
MULTICAST GROUPING FOR DATA DISTRIBUTION MANAGEMENT

Katherine L. Morse
Epsilon Systems Solutions

2550 Fifth Avenue, Suite 724
San Diego, CA 92103

619-702-1700, 619-702-1711
kmorse@epsilonsystems.com

Michael Zyda
MOVES Academic Group
Naval Postgraduate School

Monterey, CA 93943-5118
zyda@acm.org

KEYWORDS: HLA, Data Distribution
Management, multicast, RTI

ABSTRACT

The High Level Architecture’s Data
Distribution Management services are the most
recent in a succession of systems designed to
reduce the amount of data received by individual
simulations in large-scale distributed
simulations. A common optimization in these
interest management systems is the use of
multicast groups for sending data to a selected
subset of all potential receivers. The use of
multicast has met with considerable success in
this application. However, its use to date has
relied on a priori knowledge of communication
patterns between simulations and static
assignment of multicast groups to these
patterns. As larger, more complex, and less
predictable simulations are built, the need has
arisen for more efficient use of multicast groups

as they are a restricted resource1. This paper
presents two algorithms for performing
grouping, and the message delivery time
improvements resulting from applying the
algorithms to selected data sets.

1 INTRODUCTION

The primary goal of the High Level Architecture
(HLA) (DMSO 1998; Morse and Steinman
1997) Data Distribution Management (DDM)
services is to reduce the amount of data received
by federates. Using Declaration Management
(DM) services, federates specify classes of data
they wish to receive. However, in federations
with large numbers of objects or objects
generating large numbers of updates, DM
services may be insufficient to reduce data
delivery to the degree necessary for federates to

1 (3Com) lists a limit of 6K, the highest number
identified while STOW (VanHook) had a
hardware limit of approximately 1,000. A
typical workstation NIC has only a few
(Abrams).

receive and process updates in a timely manner.
In these circumstances federates may use DDM
services to further limit the individual updates
received. Section 2 provides a more detailed
overview of DDM.

The DDM services specified for the HLA are
the latest in a succession of data reduction
mechanisms for large scale distributed
simulations. These mechanisms are referred to
variously as interest management, relevance
filtering, and data subscription. See (Morse
2000) for an extensive survey of previous
systems. In (Morse 2000) we also demonstrate
that most interest management systems to date
have been purposely built with relatively static
architectures and static specification of filtering
capabilities. The current trends for interest
management systems are toward:
1. Distributed and dynamic architectures
2. Flexible, general purpose specification of

filtering expressions
3. Optimization to improve overhead of the

interest management itself, especially
through the use of multicast.

This paper focuses on improving the
performance of DDM through assignment of
multicast groups based on a cost function. In
section 3 we analyze the potential performance
improvements for using multicast grouping.
Section 4 describes our first multicast grouping
algorithm, the various simulation tools we built
to test our hypotheses, and the results of
experiments with the algorithm and tools.
Section 7 outlines the remaining work on this
project2.

2 Initial work on this project was funded under
DARPA ASTT contract MDA9972-97-C-
0023.

2 DDM OVERVIEW

The fundamental Data Distribution
Management construct is a routing space. A
routing space is a multidimensional coordinate
system through which federates3 either express
an interest in receiving data (subscribe) or
declare their intention to send data (publish).
These intentions are expressed through:
• Subscription Region: Bounding routing

space coordinates that narrow the scope of
interest of the subscribing federate4.

• Update Region: Bounding routing space
coordinates that are guaranteed to enclose an
object’s location in the routing space.

 Both subscription and update regions can
change in size and location over time as a
federate’s interests change or an object’s
location in the routing space changes.

 An object is discovered by a federate when at
least one of the object’s attributes comes into
scope for the federate, i.e. if an only if:
• the federate has subscribed to the attribute
• the object’s update region overlaps the

federate’s subscription region.

DDM enable federates to specify by object
class and attribute name the types of data they
will send or receive, while also narrowing the
specific instances of data. Each federate decides
which of the federation routing spaces are useful
to them and defines the portions of those

3 A federate is a member simulation of a
distributed simulation referred to as a
federation.
4Regions in a multidimensional routing space do
not necessarily map to physical geographical
regions. A region in a routing space should be
thought of as an abstract volume with any
number of dimensions, e.g. radio channels.

routing spaces that specify regions, or logical
areas of interest particular to the federate, by
putting bounds (extents) on the dimensions of
the selected routing space.

Specifying a subscription region, the federate
tells the Run Time Infrastructure5 (RTI) it is
interested in data which fall within the extents
of the region specified by that federate.
Specifying an update region and associating that
update region with a particular object instance is
a contract from the federate to the RTI that the
federate will ensure that the characteristics of
the object instance which map to the
dimensions of the routing space fall within the
extents of the associated region at the time that
the attribute update is issued. This implies that
the federate is monitoring these added
characteristics for each of the attributes owned
by the federate. As the state of the objects
change, the federate may need to either adjust
the extents on the associated regions or change
the association to another region.

Figure 2-1 shows one update region (U1) and
two subscription regions (S1, S2) within a two
dimensional routing space. In this example, U1
and S1 overlap so attribute updates from the
object associated with U1 will be routed to the
federate that created S1. In contrast U1 and S2
do not overlap so attributes will not be routed
from the federate that created U1 to the federate
that created S2.

When an update region and subscription region
of different federates overlap, the RTI
establishes communications connectivity
between the publishing and subscribing
federates. The subscribing federates each
receive only the object class attributes to which

5 An RTI is an implementation of the High
Level Architecture.

they subscribed, although they may receive
individual updates outside their subscription
region depending on the precision of the routing
space implementation. In figure 1, S1’s federate
will receive attribute updates from the object
associated with U1 because their regions
overlap, even though the object itself is not
within S1.

S2

S1

U1

Update region

Subscription region

Update region

Subscription region

Subscription and update regions
overlap; attributes and interactions
associated with update regions
flow from publisher to subscriber

Figure 2-1. Two-dimensional Routing
Space Example

Each federate can create multiple update and
subscription regions. Update regions are
associated with individual objects that have
been registered with the RTI. A federate might
have a subscription region for each sensor
system being simulated.

For the sake of simplicity we have described
regions as n-dimensional rectangles up to this
point6. In fact, they are defined as sets of
extents, or sets of n-dimensional rectangles.
Regions which are not logically rectangular can
be approximated by sets of smaller rectangles.

6 The most common application of regions is to
geographical 3-space, but the concept of regions
is not limited to this.

3 MULTICAST GROUPING

The most promising optimization identified to
date is the use of multicast groups for routing
data to a controlled subset of all member
simulations in a simulation (Abrams, Watsen,
and Zyda 1998; Calvin et al. 1995; Macedonia
et al. 1995; Mastaglio and Callahan 1995; Rak
and Van Hook 1996). The ultimate measure of
effectiveness of any interest management
system is the latency between sending a piece
of data and an interested receiver getting it.
Broadcast makes sending fast, but at the
expense of time spent by the receiver discarding
irrelevant data. Point-to-point ensures that
receivers only get relevant data, but it requires
determining the destination for the data and
requires sending multiple copies of that data,
slowing transmission. The use of multicast
strikes a balance between broadcast and point-
to-point by reducing the time to send and the
amount of data received. Broadcast and point-
to-point represent opposite ends of the
send/receive time spectrum with various
applications of multicast occupying the area in
between. Even though multicast has the
potential of improving communication time, it is
not without its own challenges: multicast
hardware currently supports a limited number
of multicast groups, on the order of a couple
thousand; the time to reconfigure multicast
routers can be of the same order as the total
allowable latency for message delivery
(Mastaglio and Callahan 1995). As a result,
most implementations using multicast to date
have used static assignment of multicast groups,
usually to fixed geographic regions7. These
implementations have achieved good results, but
ultimately they are limited in scale as well
because they do not account for changing
connection graphs between senders and
receivers. The next step in optimization is

7See (Macedonia et al. 1995) for an exception.

dynamic multicast grouping that adapts to
connection patterns.

3.1 Connection Graphs

By virtue of regions, we know the destination
of attribute updates before they are sent. Figure
3-1 illustrates the problem with a connection
graph. A connection represents an attribute
update stream originating from one federate and
received by one or more other federates, that is
updated with some frequency8. A connection
may also be thought of as the result of the
overlap of a single update region with one or
more subscription regions. Connections are
labeled to differentiate between potentially
multiple update streams between the same set
of sender and receivers. Federate f1 sends the
attribute update(s) represented by connection c1

to federates f2 and f3. Federate f3 sends the
attribute update(s) represented by connection c2

to federates f2 and f4. Federate f1 also sends c3

to f4. The connection set, C, represented by
this graph is {< c1, w1, f1, (f2, f3)>, < c2, w2, f3,
(f2, f4)>, < c3, w3, f1, (f4)>}.

f1

f2

f3

f4

<c1,w1>

<c1,w1>

<c3,w3>

<c2,w2>

<c2,w2>

Figure 3-1. Example Connection Graph

8 In fact, connection graphs are hypergraphs
because a connection’s edges connect with
multiple nodes. However, an illustration of
such a hypergraph is more complex and
obscures the input weight to the individual node
federates. The importance of the latter will be
explained later.

Note that a connection doesn’t represent a
single message, but all updates of some set of
object attributes.

This problem is similar to the clique-covering
problem. Intuitively, if a clique exists in the
connection graph between a set of nodes for a
set of connections, assigning a multicast group
to these nodes for these connections results in
optimal routing. In general, however, we cannot
expect to be fortunate enough to have many
cliques in the connection graph. The algorithm's
accuracy is augmented by weighting the arcs in
the graph with the data transfer frequency over
the arc, known as the connection weight.

The multicast grouping algorithm uses maximum

tolerable latency, tmax, as its cost measure. The
goal is to group n connections, c1, ... cn, into no
more than m multicast groups, g1, ... gm, such
that no communication arrives at its receiver in

greater than tmax time, if physically possible.
The parameters to the algorithm are:
• Number of available multicast groups (m)

• Maximum tolerable latency (tmax)

• Time to send (ts) - We assume that ts is
roughly the same for all federates.

• Time to receive (tr) - We assume that the
time to discard an irrelevant message is the
same as the time to receive a relevant one;

also that tr is roughly the same for all
federates.

• Time to propagate message through the

network (tp(fi,fj)) - measured between
federate fi and fj, the publisher and
subscriber of the connection, respectively.

 The algorithms begin by assuming point-to-
point communication for all messages and falls
back to this position when the network and
scenario make multicast grouping impossible,

i.e. when t = tds + tp + tr + tq > tmax for some

connections, where tds represents the delay in
sending caused by sending point-to-point, and

tq represents the time in the receiver’s queue.

 The decision to add a connection, c, to a
multicast group is based on the expected
negative impact on t of all connections and
federates already in the group, as well as the
positive impact on t(c) accrued by sending c via
multicast, where t(c) is the time from the
beginning of c’s sending to the end of the last
receiver’s receipt. If connection c has k
receivers and individual updates are sent point-
to-point, t(c) is bounded by:

 t(c) ≤ k • ts + max(tp (fi ,fj)) + max(tq (fj)) + tr

Equation 3-1. Time Bound for k Point-to-
Point Communications

 This bound is based on the worst case
assumption that the kth communication has the

longest tp and the longest tq. If c is sent via

multicast, tds is reduced to t\s.

 We assume ts and tr are fixed, uniform, and
roughly equal. Time to propagate the update,

tp(fi,fj), is assumed to be fixed, but different and
measurable between source and destination,

federates i and j. Time in the queue, tq, varies
depending on the number and frequency of
messages received.

 However, adding connections to an existing
multicast group may cause extraneous

communication at some receivers, increasing tq
for some valid communications. For example,
putting all the connections in Figure 3-1 would
result in the following extraneous
communications:
• c3 to f2 and f3

• c1 to f4

• c2 to f1

This simple observation illuminates a much
larger point. We are addressing potential
performance improvements. There are some
circumstances under which we cannot improve
over the performance of point-to-point.

4 GROUPING ALGORITHMS

4.1 The Largest Outgoing Connection
(LOC) Algorithm

The first algorithm built and tested is referred to
as the “largest outgoing connection” (LOC)
algorithm. The LOC of any node is the
connection originating at that node whose
connection weight, w, multiplied by the number
of receivers, k, is the largest. We use this
measure because tds = k•ts•w is the total sending
delay time for point-to-point, which the
quantity we wish to reduce across the entire
federation.

The algorithm performs the following steps for
each available multicast group:
1. Set the group’s weight to 0.
2. Calculate the LOC of each node.
3. Select the LOC for the entire graph; in the

event of a tie, select the lowest numbered
such connection.

4. Test that adding the weight of the selected
connection to the current weight of the

group will not exceed tmax. If it does,
remove this connection from consideration
for this multicast group and return to step 3.

5. Add the selected connection’s sender and all
its receivers to the multicast group. Add the
connection’s weight to the group weight.

6. Calculate a new LOC for the sender’s node.
7. Repeat steps 3 through 6 with the

modification that new connections are only
considered which originate with current

group members. Halt when all connections
are assigned or there are no connections left
whose addition will not cause the group to

exceed tmax.

4.2 Simulating Algorithm Goodness

To test the goodness of the results of the
algorithms we built a discrete event simulation
that takes as input a configuration file
specifying:
1. f (the number of federates)
2. tp (matrix of the propagation times between

each pair of federates)
3. tr

4. ts

5. tmax

6. a connection set with connections assigned
either to multicast groups or to point-to-
point communication.

The simulation simulates 10 seconds of updates
at millisecond resolution according to the
connection set and measures:
• Average message queue time
• Average message delivery time
• Number of messages
• Number of late messages
• Average queue length
If an update is sent point-to-point, individual
copies of the update are sent to multiple
receivers at intervals of ts. Updates sent via
multicast are sent simultaneously.

4.3 Testing with Random Connection Sets

We performed experiments with the random
connection sets listed in
Table 4-1. n and m were necessarily kept small
to compensate for the combinatorial growth of
the possible combinations. Each connection set
was generated using the Unix rand function to
generate the sender’s federate number,

connection weight, number of receivers, and the
receivers’ federate numbers.

Table 4-1. Random Connection Set Test

f 10
tr = ts 10 milliseconds9

tp 10 milliseconds between
all federates

tmax 1000 milliseconds
(n, m) (5, 2), (5, 3), (6, 2)

For each desired random connection set we
generated 10 sets of the given size, using
different random seeds, and averaged the 10
results. This is to minimize the impact on the
results of randomly pathological connection
sets, of which there were a few.

The results of the LOC algorithm compared to
point-to-point and to all possible groupings
were reported in (Morse99). These results
demonstrated that our initial LOC algorithm
makes grouping decisions designed to minimize
tds and the simulation results show that it’s
successful. The next version must also seek to
minimize tq to produce better results, i.e.

v We must find empirical measures for
predicting tq for the grouping algorithm to
make accurate predictions about the impact
of sending extraneous messages.

In addition, while the LOC algorithm takes tmax

into consideration for the group as a while, it
doesn’t prevent individual federates from being
swamped, i.e.

v The grouping algorithm should take into
account all incoming connections as well as
outgoing connections because an incoming

9 Hoare and Fujimoto (Hoare and Fujimoto
1998) measured these values for RTI 1.3.

connection not included in the multicast
grouping can overwhelm a receiver.

Detailed analysis of three cases revealed that
one or more federate was output-throttled by
using point-to-point. An output-throttled
connection is one for which k•w• tsexceeds tmax.
The first effect of such a connection is that the
sender physically cannot send all the required
updates in time without using multicast. The
second side effect is that the average message
delivery time at the receivers may appear lower
because many messages never leave the sender.
When these connections were added to
multicast groups, the sending federate was able
to send all messages at the desired rate, resulting
in send rates as much as four times higher. Of
course this resulted in slower average receive
rates since the receiving federates had to receive
four times as much data.

4.4 The Input-Restricted LOC (IRLOC)
Algorithm

The input-restricted largest outgoing connection
(IRLOC) algorithm seeks to minimize both tds

and tq to produce better average results than the
LOC algorithm. This algorithm recognizes three
facts about adding a connection to an existing
group:
• Any receivers of the connection who are not

already in the group will receive additional
connections equal to the sum of the
connections already in the group, the group
weight.

• Any group members who are not receivers
of the connection will receive the additional
weight of the connection.

• Assuming that ts = tr, improvements in
average message delivery time created by
sending a connection via multicast are
directly offset by the “negative weight”
created by the first two facts.

The IRLOC modifies the LOC algorithm in
response to these facts. It performs the
following steps:
7. Calculate the positive cumulative effect of

each connection, (k - 1) • w.
8. Add the receivers of the connection with the

largest cumulative effect; in the event of a
tie, add the lowest numbered such
connection.

9. Add the next largest connection such that a)
the input weight of the current group

members does not exceed tmax by the
addition of the connection weight, b) the
input weight of the connection’s receivers
not already in the group does not exceed

tmax by the addition of the group weight, c)
the positive cumulative effect is greater than
the negative weight. Note that the positive
cumulative effect is only a function of the
connection, while the negative weight is a
function of the connection and the current
state of the group.

10. Repeat step 3 with the remaining
connections. Halt when all connections are
assigned or all multicast groups are used.

4.5 Comparing LOC and IRLOC

The discovery of the effects of output-throttled
connections lead to the realization that the
average message delivery time reported by the
offline simulation does not capture all the
important measures of goodness when the limits
of message delivery are tested. And these are
precisely the cases of most interest. As a result,
the evaluation criteria were refined beyond just
average message delivery time to include the
effects of output throttling and overflowing the
receiving queue. Output throttling and exceeding
tmax are boolean failure conditions; any
algorithm which produces either effect for a
connection set is considered to have failed. If an
algorithm succeeds on these two criteria, it is

compared to other successful algorithms on the
basis of average message delivery time. So, the
four evaluation criteria are:
1. No receiving federate exceeds tmax for its

average message delivery time (Success or
Failure)

2. No sending federate is output throttled for
any connection or set of connections
(Success or Failure)

3. Average message delivery time
4. Number of extraneous messages

The 30 random test cases were re-run for just
LOC, IRLOC, point-to-point, and broadcast.
The percentage of extra messages, both positive
and negative, was calculated for LOC, IRLOC,
point-to-point, and broadcast based on the
incoming weight at each federate using point-to-
point. The point-to-point incoming weight
reflects the number of messages which should
be received, but not necessarily the number that
are received with point-to-point owing to
output throttling effects.

Any grouping which results in output-throttled
connections or any receiver having an average
message delivery time greater than tmax are
considered to have failed. 26 of the point-to-
point experiments and 8 of the broadcast
experiments failed on one or both of these
criteria. These are precisely the types of test
cases to which grouping is applicable.

Among test cases that pass the first two
criteria, a lower average message delivery time is
preferable. In all cases, LOC produced lower
average message delivery time than point to
point, but often at the predictable cost of
delivering extraneous messages. In 24 of the 30
test cases, LOC produced lower average
message delivery time than broadcast. However,
in all cases it delivered less data, as much as
50% less data. The analysis of the remaining 6

test cases reveals that the LOC algorithm could
be more aggressive about adding connections to
groups because the time to discard messages is
much lower than the time saved by reducing
sends. In all cases where LOC failed the tmax or
output-throttling criteria, no solution exists to
prevent these conditions because either some
receivers had point-to-point input weights
which cause them to exceed tmax or the sender
had multiple connections with output weights
that they could not all be sent, even if they were
all assigned to multicast groups.

The IRLOC algorithm generates consistently
good results for all cases where a good solution
exists. In 23 of the 30 cases, IRLOC produced
average message delivery times as low or lower
than IRLOC, and usually with more accurate
delivery of the correct data. In three of the
seven cases in which IRLOC had higher message
delivery times, it delivered exactly the correct
set of data in 34.82, 34.11, and 34.64
milliseconds vs. 32.03, 32.07, and 33.24
milliseconds for LOC where the fastest possible
delivery time is 30 milliseconds given ts = tr = tp

= 10 milliseconds.

There are two important points about these
three cases. First, while IRLOC delivered
exactly the right data for all three cases, LOC
delivered 252%, 102%, and 268% extraneous
messages for the same cases. Second, all seven
cases had fairly light connection sets, i.e. nearly
all of the connections could have been put in a
single group without exceeding tmax. The IRLOC
algorithm balances the positive effect of adding
a connection to a group against the potential
negative effect of adding it. When grouping light
connection sets, this approach is overly
conservative because the receivers have a lot of
spare time to throw away extraneous messages,
i.e. the potential negative effect is higher than
the actual negative effect. Under such
circumstances, the more aggressive LOC
grouping algorithm works better and the
additional overhead of IRLOC is not warranted.

4.6 Larger Connection Sets

The entity counts and bit rates for the large
connection set experiments were derived from
STOW-E data (NCCOSC95). The original bit
rates and the round-ups used for connection
weights are given in Table 4-1.

Table 4-2. Entity Connection Weight by Type and Counts by Federate

Entity Type Kbps Connection
Weight

of Entities # of Federates

Submarine 1.09 2 2 1
Ship 1.16 2 11 2
Fixed-wing aircraft 3.72 4 36 2
Rotary-wing aircraft 2.40 3 35 2
Tank 1.27 2 600 24
Truck 1.09 2 456 24
Dismounted infantry 1.09 2 336 24
Total 1476 31

The STOW-E network analysis divided the data
into eight time periods. Since there was no time
period during which all entity types were

present, the entity numbers used for this
experiment are the averages for the individual
entity types across all eight time periods. The

entities were allocated to federates by side, with
tanks, trucks, and dismounted infantry grouped
into armored battalions. The numbers of entities
and federates are given in Table 4-1. The same
20 federates represent tanks, trucks, and
dismounted infantry.

The battlespace is approximately 400 km by
500 km, with region ranges as given in Table
4-3. Subscriptions by class type are as given in
Table 4-4.

Table 4-3. Region Ranges

Entity Type Subscription
Region
Range

Update
Region
Range

Submarine 12 km 12 km
Ship 12 km 12 km
Fixed-wing
aircraft

25 km 2550 km

Rotary-wing
aircraft

20 km 20 km

Tank 12 km 12 km
Truck 12 km 12 km
Dismounted
infantry

12 km 12 km

Table 4-4. Class Subscriptions

Entity Type Subscribes to
Submarine Submarine

Ship
Ship Ship
Fixed-wing aircraft Fixed-wing aircraft

Tank
Ship

Rotary-wing aircraft Rotary-wing aircraft
Tank

Tank Tank
Truck Truck

Dismounted infantry
Dismounted infantry Dismounted infantry

Individual subscriptions can be derived from
Table 4-3 and Table 4-4, e.g. submarines
subscribe to opposing ships and other
submarines within 25 km.

Three “snapshots” were taken of an
engagement: prior to engagement, at the point of
engagement, at the end of the engagement.
These snapshots were generated using the
Integrated Theater Level-Engagement Model
(SAIC99)10 and are provided in section 9. In the
figures, semi-circles represent submarines,
circles represent blue ships, and diamonds
represent red ships. The small ‘m’ icons
represent 6 fixed wing aircraft. The small ‘m’
icons with the bar across the top represent 7
rotary wing aircraft. The rectangles represent
armored forces each consisting of 25 tanks, 19
trucks, and 14 dismounted infantry for a total of
58 entities per armored force.

In the pre-engagement snapshot, none of the
entities are close enough to opposing forces to
receive any data. While this doesn’t produce
multicast grouping results, it is a testament to
the value of interest management in general.

The engagement snapshot is predictably the
most interesting one. Visual inspection of the
graphic reveals the highest level of grouping
between opposing forces. Because many of the
groups involve 58-entity armored forces, this
snapshot results in 1052 connections. The
armored forces are “aggregated” entities, i.e. one
icon in the snapshot represents multiple
individual entities. As a result of aggregation, all
entities in the aggregate have the same update
regions and the same subscription regions. This
results in particularly high numbers of

10 Thanks to the ITEM team for helping me
generate the graphics for this test: Steve
Vedder, Doug Boyles, and Bill Macak.

connections. However, if the entities were
individually represented, their regions would
only be perturbed slightly from the aggregated
region. This would result in slightly lower
numbers of connections, on the order of 5% to
10%. Simulating broadcast using the offline
simulator was impractical as it would have
required the simulator to handle approximately
950,000 events to simulate 10 seconds. Several

experiments with this connection set indicate
that the maximum number of groups it can make
productive use of is 8. Compare this with a
static allocation of multicast groups to grid cells.
With the 400 km by 500 km battlespace, 10 km
by 10 km grid cells would require 2,000
multicast groups; 5 km by 5 km grid cells would
require 8,000.

Figure 4-1. Static vs. Dynamic Allocation of Multicast Groups

This is illustrated in the small for the grouping
of armored forces near the left center of the
engagement snapshot. Figure Figure 4-1 shows
the grouping of four red armored forces and
three blue armored forces, and their update and
subscription regions. Since armored forces have
update and subscription regions of the same
size, only one region is shown for each force.
The armored forces and their regions are shown
superimposed on a 5 km by 5 km static grid. Of
the 100 grid cells shown, only 33 of the cells are

used, while only 12 are productively used to
exchange data between interacting forces.
Dynamic grouping put all of these connections
into a single group, and this is an area of the
scenario with very dense interaction between
entities. This scenario contains over 100,000
square kilometers of empty sand and ocean to
which a static grid assignment of multicast
groups would have wastefully allocated
thousands of multicast groups!

While no single connection was output
throttled, several of the armored forces federates
were output throttled by virtue of the number
of entities they were simulating. The input
weight of 15 federates exceeded tmax. Although
the IRLOC delivered 50% more messages than
point-to-point, it was still only able to deliver
less than 50% of the required messages and the
average message delivery time exceeded tmax.
When the number of entities per armored force
was successively lowered to 20 and 10, the
connection set became tractable to the point
where the IRLOC algorithm could deliver 90%
of the messages with only one federate
overruning tmax because its input weight was
180.

In the end snapshot, there is significantly less
grouping among federates, but much of it
involves armored forces with their 58 entities.
As a result, the end snapshot has 350
connections. However, most of these
connections only have a single receiver, so the
net gain over 10 seconds of simulation time is
only 200 microseconds and only uses one
multicast group.

The conclusions to be drawn from this
experiment are two-fold. First, interest
management problems exist for which there is
no solution. In distributed simulations, these
problems manifest themselves in message
overflow and late messages. In the real world,
they manifest themselves in overloaded
individuals who make bad decisions because
they cannot assimilate and analyze all the data
presented to them. Second, and more important,
when good grouping solutions exist for
connection sets with typical chaotic clustering,
the IRLOC algorithm can find one11.

11 A stronger assertion can probably be made
about the algorithm’s applicability to random

5 THE ONLINE GROUPING
ALGORITHM

The next logical step is to implement IRLOC in
a “real” distributed environment12. The online,
distributed IRLOC algorithm is built on top of a
baseline prototype (Morse 2000b)
implemented in the MESSENGERS mobile
agents system (Bic 1996). The baseline
prototype implements a minimal subset of RTI
necessary to test DDM. The online IRLOC
algorithm integrates the baseline prototype with
the basic structure of the IRLOC algorithm. The
distributed algorithm operates with degraded
information for several reasons. First, the
information about connections and incoming
weights is distributed among the federates, and
collecting it would be prohibitive in a very large
scale distributed simulation. If the simulation
were small enough to be able to collect all this
data at a central point and still make timely
grouping decisions, it wouldn’t need multicast
grouping. Second, this same information is
changing in real time. Regions and region
intersections are changing while the grouping
decisions are being made. Even if the algorithm
had access to global information when it started
grouping, there is a non-zero probability that
the information would be out of date by the
time the grouping completed. Finally, the
MESSENGERS system doesn’t provide a
straightforward, timely mechanism for passing
dynamic data structures to Messengers. Some
simplifying assumptions have been made which
account for this. In a production system this
final constraint could be relaxed.

The online grouping algorithm is triggered by
the discovery of a connection or connections. A

connection sets, but would require more
extensive analysis and experimentation.
12 These results were also reported in (Morse
2000b).

grouping Messenger is injected which begins
searching for a potential group. The grouping
Messenger searches three places in the
following order:
• on the init node on the local machine;
• at the multicast server where it may find an

unused group;
• at most one hop from the multicast server at

another machine.

If the grouping Messenger finds an unused
group at the multicast server, it marks the group
as taken to the requesting federate’s machine
and “carries” the group home. This is how
groups migrate away from the multicast server.
If the group is unused, there’s no need to check
for overflow and the group can be used
immediately. Before a partially used group can
be taken from another federate, it must be
checked for overflow. The grouping Messengers
carries the connection weight and connection
receivers with it. The current group weight and
members is always stored with the group at its
current init node. All of this information is
consistent with the IRLOC algorithm and is
always up to date. However, the IRLOC
algorithm also makes use of the current
incoming connection weights of both the current
group members and the connection’s receivers.
Here is where slightly degraded information is
used. Instead of having the current incoming
weights of all the connection’s receivers, the
grouping Messenger carries the last known,
largest incoming weight of all the receivers. The
incoming weights of receivers are piggybacked
on subscription regions, so they may be out of
date due to subsequent subscriptions. Instead of
the current incoming weights of all the group’s
members, the group is stored with the last
known, largest incoming weight of any of all the
group’s members.

If the grouping succeeds, the group’s weight and
member list is updated. The grouping is
reported to the requesting federate which
changes its connectivity and adjusts its outgoing
connection weight down. It also injects “join”
Messengers for all the connection receivers who
were not previously members of the group. In
this system, this Messenger only informs the
receiver to adjust its incoming weight upward to
account for other traffic from the group and to
add to a reference count for this group. If
multicast hardware were available, this
Messenger would also be the trigger for the
receiver to issue the appropriate system calls to
join the multicast group.

5.1 Generating Connection Sets
Dynamically

The first experiments performed were to
determine the goodness of the groupings
generated by the online grouping algorithm
relative to the offline version. These
experiments were conducted with the random
connection sets in Table 4-1.

Since the online grouping algorithm can only be
run in real time with the MESSENGERS system
underneath, this comparison test required
manually generating regions and DDM API calls
whose resulting region intersections produce the
connection sets listed in Error! Reference
source not found.. The groupings produced in
this way were manually edited into connection
set files and run through the offline simulator.
In the online configuration there is no way to
create the entire connection set statically. As
soon as a connection or connections are detected
at any federate, the RTI component at that
federate triggers grouping. This required writing
auxiliary Messengers which locate existing
multicast groups and add new receivers to the
group when they subscribe for a connection

which has already been assigned to the group in
question.

Even with degraded information about the input
weights of the federates, the online grouping
algorithm compared quite favorably to the
offline IRLOC algorithm. In over half the cases,
seventeen cases, the online algorithm generated
the same solution as IRLOC. In six of the cases,
it generated a better average message delivery
time. In one case, the degraded information
about input weights caused the online algorithm
to generate too conservative a solution. In two
cases, the order in which connections were
discovered affected the order in which they
were added to groups, i.e. early addition of a
connection prevented later addition of a
different connection which would have
produced a better result. In one case, the fact
that the grouping Messenger was restricted to
only looking one hop from the multicast server
prevented it from putting a potential connection
into an existing group. In three cases, the
grouping was affected by both of the previous
two factors, ordering and restricted hops.

5.2 Runtime Performance Results

The experiments described in Table 5-1 are
designed to test the potential impact of
integrating online grouping with a production
RTI using relative measures between the online
grouping algorithm, the baseline prototype, and
an actual RTI implementation with DDM, RTI
1.3 v4. The experiments use the benchmark
algorithm described in (Morse 1999b). When
interpreting the results, it’s critical to remember
that the baseline prototype and the online
grouping algorithm implement the barest
minimum of HLA functionality necessary to
test the hypothesis with almost no error

checking. RTI 1.3 is a robust, fully-compliant
HLA 1.3 implementation with all the specified
service groups and error checking, and the
overhead implied by that.

Table 5-1. Runtime Experiments

(federates,
regions)

r
/min.

i i
/min.

1 (2,50), (5, 200),
(10,1000)

0 r/25, r/10 0

2 (2,50), (5, 200),
(10,1000)

r r/25, r/10 0

3 (2,50), (5, 200),
(10,1000)

r r/50, r/25 i

Experiment 1 tests the impact of intersection
calculations on initialization time. It establishes
a basis for projection of performance of the
online grouping algorithm in an actual
implementation. The baseline prototype and
RTI 1.3 are used because the online grouping
algorithm is built on top of the baseline
prototype, while the baseline prototype has an
architecture for DDM which closely models
the architecture of RTI 1.3.

The average per federate initialization times for
each of the federates in the RTI 1.3 tests are
listed in Table 5-2. Separate tests verified that
the growth in initialization times is due
primarily to a larger number of federates, not to
a larger number of regions. The change in
initialization time for grouping was calculated as
the difference in initialization time between the
online grouping algorithm and the baseline
prototype. Given that average per federate
initialization time increase is more than three
orders of magnitude smaller than the
initialization time without grouping, using
grouping has no appreciable impact on
initialization.

Table 5-2. Initialization Times

f r r/ min i i/ min RTI 1.3 (sec.) Change for Grouping
2 50 0 2 0 13.190171 .012
2 50 0 5 0 13.103029 .008881
5 200 0 8 0 24.895595 .015031
5 200 0 20 0 24.134336 .010996
10 1000 0 40 0 132.050392 .009019
10 1000 0 100 0 129.133358 .005554
Averages 56.251147 .010247

Experiment 2 tests the impact of region changes
without any intersection changes. As discussed
in Section 3.2, this should impact CPU usage,
but not severely since the system should
recognize that connectivity hasn’t changed.
Since regions are uniformly assigned to
federates, ∆r per federate = r/f which ranges
from 25 to to 100. Here the methodology is to
determine if the RTI can do its job without
robbing the federates of the CPU cycles they
need to do their job. Although the Sun Sparc 5s
used in the experiment are slightly
underpowered compared to platforms typically
used for HLA-based simulations, the RTI
performed fairly well. Each experiment is run
for 7 minutes with 10 loops per second for a
total of 4200 loops. During each loop, the
federate code performs all the calculations it
requires and the remainder of the time in the
loop allocated for the RTI to perform its
functions. A “bad” loop is one in which the RTI
fails to complete all its processing in the
remaining loop time allocated to it. Across all
six tests in experiment 2, the RTI only suffered
an average of 2.6% bad loops. Running the
benchmark algorithm with the online grouping
algorithm and the baseline grouping algorithm
only resulted in an average of 2173 msec more
time taken by the RTI across a 7 minute period;
approximately .5 msec per .1 sec loop. That’s
less time than it takes to receive a single

extraneous message that would have been
delivered without multicast!

Experiment 3 tests the impact of region changes
with intersection changes. This should impact
CPU usage more severely than experiment 2
since connectivity changes must be made.
Predictably, the RTI produced more bad loops
for experiment 3 than for experiment 2, 5.7%
vs. 2.6%. However, the grouping algorithm only
resulted in an average of 384 msec more time.
The fact that this is lower than the time for
experiment 2 are initially surprising, but the
numbers are so small compared to the
measurable resolution that even small
perturbations in the CPU load or network load
on these non-dedicated machines can result in
proportionally large differences.

For the sake of completeness, the additional
time for all the experiments with the online
grouping algorithm and the baseline algorithm
were recorded and averaged. The average
additional time was 2596 msec or .62 msec per
loop.

All of this is overshadowed by the time it takes
to reconfigure multicast groups in routers.
According to (IETF 1997) and (Cisco 1999),
joining a multicast group across a LAN can take
no time at all, while leaving a multicast group
across a WAN may take on the order of 260

seconds. In summary, it is not the time it takes
to calculate the multicast groups which is the
impediment to dynamic multicast grouping as
has been asserted in the past, but the time it
takes to change the groups in the routers.

6 CONCLUSIONS

As the size of distributed simulations grow,
unwanted data received by member simulations
will continue to grow as a limiting factor.
Multicast has been identified as a highly
effective and efficient tool for controlling the
delivery of unwanted data, but multicast groups
are a limited resource. Static assignment of
multicast groups to particular geographic
regions and data types have yielded positive
results, but may not be extensible to very large
simulations or simulations which exhibit a large
degree of chaotic clustering. We have taken
major steps toward dynamic assignment of
multicast groups in the context of the HLA’s
DDM services. We have identified the critical
performance impacts and incorporated them
into three algorithms for performing multicast
grouping. And we have shown that these
algorithms can be expected to perform favorably
in terms of data delivery against point-to-point
delivery and broadcast.

7 FUTURE WORK

In this paper we have presented results of using
the LOC and IRLOC algorithms on static
snapshots of connection sets, as well as
dynamic IRLOC on small connection sets.
Clearly the real challenge is to perform grouping
on dynamically changing large connection sets.
The small change in overhead for small
connection sets bodes well for ultimately
incorporating dynamic multicast grouping into
the DDM implementation in a production RTI.

8 REFERENCES

3Com Corporation. “Scaling Performance and
Managing Growth with the CoreBuilder 3500
Layer 3 Switch.” Available at
http://www.3com.com/products/dsheets/400347a.
html.

Howard Abrams. Extensible Interest Management
for Scalable Persistent Distributed Virtual
Environments. Ph.D. Dissertation, Naval
Postgraduate School, December 1999.

Abrams, H.; K. Watsen; and M. Zyda. 1998.
“Three-Tiered Interest Management for Large-
Scale Virtual Environments.” In Proceedings of
1998 ACM Symposium on Virtual Reality
Software and Technology (VRST'98, (Taipei,
Taiwan).

Calvin, J.; D.P. Cebula; C.J. Chiang; S.J. Rak; and
D.J. Van Hook. 1995. “Data Subscription in
Support of Multicast Group Allocation.” In 13th
Workshop on Standards for the Interoperability of
Distributed Simulations (Orlando, FL, September)
367-369.

James O. Calvin, Duncan C. Miller, Joshua Seeger,
Gregory Troxel, and Daniel J. Van Hook.
Application Control Techniques System
Architecture. Technical Report RITN-1001-00,
MIT - Lincoln Labs, February 1995.

James O. Calvin, Carol J. Chiang, and Daniel J.
Van Hook. Data Subscription. In 12th Workshop
on Standards for the Interoperability of
Distributed Simulations, pages 807-813. March
1995.

Cisco IOS 12.0 Solutions for Network Protocols
Volume 1: IP. Cisco Press. 1999.

Department of Defense High Level Architecture
Interface Specification, Version 1.3, DMSO, April
1998, available at http://hla.dmso.mil.

Hoare, P.; and R. Fujimoto. 1998. “HLA RTI
Performance in High Speed LAN Environments.”
In Proceedings of the 1998 Fall Simulation
Interoperability Workshop. (Orlando, FL,
September). 501-510.

IETF Network Working Group. Internet Group
Management Protocol, Version 2, RFC 2236.
Available at http://rfc.fh-
koeln.de/rfc/html/rfc2236.html, November 1997.

Macedonia, M.; M. Zyda; D. Pratt; and P.
Barham. 1995. “Exploiting Reality with
Multicast Groups: a Network Architecture for
Large Scale Virtual Environments.” In Virtual
Reality Annual International Symposium ’95. 2-
10.

Mastaglio, T.W.; and R. Callahan. 1995. “A
Large-Scale Complex Virtual Environment for
Team Training.” IEEE Computer 28 , no. 7
(July): 49-56.

Morse, K.L. 1999; L. Bic; M. Dillencourt; and K.
Tsai. “Multicast Grouping for Dynamic Data
Distribution Management.” In Proceedings of the
1999 Society for Computer Simulation
Conference. (Chicago, IL, July).

Morse, K.L; L. Bic; and M. Dillencourt. 2000.
“Interest Management in Large Scale Virtual
Environments.” MIT Presence, March 2000.

Morse, K.L.; and J.S. Steinman. 1997. “Data
Distribution Management in the HLA:
Multidimensional Regions and Physically Correct
Filtering.” In Proceedings of the 1997 Spring
Simulation Interoperability Workshop (Orlando,
FL, March). 343-352.

Morse, K.L; and M. Zyda. “Online Multicast
Grouping for Dynamic Data Distribution
Management.” In Proceedings of the 2000 Fall
Simulation Interoperability Workshop. (Orlando,
FL, September).

Naval Command, Control and Ocean Surveillance
Center. Synthetic Theater of War-Europe
(STOW-E) Technical Analysis. NCCOSC, San
Diego, CA, May 22, 1995.

Rak, S.J.; and D.J. Van Hook. 1996. “Evaluation
of Grid-Based Relevance Filtering for Multicast
Group Assignment.” In 14th Workshop on
Standards for the Interoperability of Distributed
Simulations (Orlando, FL, September) 739-747.

SAIC. Integrated Theater-Level Engagement
Model (ITEM) User’s Manual version 8.3. SAIC,
10260 Campus Point Drive, San Diego, CA,
October 25, 1999.

Van Hook, Daniel J.. RITN IM and IM History.
Personal Communication, January 1996.

9 ENGAGEMENT SNAPSHOTS

Figure 9-1. Pre-engagement Snapshot

Figure 9-2. Engagement Snapshot

Figure 9-3. Post-engagement Snapshot

