
Helmuth Trefftz
htrefftz@sigma.eafit.edu.co
Universidad EAFIT
Computer Science Department
P.O. Box 3300
Medellin, Colombia

Ivan Marsic
marsic@caip.rutgers.edu
Rutgers University
Department of Electrical and
Computer
Engineering and the CAIP Center
96 Frelinghuysen Road
Piscataway, NJ 08854

Michael Zyda
zyda@movesinstitute.org
Naval Postgraduate School
The MOVES Institute
833 Dyer Road, Spanagel Hall 252
Code MOVES/mjz
Monterey, CA 93943-5118

Presence, Vol. 12, No. 1, February 2003, 38–52

© 2003 by the Massachusetts Institute of Technology

Handling Heterogeneity in
Networked Virtual Environments

Abstract

The availability of inexpensive and powerful graphics cards as well as fast Internet
connections make networked virtual environments viable for millions of users and
many new applications. It is therefore necessary to cope with the growing hetero-
geneity that arises from differences in computing power, network speed, and users’
preferences. This paper describes an architecture that accommodates the heteroge-
neity while allowing a manager to define systemwide policies. One of the main ob-
jectives of our scheme is to allow slower nodes to participate in the session by pre-
venting fast nodes from flooding slow nodes with too many messages. Policies and
users’ preferences can be expressed as simple linear equations forming a model
that describes the system as a whole as well as its individual components. When
solutions to this model are mapped back to the problem domain, viable solutions
that accommodate heterogeneity and system policies are obtained. For example,
slower nodes may receive less frequent updates than faster ones for one or several
information streams. The results of our experiments with a proof-of-concept sys-
tem are described.

1 Introduction

Powerful computer graphics cards are becoming less expensive, and most
new computers come equipped with cards that are capable of displaying com-
plex 3D scenes at interactive rates. Similarly, high-speed connections to the
Internet are becoming increasingly common. These developments allow for
the potential widespread use of distributed virtual environments or networked
virtual environments (NVEs) (Singhal & Zyda, 1999).

In a controlled environment, the NVE designer can determine, a priori, the
type of computers and network connections that will be involved in the sys-
tem. The NVE can then be engineered to perform well within the given con-
straints. But, as NVEs find their ways to real-world applications, the environ-
ments cannot be so easily controlled. New computers are often mixed with
older machines, and significant heterogeneity naturally arises, as illustrated in
figure 1. Heterogeneity arises in two different forms:

● nodes with a wide variety of computing resources (processor speeds, avail-
able memories, and graphic cards), and

● varying network connection type (from modern lines to local area net-
works).

The inequity of the machines in an NVE session makes the machines with
lesser resources vulnerable to large amounts of information generated by high-

38 PRESENCE: VOLUME 12, NUMBER 1

end machines. For example, in a scientific visualization
session, lower-end machines can become saturated by
messages from fast machines. This results in degraded
user experience, or the machine simply stops responding
to the local user’s input. It is necessary to protect the
less capable machines from being overwhelmed.

In addition, designers of NVEs need to be able to
determine certain systemwide constraints to guarantee
productive use of the system. Examples of these policies
include the maximum number of concurrent users, the
minimum framerate that each node must be able to
maintain, the maximum rate of messages that can be
handled by the system, and so forth.

On one hand, the design must support the heteroge-
neity that arises from the diverse participating nodes and
from individual user’s preferences. On the other hand,
the design should provide the system administrator with
the ability to dictate and enforce a certain homogeneity
of function.

In this paper, we formulate the problem of satisfying
the user and global constraints with heterogeneous re-
sources as an optimization problem. The available re-
sources determine the performance space of each com-
puting node. The individual user preferences and global

system constraints are expressed as linear equations and
inequalities. This set of equations and inequalities forms
a mathematical model that captures system resources,
user preferences, and global constraints. Valid solutions
of the model are isomorphic with states of the NVE in
which individual user’s preferences are satisfied as
closely as possible, given the restrictions imposed by the
resources and the constraints defined by the NVE ad-
ministrator. The algorithm produces the solution that
maximizes the objective function of the model. We also
propose a client-server architecture that we call switch-
board architecture (SA) as a way to implement the
model.

The rest of this paper is organized as follows. Section
2 describes the generic form of the mathematical model
as well as the corresponding switchboard architecture.
Section 3 and 4 describe the experimental setup to eval-
uate the model and the results we have obtained with a
shared visualization application. Section 5 describes re-
lated work, and section 6 presents the conclusions and
future work.

2 The Switchboard Architecture

We assume a client-server architecture, with one
or more servers supporting collaboration of multiple
clients. Some shared data in a virtual environment may
originate or be cached locally whereas other may origi-
nate from remote and change with time. The data that
originates locally may need to be distributed to other
participants. The clients have local computing resources
and share some global resources, such as server(s) and
network bandwidth, which support collaboration. Our
objective is to satisfy the user and global constraints
with heterogeneous resources, and we formulate this as
an optimization problem. We first consider individual
clients as data consumers that need to visualize the data
with the best quality under the given constraints. Then
we consider the clients additionally as data producers
that need to update the other participants by complying
with the constraints on global resources.

Figure 1. According to Moore’s Law, computer performance grows

exponentially. So does heterogeneity between the generations, as the

curve shows.

Trefftz et al. 39

2.1 Mathematical Model

Different qualities or dimensions of shared data in
a virtual environment represent variables, examples of
which include the update rate for time-dependent data
(video framerate), the visualization fidelity (such as
wireframe or shaded), and the sound fidelity (such as
mono, stereo, or 3D). To achieve a certain value of a
quality variable requires certain amounts of computing
power dedicated to processing the related data. The
qualities that are specified externally to the system as
requirements are independent variables. In addition, we
have system performance variables, such as visualization
framerate or number of dropped messages from remote
nodes. Performance variables are determined by system
resources and take values depending on the indepen-
dent variables; they are thus dependent variables.

We assume that the variables take on discrete values
within a certain range, determined by the computing
resources of the nodes taking part in a session. For each
node, the Cartesian product of the possible values of the
different variables forms an n-dimensional performance
space, with n being the number of variables.

Our approach works by controlling the independent
variables and letting the operating system (OS) allocate
all the remaining resources to the dependent variables.
The amount of resources allocated to the dependent
variables depends on the total amount of resources at
the node, such as CPU speed, specialized processors,
and network bandwidth. The available physical re-
sources are also affected by the choice of OS, program-
ming language, and so on. The (nonlinear) relationship
between the variables at a node k is called the perfor-
mance mapping:

Ej � fkj �I1,I2,. . .,Inj�, j � 1,. . .,nE , (1)

where nI is the total number of independent variables
and nE is the total number of dependent variables, nI �

nE � n. The mappings fkj are node specific, and the
node resource characteristics are embedded in the map-
pings. They convey the fact that dependent and inde-
pendent variables compete for the same resources. The
performance mapping is determined experimentally by a

set of benchmarks that are run at each participating
node before starting a collaborative session.

Global policies can be expressed as inequalities over
certain independent and/or dependent variables. An
example of a global policy might be “Each participating
system must be able to display at least two video images
per second.”

An individual’s preferences can be expressed as a lin-
ear combination of the variables, with the normalized
coefficients determining their relative importance. The
normalization must be done carefully, taking into ac-
count the ranges of the corresponding variables.

Global policies partition the performance space into
valid subspaces. The intersection of these valid sub-
spaces is, in turn, either a finite or an infinite n-
dimensional space. To enforce the global policies, vari-
ables at each node are limited to taking only values that
lie inside the intersection of valid subspaces. The inter-
section of valid subspaces can be empty, for instance,
when a node is not able to perform at the minimum
levels defined by the administrator or the user’s prefer-
ences cannot be met with current resources. In this case,
the user may try to restate his or her preferences or the
node cannot be admitted to the session.

The linear combination of variables is the objective
function, which measures the user satisfaction, since its
maximum best meets the user preferences under the
given constraints. The optimization problem at a node k
is as follows.

Max �
i�1

nI �Wki
I � Îi� � �

j�1

nE �Wkj
E � Êj� , (2)

subject to:

Ii � Ki , i � 1,. . .,nI (3)

Ej � Lj , j � 1,. . .,nE (4)

Ii � �i , i � 1,. . .,nj , (5)

where Îi is the normalized ith independent variable,
Êj is the normalized jth dependent variable,
Wki

I , Wkj
E are the weights representing the relative impor-

tance of the associated variables according to the user
k preferences,

40 PRESENCE: VOLUME 12, NUMBER 1

Ki and Lj are the minimum values that the ith indepen-
dent variable and jth dependent variable can assume
across all the clients, respectively, and

�i are constraints that may be imposed on the upper
values of some independent variables Ii as will be ex-
plained in a moment.

The model of equation (2) through (5) is optimized
independently at each client site. The objective function
(2) incorporates the kth user’s preferences and the local
resources through the relationship (1). Global con-
straints on variable values (equation (3) through (5))
delimit the valid search space. The objective function is
evaluated at each point of the valid search space looking
for a maximum (exhaustive search). The optimum val-
ues of the dependent variables are assumed to be the
results of the performance mapping at the point that
maximizes the objective function. The values of the
variables at the point at which the objective function is
maximized correspond to the fidelity level that the cli-
ent application must set for independent variables to
best adapt to the user’s preferences while complying
with the global policies.

The model is similar in form to a linear programming
problem, but the model cannot be handled with linear
programming techniques because the variables do not
take continuous values and because the dependent vari-
ables are not linear with respect to the independent vari-
ables. However, given the small size of the search space,
each client can independently apply an exhaustive search
and evaluate the objective function at each valid point
to quickly find the maximum. Problems involving more
variables or fidelity levels may use a different search al-
gorithm to avoid an exhaustive search. Each optimiza-
tion is performed locally, and this is what makes the
model scalable to large NVEs.

The model so far considers each client independently
of others as a data consumer, which selects the most-
suitable fidelity levels from those offered to meet the
constraints and maximize the user satisfaction. We now
consider the client additionally as a data producer that
needs to update the others by using the shared re-
sources.

At present, the only dimension of the update mes-

sages that is considered is the message rate. Other di-
mensions, such as message data fidelity or different
communication protocols, are not currently considered.
Let Ji denote the independent variables that represent
the update rates for different shared data types, and nJ is
the total number of such variables. Global constraints
limiting the maximum rate of messages the server can
process have the following form:

�
k�1

N Ji�k� � Mi , i � 1,. . .,nJ , (6)

where N is the number of participants in the NVE,
Ji(k) is the rate of type i messages generated by client k,

and
Mi is the maximum message rate of type i that the server

can process.

The upper limits �i in equation (5) can be derived from
Mi and one way of doing this is presented as follows.

Our approach works in two phases:

● Offline—Prior to actively joining the session, each
node runs a series of tests to determine the perfor-
mance mappings (equation 1). During the tests, the
node is set to work under the Cartesian product of
the independent variables, and the values of the
dependent variables are measured and recorded.
Thus, the search space is predetermined for each
node. It is assumed that every node’s behavior will
remain relatively constant.

● Online—During the collaborative session, the sys-
tem needs to adapt to changes that may occur. For
instance, the user might change her preferences,
thereby changing the relative importance of the
variables. A new search for the maximum value in-
side the local valid search space has to be con-
ducted. Or, a new user might join the session, add-
ing to the number of messages the server has to
process. Because the behavior of the client can be
erratic, the frequency of dynamic adaptation must
be constrained. Otherwise, the optimization process
might take too much computing power and affect
the collaborative experience. In our current imple-
mentation, 10 sec. must elapse between the consec-
utive runs of the adaptation algorithm.

Trefftz et al. 41

2.2 The Switchboard Architecture

The model does not impose a particular imple-
mentation. Here we present an architecture, called
switchboard architecture (SA), as a potential implemen-
tation of the model. (The architecture is shown in figure
2). Each row of the switchboard handles an indepen-
dent variable in the system. Updates for a specific vari-
able from all the participating clients are received in a
receiving plug, and the server distributes those updates
into the switchboard area. The elements of the switch-
board area represent the transmitting plugs. They corre-
spond to different fidelities of the shared information
according to client capabilities and user preferences.
(Note that the switchboard area is not necessarily rect-
angular because different variables may have different
numbers of fidelity levels.) Each transmitting plug has
an associated timer controlling its transmission period.
When this timer expires, all the updates stored in the
plug’s cache are transmitted to the subscribed clients (if
any). To reduce traffic, each transmitting plug may be
implemented as a multicast group. Also, instead of each
plug in the same row having different rates (simulcast),
we could implement layered multicast (Vickers, Albu-
querque, & Suda, 2000). To improve scalability when
large number of multicast groups is required, multicast
group clustering can be employed (Riabov, Liu, Wolf,
Yu, & Zhang, 2002).

The reason for choosing a client-server architecture is
that the optimization model includes monitoring global
resources. It is possible to collect this information in a
peer-to-peer system, but this would imply either adding
an agent at each node or adding a specialized node to
monitor the activity in the system. We chose a client-
server architecture that gives us the possibility of gather-
ing all the necessary statistics at a centralized point. Our
focus is on small-scale collaboration systems (tens of
participants), for which client heterogeneity is a greater
problem than server performance. The solution can be
generalized to larger collaborative systems by using dif-
ferent servers for different variables or even multiple
servers, each for different fidelity of a variable. This re-
quires further investigation to assess the scalability of
the solution.

The switchboard architecture is middleware that man-
ages the use of heterogeneous resources under possibly
conflicting user interests and global policies. The char-
acteristic of this architecture is that the server acts as a
buffer, providing slower nodes with a subsample of mes-
sages generated by faster nodes in a controlled manner
that is determined by the client node’s resources and
user preferences. The apparent jumpiness of the objects
that end up being updated less frequently can be com-
pensated, to an extent, with dead reckoning. We pro-
vide more details and describe our particular implemen-
tation in the following section.

3 Experimental Setup

As a proof of concept for the architecture and the
model, a shared visualization system was built using
Java3D (Sowizral, Rushforth, & Deering, 1997). Figure
3 shows a screenshot of the client interface. Three users
meet virtually to discuss over a shared visualization data
set. Users utilize telepointers (3D arrows) as means to
point inside the virtual world, and small video windows
are provided to allow users to see the faces of all partici-
pants. The sliders allow the user to set the relevance
vector that expresses the user’s preferences, used as
weights W in equation (2). Only one user can manipu-
late the visualized object at a given time. The applica-

Figure 2. The switchboard message distribution architecture. Each

plug corresponds to a specific instance of an independent variable

and its representation fidelity.

42 PRESENCE: VOLUME 12, NUMBER 1

tion directly handles all the media related to the vari-
ables to be able to optimize the objective function. We
could use third-party applications, such as those for
video conferencing, if they provide APIs to control the
level of fidelity and the statistics on the number of lost
messages.

The administrator can determine the global con-
straints for each modality involved in the session. Global
constraints are embodied in the following parameters.

● Minimum fidelity that each client node must be
able to maintain, (Ki and Lj in equation (3) and
(4)), such as a minimum framerate that each client
must be able to sustain.

● Maximum acceptable percentage of dropped mes-
sages. For instance, it is not acceptable for any cli-
ent to drop more than 50% of video messages.
(Note that the messages may be lost in transmission

and inside the application when the machine cannot
keep up with the incoming flow of messages.)

● Maximum message rates on the server for indepen-
dent variables, (Mi in equation (6)), such as the
maximum number of video messages the server can
receive and retransmit per second.

The first two constraints are enforced at each client.
Whenever the client node is not able to maintain one of
them, either because the network has become congested
or because there is a new process running on the node,
the optimizer module is invoked to search for a new
solution that will allow the node to comply with the
global constraints.

The last constraint is enforced by a combination of
actions taking place at the server and at the client. The
aggregate number of requested messages by each client
cannot exceed the server capacity, that is, the total num-
ber of messages that the server can process.

We define the global upper bound, �i, as the maxi-
mum number of messages that a client, k, can request so
that the aggregate requests do not exceed the server
capacity, Mi. (See equation (5) and (6).) This constraint
may be violated as a result of changes in the system,
such as when a new user joins the session. In this case,
the server recomputes and broadcasts a new global up-
per bound �i on the resolution for that specific modal-
ity that each client node can request. The new global
upper bound is computed so that the aggregate resolu-
tion requested by all the clients does not exceed the
server capacity. Client nodes that are subscribed to reso-
lutions higher than the new global upper bound then
need to lower their requests. Usually, nodes subscribed
to lower resolutions do not need to change their sub-
scriptions. See figure 4 for an illustration.

3.1 Variables

The variables (modalities) involved in the NVE
system are as follows.

● T: telepointers update rate
● O: visualization data set update rate
● V: video update rate
● G: graphical representation fidelity

Figure 3. Screenshot of the client. Telepointers are represented as

3D arrows. The sliders allow the user to set the relevance vector of

the variables.

Trefftz et al. 43

● F: scene visualization framerate
● Di: percentage of dropped messages for an indepen-

dent variable, Ji

Variables T, O, and V can take the following values: 0
(no updates), 1, 2, 10, or 20 updates per second. Vari-
able G can take value 0 (wireframe representation) or 1
(Phong shaded). Another use of variable G could be
different levels of detail of the visualization data set.
Higher levels of detail correspond to larger values of G.
Variables T, O, V, and G are independent variables, and
variables F and Di are the dependent variables. The val-
ues F can take are the result of the performance map-
ping, and they vary considerably across machines.

The sliders shown in figure 3 provide users with a way
to assign relative weight to the variables. The values of
the sliders at client k are normalized to obtain the coef-
ficients for the objective function as follows.

Wki �
Ski

�
j�1

n Skj

, i � 1,. . .,n , (7)

where Ski are the values of the sliders at client k, be-
tween 0 and 100, and Wki are the values of the coeffi-
cients used in the objective function of client k (equa-
tion (2)).

Note that the selection of the variables for the model
is specific to the application. For instance, in a battle-
field simulation, one variable might be assigned to slow-
moving vehicles, such as tanks and another to fast-
moving vehicles, such as airplanes. Users of one type of
vehicle will probably be more interested in (and will
assign higher priority to) messages originating from ve-
hicles of similar type. Another example is one in which
video streams from different users are assigned different
priorities, in which case we will have different variables
for each video stream.

3.2 Scenario for Applying the Model

Here we describe a typical scenario for employing
our model in a collaborative session. Before the session
starts, we need to empirically determine the perfor-
mance mappings for the dependent variables (equation
(1)). We run a benchmark program on each node to
create the data for its particular performance mapping.
The node subscribes sequentially to every point in the
Cartesian product of the dependent variables for a cer-
tain period (long enough to allow the behavior of the
dependent variables to stabilize), which should be deter-
mined empirically. In our case, the main dependent
variable is framerate, the required time is 10 sec., and
there is a 10 sec. pause between the successive measure-
ments to let the messages from the previous measure-
ment clear. The dimension of the search space in our
example is 250 (T � O � V � G � 5 � 5 �

5 � 2, where T is the range of different fidelities that
the telepointer data type can assume, and so on). Dur-
ing the benchmark, the server generates fake updates for
telepointers, object movement, and video. Each mes-
sage is marked with a sequence number, to detect lost
messages. At the client, an entry with the current time
in milliseconds is added to a vector every time a frame is
displayed. This allows the computation of the average
framerate for the particular search space vertex. Addi-
tionally, for each message that is processed, an entry is
added to a vector with the message sequence number to
count the number of lost messages at each search space
vertex. When the benchmark finishes, the vectors are
saved to disk and summarized in a performance map-

Figure 4. The graph on the left represents the system constraint set

for users A and B and a global upper bound �1 � 8. The figure on

the right describes the changes that take place when user C joins the

session requesting three messages/unit of time. The server capacity is

Mi � 10.

44 PRESENCE: VOLUME 12, NUMBER 1

ping for the particular node. Next, the collaborative ses-
sion starts.

Figure 5 shows the components of the proof-of-con-
cept system. The lower portion describes the compo-
nents involved in the exchange of actual data shared in
the collaborative session. In our case this includes the
telepointer, object, and video messages (audio was not
used in this experiment). We use an unreliable protocol
(UDP) to exchange data between the client and the
server. As mentioned earlier, each transmitting plug is
mapped to a multicast group.

The upper portion of the figure describes the exchange
of metadata, that is, information on how the system runs.
The two types of metadata messages are messages in which
the client specifies to which multicast groups it wishes to
subscribe, and messages in which the server broadcasts
updates on the systemwide constraints. Due to the impor-

tance and low frequency of metadata messages, we use a
reliable protocol (TCP) for their transmission.

When the session starts, the optimizer module in the
client first finds the solution that maximizes the objec-
tive function that corresponds to all the sliders at 50
(the sliders can take values between 1 and 100). The
client then subscribes to the server to the appropriate
plugs and sets the fidelity of the visualization data set
according to the current solution.

The optimizer is invoked in the following cases.

● when the client establishes a connection to the
server for the first time;

● when the user updates the relevance vector by ad-
justing the sliders in her interface;

● when the administrator changes the values of global
or local constraints;

Figure 5. Components of the switchboard architecture. The upper portion of the figure describes the

flow of control data that control the system operation; the lower portion describes the flow of task data

exchanged in the collaborative session. The variables are defined in equation (1) through (6). TP �

transmitting plug, RP � receiving plug, R � receiver, and T � transmitter as described in figure 2.

Trefftz et al. 45

● when any condition in the system implies changing
the global constraints (for example, a new user joins
the session and requests a message rate that causes
the server capacity for that variable to be exceeded);
and

● when the local monitor of dependent variables is
triggered to update the performance conditions.
(Currently, the system monitors the framerate and
the drop rate for each modality. This way, optimi-
zation decisions are not made based on the bench-
marks only, but also on dynamic performance data
collected by the local monitor.)

In each of these cases, the client adjusts the model and
searches for a new solution. The search involves evaluat-
ing the objective function at the valid vertices (250 or
less because some of the search vertices are marked as
invalid). As a result, it might be necessary to unsub-
scribe from a particular plug (associated with a fidelity
level of a variable) and subscribe to a different one.

Subscription and unsubscriptions from the multicast
groups are handled by the subscription manager mod-
ules, both at the server and the client. To comply with
the global upper bounds, it is necessary to limit the
maximum number of messages that a client generates
per unit of time. If a client is subscribed to receive a par-
ticular frequency of updates for a specific variable, the
same frequency is the upper limit to the number of up-
dates that the client is allowed to generate. To enforce
this, we cache the messages at the clients and thus limit
the source rate. Note the caches and the corresponding
timers, both at the client and at the server. This is nec-
essary to enforce equations such as equation (6) and
allows the system administrator to specify upper limits
on the number of messages the server will need to pro-
cess for each variable.

The exchange of actual collaborative data starts with
the user input, which is reflected immediately in the
local scene. The update message is stored in a local
cache and sent to the server by the transmitting module
(T) when the associated timer is triggered. It is received
by the server in the receiving plug (RP), which stores a
copy of it in a cache of all the transmitting plugs (TPs)
for that modality. Previous messages of the same type

originating in the same client are overwritten in the
caches. When a timer associated with a plug expires, the
message is multicast to the clients subscribed at that TP.
Remote updates arrive at the client in the receiving
module (R) and update the scene immediately.

The caching procedure resembles the leaky bucket
algorithm used for traffic shaping in data networks
(Tanenbaum, 2003).

3.3 Adaptive Behavior

Unless the application runs in a completely con-
trolled environment, the conditions of the network and
computer resources during the benchmarks and during
the collaborative session will not be the same. More (or
less) bandwidth will be available depending on the con-
gestion of the network. Additionally, some unrelated
processes might be running in the client computer dur-
ing the collaborative session.

Our system has two ways of monitoring network and
system activity:

● The visualization framerate is continuously moni-
tored at the client machine. If another process is
running on the client machine and affecting the
performance, this will be reflected in the framerate.

● Each transmitting plug maintains a sequence num-
ber that is incremented whenever a message is sent
to the network. The sequence number is included
in the messages, thus allowing the clients to detect
lost packets.

The monitor of dependent variables module at the
client keeps track of the framerate and the percentage of
dropped messages for each modality. Whenever the op-
timizer module is invoked, the monitor provides the
current values for framerates and drop rates. The opti-
mizer module uses these data to extrapolate the values
of the dependent variables (framerate and drop rates).
Each time this extrapolation takes place, only the most
recent data provided by the monitor and the data from
the benchmarks are used. In this way, a transient change
in performance or network congestion does not affect
future decisions. As result of the optimization process,
the client might need to switch between multicast

46 PRESENCE: VOLUME 12, NUMBER 1

groups, which is a time-consuming operation. This lim-
its the frequency of optimizations during the session.

4 Results

Table 1 gives the characteristics of the computers
used in the experiments. The visualization data set we
used for the experiments presented here is a representa-
tion of the human digestive system and consists of
27,202 vertices.

The complete performance mapping cannot be
graphed because it involves five different variables. A
plot of the visualization frame rate (F) versus video
frame rate (V) is shown for Bachue and Bochica in fig-
ure 6. (The data for Morlak are not shown because the

number of messages dropped as the video frequency
increases is too high, making the data nonrepresenta-
tive.) Note the difference in the visualization framerate
between the computers. Note also that, as the frequency
of video messages increases, the framerate decreases no-
ticeably. Video messages have a larger impact on the
performance than other messages because they are
much larger in size and require more processing.

The solutions found by the model are sensible and
consistent with the data captured in the performance
mapping. For instance, when the maximum priority is
assigned to visualization framerate, the system lowers
the graphics quality of the model to wireframe and re-
duces the frequency of the video updates, which nega-
tively affect the framerate, as shown in figure 6.

The number of lost messages is an important parame-

Table 1. Computers used in the experiments

Processor Processor Speed Memory Graphics Card

Bachue Pentium 4 1400 MHz 1 GB GeForce2-32 MB
Bochica Dual pent III 730 MHz 1 GB FireGL 1-32 MB
Morlak Pentium II 500 MHz 256 MB Intense3D-16 MB

Figure 6. Effect of video updates on the framerate in Bochica and Bachue.

Trefftz et al. 47

ter for measuring degradation of the system. Slower
nodes drop more messages than do faster ones under
the same load. Again, as the number of messages for a
specific variable increases past a certain threshold, so
does the number of lost messages.

Figure 7 shows how the number of lost video mes-
sages grows for Bochica and for Morlak. (The results for
Bachue are very similar to those of Bochica.) Note that
Bochica is capable of handling video messages without
dropping any until the frequency of video frames ex-
ceeds ten per second. In Morlak, some percentage of
messages is always dropped. Notice also the difference
in scale: Bochica does not drop more than 6% of video
messages, whereas Morlak drops up to 80%.

We have incorporated the number of dropped mes-
sages during the benchmarks into the algorithm that
finds the solution. The points in the Cartesian product
of variables that are found to cause the number of
dropped messages to exceed the thresholds set by the
administrator cannot be chosen as solutions. Those
points are marked as invalid points. If the number of
dropped messages is not considered, these points appear
as good candidates for the solution because the frame-

rate increases as messages are dropped and need not be
processed. In real-life applications, different thresholds
could be applied to different variables, according to the
user’s perception and/or relative importance.

Because the mathematical model is based on actual
data collected through the benchmarks, the solutions
found for the same set of slider values (directly related
to the objective function coefficients) vary considerably
across nodes. Table 2 shows the solutions found at the
different nodes for the same set of user’s slider values.
The user’s sliders were set to T � 4, O � 4, V � 4, G �

Table 2. Solutions for update rates of different variables
found at the different nodes for the same set of user sliders’
values

Telepointer Object Video Graphics

Bachue 20 20 1 1
Bochica 20 20 2 1
Morlak 1 2 1 1

Figure 7. Percentage of video messages dropped depending on the number of video and telepointer

messages per second (in Morlak and Bochica).

48 PRESENCE: VOLUME 12, NUMBER 1

51, and F � 100. These values assign the highest im-
portance to framerate, some importance to the graphical
representation of the model, and very little to the re-
mote events.

Note that in both Bochica and Bachue (the faster ma-
chines) updates from the telepointers and objects can
still be received at maximum speed without affecting the
frame rate. Morlak, on the other hand, has to reduce
the frequency of all remote updates. Note also that all
nodes, fast and slow, need to reduce the frequency of
video updates, but Bochica, having two processors, han-
dles video messages slightly better than Bachue, which
has a single faster processor. In the current implementa-
tion, we do not consider available bandwidth, on which
video messages have a large effect. Nevertheless, more-
frequent video messages affect the overall display frame-
rate as well as the percentage of dropped messages; this
is how the frequency of video updates is factored into
the current model.

To test the improvement in framerate when utilizing
the switchboard architecture, a node was set to simulate
twenty updates per second for each variable (telepoint-
ers, object, and video). Data were collected about the
visualization framerate at each node with and without
the switchboard architecture, and the results are shown
in figure 8.

The largest improvement is naturally obtained for the
slowest machine, which benefits the most from the buff-

ering effect of the server. The visualization framerate
increases found were as follows: Bachue: 33%, Bochica
10%, and Morlak 366%.

5 Related Work

One of the most desirable conditions in an NVE is
to provide all participants with a consistent and up-to-
date version of the shared space. But, in the presence of
imperfect communication channels, the time to replicate
the shared state among participants is not zero, giving
rise to the consistency-throughput tradeoff (“It is im-
possible to allow dynamic shared state to change fre-
quently and guarantee that all hosts simultaneously ac-
cess identical versions of that state,” (Singhal & Zyda,
1999, p. 102).) A considerable amount of research in
NVEs has been dedicated to alleviating the limitations
resulting from this tradeoff. In the following para-
graphs, we summarize some of the approaches that have
been explored and are pertinent to our research. We
first review the approaches based on homogeneous sys-
tems and then review related work in heterogeneous
systems and explain how the switchboard architecture
compares to or fits into those approaches.

One of the first issues that the designer of a NVE
must consider is the architecture of the system. The ar-
chitecture has a significant effect on the performance,
reliability, and ease of use of the system. Many different
architectures have been used in the existing NVEs,
ranging from highly centralized to highly distributed.
SIMNET (Calvin et al., 1993), a distributed military
simulation system for use on Ethernet LANs, works on
replicated virtual world databases that are homoge-
neous. The system offers a predefined number of object
types. DIVE (Hagsand, 1996) is also built around a
replicated database, but it allows interactive creation and
distribution of virtual objects among participants. VIS-
TEL (Yoshida, Tijerino, Abe, & Kishino, 1995), the
Virtual Teleconferencing System, used a shared world
database. The system displays 3D models of each partic-
ipant in the conference, and changes in a person’s facial
expression are sent via messages to a central server and

Figure 8. The effect of employing the switchboard architecture on

the visualization frame rate. Vertical axis represents the relative

percentage of framerate increase.

Trefftz et al. 49

redistributed. Only one user can modify the database at
a time. An extensive survey of NVE architectures can be
found in papers by Macedonia and Zyda (1997) and
Funkhouser (1996).

In previous systems, we have built for exploring col-
laboration in 3D environments (Trefftz & Marsic,
2000), we have used peer-to-peer architectures. In the
present work, however, we decided to use a client-server
architecture for the reasons outlined in subsection 2.2.

A large amount of research in NVEs has been dedi-
cated to reducing the number of messages and the com-
putational load needed to keep a consistent, yet possibly
distributed, description of the virtual world, with the
main objective being scalability. Examples include area-
of-interest managers (Macedonia, Zyda, Pratt, Brutz-
man, & Barham, 1995) and multiple levels of detail for
virtual objects (Capps, 2000). Our approach uses multi-
ple levels of detail for different modalities to meet user’s
preferences under constrained resources.

Techniques for reducing the number of messages
commonly make use of dead reckoning, which involves
sending not only the position but also the trajectory of a
moving object. If each participant can locally compute
the position based on the trajectory, only changes to the
trajectory need to be sent. Faisstnauer, Schmalstieg, and
Purgathofer (2000) improve on this scheme by assign-
ing different priorities to groups of messages and send-
ing the messages with higher priority before the mes-
sages with lower priority. Priority is assigned to the
objects based on how much their actual position devi-
ates from a position computed by dead reckoning. The
result is that the overall systemwide error is minimized.

In the switchboard architecture, outgoing messages
are also cached at the originating node. An update pe-
riod is defined dynamically for each modality as a result
of the optimization process. Because one of the main
objectives of our scheme is to avoid fast nodes flooding
slow nodes with too many messages, caching messages
at the server is natural. Caching messages on the client,
on the other hand, allows the administrator to establish
and enforce a maximum number of messages for each
modality that the system can handle. This, in turns, al-
lows the administrator to implement quality-of-service
policies.

Maxfield, Fernando, and Dew (1998) present a ho-
mogeneous NVE in which the users can register their
interests as to what information they see and manipulate
during the session. They study the value of being able
to drop remote messages (considered as nonessential
object changes) to maintain an interactive framerate
within the virtual environment. The user can decide
what framerate they require, and the system then deter-
mines the amount of time available between the frame
renderings and let the nonessential updates use this
time.

In their model, resource allocation is solved for the
case of framerate and remote updates and it does not
incorporate user interests in the allocation process. Our
model addresses the heterogeneous case with nodes
having varying resources. We formulate an optimization
model that includes multiple modalities and user inter-
ests, and produces the optimal resource allocation under
the given constraints.

Being able to manage the quality of service (QoS)
provided to the participants is a desirable feature.
Greenhalgh, Benford, and Reynard (1999) propose a
system that allows users to exchange video streams in a
virtual environment. The scarce multicast groups are
assigned to users based on the interest of the users and
their mutual proximity in the virtual environment. The
QoS part of their proposed architecture consists of bal-
ancing group and individual needs. The needs of a
group involve, for example, deciding which streams of
information to admit into a local shared network. The
needs of an individual consist, for example, in choosing
whether to subscribe to streams once they have been
admitted. Users express their requirements using the
model of mutual awareness that has been part of their
MASSIVE distributed virtual environment since its be-
ginning (Benford, Bowers, Fahlén, Greenhalgh, &
Snowdon, 1995).

In the switchboard architecture, the QoS provided by
the system is dynamically monitored and adjusted. User
preferences are also balanced with the resources that the
system can provide. Users express their preferences by
manipulating the sliders in the user interface, thereby
controlling the relative importance of the available mo-

50 PRESENCE: VOLUME 12, NUMBER 1

dalities. At each node, the optimizer module dynami-
cally finds a combination of representation fidelities that
satisfies systemwide and local constraints specified by the
administrator while maintaining the relative importance
among modalities specified by the user.

A related optimization problem is fair allocation of
bandwidth among multicast sessions in heterogeneous
networks (Sarkar & Tassiulas, 2000; Rubenstein, Ku-
rose, & Towsley, 2002). Due to the network heteroge-
neity, a single rate of transmission per session is not ap-
propriate because it will likely either overwhelm the
slow receivers or starve the fast ones. The objective is to
find a maxmin fair rate allocation so that every receiver
of every session gets a bandwidth commensurate with its
fair share of the capacity of the path between the source
and the receiver. Our work currently does not directly
consider the bandwidth available at each node and this
will be part of the future work.

Middleware systems have emerged in recent years to
support multimedia applications in heterogeneous com-
puting environments. Particularly related to our re-
search are resource brokers (Nahrstedt & Smith, 1995;
Nahrstedt, Xu, Wichadakul, & Li, 2001), which manage
computing and communication resources to deliver
adaptive and satisfactory quality of service. Most of the
existing resource brokers perform the admission test
which is first-come/first-service in nature. This means
that some tasks will be admitted and others will be re-
jected just based on their order of application. Unlike
this scenario, we treat a set of dependent tasks as coop-
erative tasks that all need to complete an activity as a
group. The model presented here reconciles user prefer-
ences and global policies under heterogeneous available
resources. In our approach, the available resources de-
termine the performance space of each computing node.
The user preferences and global policies delimit a sub-
space of that space. The algorithm then searches for the
solution that maximizes the user preference objective
function. The solution essentially allocates the available
resources according to the user’s preferences within the
limits of the valid performance space. In this way, the
resource reservation, enforcement, and adaptation are
accomplished in a cooperative manner.

6 Conclusions and Future Work

We have presented the switchboard architecture
and the underlying mathematical model, and current
results show that this architecture provides an effective
way of enforcing global constraints while allowing users
to adjust the quality of shared information according to
their preferences.

The scenarios that can benefit from the framework we
presented share the following characteristics.

● Participating nodes have diverse computing and
communication resources.

● The modalities of shared information can be repre-
sented with varying degrees of fidelity in space/
time dimensions.

● There are not sufficient computing resources at
each and every node to represent at the same time
all the modalities at their maximum level of fidelity.

In such an environment, our solution allows the follow-
ing to happen in a controlled manner.

● Users can choose the fidelity or the modality for
information representation to meet their prefer-
ences (within globally specified constraints or poli-
cies).

● A system administrator can define global constraints
regarding minimum requirements for information
representation/sharing, as well as the maximum
number of messages the server can process per unit
of time.

The data collected in the benchmarks that are run
before the collaborative sessions form a static snapshot
of the system. If conditions change during the collabo-
rative session (for instance, if the network becomes con-
gested), the system dynamically reacts by adjusting the
benchmark data based on the actual data collected at
runtime. The optimization module is invoked to search
for a new solution based on the adjusted data. This fea-
ture allows the system to dynamically adapt its behavior
to changing conditions during the collaborative session.

The research presented here is an initial step towards
optimal handling of heterogeneous resources, user in-
terests, and global policies in networked virtual environ-

Trefftz et al. 51

ments. There is a great amount of research already per-
formed in other areas of computer science on load
balancing, performance analysis and optimization, and
quality of service in data networks that needs to be ap-
plied to NVEs. Application of work done in those areas
to NVEs is how we will eventually achieve our goal of
optimality. The links need to be established to these
techniques to achieve the aforementioned goal, and our
continuing research lies in that direction.

Acknowledgments

The research reported in this paper was part of Helmuth
Trefftz’s doctoral dissertation at Rutgers University and was
sponsored by NSF contract no. ANI-01-23910, the Rutgers
CAIP Center, and Eafit University, Medellin, Colombia. The
authors are grateful to Professor Manish Parashar for his ideas
and comments, and to the anonymous reviewers, whose com-
ments helped to improve the quality of the paper.

References

Benford, S., Bowers, J., Fahlén, L. E., Greenhalgh, C., &
Snowdon, D. (1995). User embodiment in collaborative
virtual environments. Proc. CHI’95 Conf. Human Factors in
Computing Systems (pp. 242–249). New York: ACM Press.

Calvin, J., Dicken, A., Gaines, B., Metzger, P., Miller, D., &
Owen, D. (1993). The SIMNET virtual world architecture,
Proc. VRAIS’93: Virtual Reality Annual International Sym-
posium, 450–455.

Capps, M. (2000). The QUICK framework for task-specific
asset prioritization in distributed virtual environments. Proc.
Virtual Reality 2000 Conference, 143–150.

Faisstnauer, C., Schmalstieg, D., & Purgathofer, W. (2000).
Priority round-robin scheduling for very large virtual envi-
ronments. Proc. Virtual Reality 2000 Conference, 135–142.

Funkhouser, T. (1996). Network topologies for scalable
multi-user virtual environments. Proc. VRAIS’96, 222–229.

Greenhalgh, C., Benford, S., & Reynard, G. (1999). A QoS
architecture for collaborative virtual environments. Proc.
ACM Multimedia Conference, 121–130.

Hagsand, O. (1996). Interactive multiuser VEs in the DIVE
system. IEEE Multimedia, 3(1), 30–39.

Macedonia, M. R., & Zyda, M. (1997). A taxonomy for net-
worked virtual environments. IEEE Multimedia, 4(1), 48–56.

Macedonia, M. R., Zyda, M., Pratt, D., Brutzman, D., & Bar-
ham, P. (1995). Exploiting reality with multicast groups: A
network architecture for large-scale virtual environments.
Proc. VRAIS’95 Conference, 38–45.

Maxfield, J., Fernando, T., & Dew, P. (1998). A distributed
virtual environment for collaborative engineering. Presence:
Teleoperators and Virtual Environments, 7(3), 241–261.

Nahrstedt, K., & Smith, J. M. (1995). The QoS broker. IEEE
Multimedia, 2(1), 53–67.

Nahrstedt, K., Xu, D., Wichadakul, D., & Li, B. (2001). QoS-
aware middleware for ubiquitous and heterogeneous envi-
ronments. IEEE Communications Magazine, 39(11), 140–
148.

Riabov, A., Liu, Z., Wolf, J. L., Yu, P. S., & Zhang, L.
(2002). Clustering algorithms for content-based publica-
tion-subscription systems. Proc. ICDCS 2002 Conference,
133–142.

Rubenstein, D., Kurose, J., & Towsley, D. (2002). The im-
pact of multicast layering on network fairness. IEEE/ACM
Transactions on Networking, 10(2), 169–182.

Sarkar, S., & Tassiulas, L. (2000). Distributed algorithms for
computation of fair rates in multirate multicast trees. Proc.
Infocom 2000 Conference, 52–61.

Singhal, S., & Zyda, M. (1999). Networked virtual environ-
ments: Design and implementation. New York: Addison-
Wesley.

Sowizral, H., Rushforth, K., & Deering, M. (1997). The Java
3D API specification. New York: Addison-Wesley.

Tanenbaum, A. (2003). Computer networks, 4th ed. Upper
Saddle River, NJ: Prentice Hall.

Trefftz, H., & Marsic, I. (2000). Message caching for global
and local resource optimization in shared virtual environ-
ments. Proc. VRST 2000 Conference, 97–102.

Vickers, B., Albuquerque, C., & Suda, T. (2000). Source-
adaptive multilayered multicast algorithms for real-time
video distribution. IEEE/ACM Transactions on Networking,
8(6), 720–733.

Yoshida, M., Tijerino, Y. A., Abe, S., & Kishino, F. (1995). A
virtual space teleconferencing system that supports intuitive
interaction for creative and cooperative work. Proc. Sympo-
sium on Interactive 3D Graphics, 115–122.

52 PRESENCE: VOLUME 12, NUMBER 1

