
Microprogrsm counter logic, the Decoder, and the
Microcode Memory. The amount of chip space taken
up by the External Instruction register, the
Microprogram counter logic, and the Decoder is not
large in comparison to that taken up by the
Microcode memory. The Microcode memory holds the
sequence of hardware execution instructions for
the 2 x 2 contouring tree creation, coordinate
generation, and coordinate transformation
procedures. The Microcode memory also holds the
instruction sequences for the other externally
initiated functions previously mentioned. Using
the figures from the architectural modeling
section, it is estimated that approximately 4096
16 bit words are needed to accommodate the
operations necessary for all of the functions of
the cellular processor. Making comparisons on a
byte-by-byte basis with devices such as the
MC68000 [9] or the available 64K RAMs, we estimate
from two to four cellular processors on a single
chip.

Without actually completing the VLSI design,
there is no adequate way to estimate the amount of
space it requires on a VLSI chip other than to
roughly compare the hardware requirements with
already existing VLSI devices. The presentation
of a complete VLSI design, however, is not within
the scope of this paper. We have been concerned
here to examine the extent to which the presented
contour display generation algorithm can benefit
from the highly concurrent capabilities suggested
by the VLSI technology.

4.0 CONCLUSION

This paper has presented an algorithm whose
VLSI implementation can greatly increase the
animation capability of current vector display
systems. The algorithm for contour display
generation was selected for examination because of
its frequent use in computer graphics programs.
Two applications have been introduced in which the
need for a real-time contour display generation
capability is evident. For such applications we
have discussed the development of a contouring
algorithm that can use the highly parallel
computation capability available in the VLSI
technology. In connection with this algorithm, we
have examined the architectural framework for a
contouring processor that performs the contouring
algorithm. This discussion serves to highlight
features of the contouring algorithm that are not
easily recognized from its serial description.
The architectural requirements of the contouring
processor have been formulated with respect to the
hardware necessary for its VLSI implementation. A
question of the feasibility of using multiple
cellular processors on a single VLSI chip has also
been addressed. We have concluded from our
research that the number of cellular processors
per chip, though low, is sufficiently large to
warrant further development.

141

5.0 REFERENCES

I. Aho, Alfred V., Hopcroft, John E., and Ullman,
Jeffrey D. The Design and Analysis of Computer
Al~orithms. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1974, Chapters
I-5.

2. Barry, C.D. and Sucher, J. A. "Interactive
Real-Time Contouring of Density Maps," ACA Winter
Meeting, Honolulu, March 1979, Poster Session.

3. Clark, James H. "A System Design Revolution,"
Computer Graphics: A Quarterl 7 Report of
SIGGRAPH-ACM, Volume 15,--Number 3 (August 1981~V,
pp. 79-80.

4. Dammkoehler, R.A. Personal communication.
October 1981.

5. Mead, Carver and Conway, Lynn, Introduction to
VLSI Systems, Reading, Massachusetts:
Addison-Wesley Publishing Company, 1980, Chapter
8.

6. Myers, Ware "Algorithms, Ergonomics, and Solid
Modeling Highlight SIGGRAPH '81," Computer, Volume
14, Number 10 (October 1981), pp. 126-127.

7. Newman, William H. and Sproull, Robert F.
Principles of Interactive Computer Graphics.
Second Edition. New York: McGraw-Hill, 1979,
Chapter I.

8. Sproull, Robert "Custom VLSI Chips for
Graphics," Computer Graphics: A Quarterly Report
of SIGGRAPH-ACM, Volume 15, Number 3 (~
1981), p. 79.

9. Stritter, Edward and Gunter, Tom "A
Microprocessor Architecture for a Changing World:
The Motorola 68000," Computer, Vol. 12, No. 2
(February 1979).

10. Wright, Thomas and Humbrecht, John "ISOSRF --
An Algorithm for Plotting Iso-Valued Surfaces of a
Function of Three Variables," Computer Graphics:

Quarterly Report of SIGGRAPH-ACM, Volume 13,
Number 2 (August 1979), pp. 182-189.

11. Zyda, Michael J. "Multiprocessor
Considerations in the Design of a Real-Time
Contour Display Generator," Technical Memorandum
42, St. Louis: Department of Computer Science,
Washington University, October 1981.

12. Zyda, Michael J. "Joystick Driven Display
Rotation and Control Console Management,"
Technical Memorandum 24, St. Louis: Department
of Computer Science, Washington University,
November 1980.

Figure 1

(i, 3)

(1,2) 70

(l,l)

0 30

20 50
(i,i) (2,1)

60

~0 Contour Levels 50 + i00

9O
(3,1)

142

Figure 2

Sample Contouring Tree for 2 x 2 Subgrid

70 150

l/
20 50

50

150
i00 ~

[]
20

Order # Enumeration List Next Node List Edge Under
Consideration

i i Done root alone

2 2 3 i - 2

3 5 3 2 - 5

4 3 4 I- 3

5 4 Done i - 4

6 6 Done 4 - 6

143

Figure 3

All Possible Configurations of the Contouring Tree
Generated for a 2 x 2 Subgrid

J>b

144

Figure 4
Schematic View of 2 x 2 Cellular Processor

I (128~wwds)
16 blts/wd [ALU

F
l~tr Oa~a ~eg I

Control Inputs code
Memory

(4096, 16 bitwd)

I
ALU- IN@

A, i l ecoer

r I

~ 1 ~Logic "
ALU- IN 1 I

Cell Bus

I,
IExt. Instr. Reg. 1

I System Bus

Count Enable
In/Out

145

o =

Figure 5

2 x 2 Cellular Processor Interconnection Scheme

t •

I
1
I

. . . . I

I
L _

. . . . I I
I + ,

i

J i--

"T I

i •

• I '
I .i

-i

I i
I
i __J

I (i,i+2) (,i+2)

I
I l(l,i+l) (2, i+l)

I L ' I I ,I ,I
L _ _ _ I I .1_ _ .

I

1 - - - - " 1

+

l (l,i+l) (i,i+Z) (l,i) (2,~)

I I" i , ÷
I j

T -I

<2,1+i>?,~i>.
(2,i) (3,i)

I

I

I J

"i F

__

J

No'te: Each cellular processor has a copy of the
4 grid points and grid point coordinates
it represents. The cellular processor is
responsible for generating the coordinates
and drawing instructions for its assigned
2 x 2 subgrid on each receipt of a new
contour level.

146

