
Handling Heterogeneity in Networked Virtual Environments

Helmuth Trefftz 1, Ivan Marsic 2 and Michael Zyda 3

1 and 2 CAIP Center, Rutgers University 3 The MOVES Institute, Naval Postgraduate School
 trefftz@caip.rutgers.edu, marsic@caip.rutgers.edu, zyda@movesinstitute.org

Abstract

The availability of inexpensive and powerful graphics
cards as well as fast Internet connections make
Networked Virtual Environments viable for millions of
users and many new applications. It is therefore
necessary to cope with the growing heterogeneity that
arises from differences in computing power, network
speed and users’ preferences. This paper describes an
architecture that accommodates the heterogeneity
mentioned above while allowing a manager to define
system-wide policies. Policies and users’ preferences can
be expressed as simple linear equations forming a
mathematical model that describes the system as a whole
as well as its individual components. When solutions to
this model are mapped back to the problem domain,
viable solutions that accommodate heterogeneity and
system policies are obtained. The results of our
experiments with a proof-of-concept system are described.

1. Introduction

Powerful computer graphics cards are becoming less
expensive and most new computers ship with cards that
are capable of displaying complex 3D scenes at interactive
rates. Similarly, high-speed connections to the Internet
are becoming increasingly common. These facts allow for
a potential widespread use of Distributed Virtual
Environments (DVEs) or Networked Virtual
Environments, as described in [6].

In a controlled environment, the DVE designer can
determine a-priori the type of computers and network
connections that will be involved in the system. The
DVE can then be engineered to perform well within the
given conditions. But as DVEs find their ways to real
world applications, the environments cannot be so easily
controlled. Heterogeneity arises in different forms:
• Nodes with a wide variety of computing resources

(processor speeds, available memories, graphic cards).
• Varying connection type of the nodes (from modem

lines to local area networks).
On the other hand, designers of DVEs need to be able

to determine certain system-wide constraints in order to
guarantee productive use of the system. Examples of
these policies are: maximum number of concurrent users,
minimum frame-rate that each node must be able to
maintain, maximum number of messages per unit of time
that can be handled by the system, etc.

On one hand then, we have the heterogeneity that
arises from the diverse participating nodes and from
individual users preferences. On the other hand we have
the need to provide the designer with the ability to dictate
and enforce certain homogeneity of function.

1.1. Contributions of this Work

In this paper, we propose a client-server architecture
that we call Switchboard Architecture (SA) that copes
with the conflicts described above. The structure of the
SA makes it possible to map individual user preferences
as well as system constraints to linear equations and
inequalities. This set of equations and inequalities form a
mathematical model that describes how the system
functions. Valid solutions to the mathematical models
are isomorphic with states of the DVE in which
individual users’ preferences are satisfied as closely as
possible given the restrictions imposed by the hardware
and the constraints defined by the DVE designer.

There are two main contributions of this work:
• The Switchboard Architecture, which can be used

in other client-server DVEs.
• The mathematical model that approximates the

functioning of the DVE system. The model
provides an objective and automatic way to cope
with the opposing tendencies of heterogeneity and
homogeneity in DVEs.

The rest of this paper is organized as follows: Section
2 describes related work. Section 3 describes the
Switchboard Architecture, as well as the generic form of
the corresponding mathematical model. Section 4 and 5
describe the results we have obtained with a shared
visualization program we have built incorporating the
principles we describe. Section 6 presents the
conclusions and future work.

2. Related Work

One of the most desirable conditions in a DVE is to
provide all participants with a consistent and up-to-date
version of the shared space. But in the presence of
imperfect communication channels, the time to replicate
the shared state among participants is not zero, giving rise
to the Consistency-Throughput tradeoff [6]. As the
number of participants and entities taking part in the DVE
increase, the number of messages and the amount of

computation necessary to keep a consistent version
increase exponentially.

An important related area of research in DVEs deals
with the architecture for building a DVE system. An
extensive survey of architectures can be found in [4] .

A large amount of research in DVEs has been
dedicated to reducing the number of messages and the
computational load needed to keep a consistent, yet
possibly distributed, description of the virtual world,
with the main objective being scalability.

One area of research that addresses this problem deals
with Area of Interest Managers (AOIM). Only messages
pertaining to the current area of interest of the users are
conveyed to their nodes with high priority. Macedonia
[5] describes a way to map multicast groups to
geographical regions. As a user traverses the simulation
field, he/she leaves some regions and enters others,
changing the multicast groups he/she uses to exchange
message with other participants in the same regions.

Having several levels of representation for the virtual
objects can also reduce the amount of computation done
at each node. Objects that are far from the observer or of
less interest for the user can be rendered with lower
fidelity. Capps [1] defines a framework for managing the
display and request of representations for virtual objects
called QUICK. Objects are annotated with a measurement
for Quality, Importance and Cost. The system optimizes
the total fidelity contribution while minimizing the cost.

Reducing the number of messages used to keep a
consistent state of the system is another goal. Most of
these techniques make use of dead reckoning, which
involve sending not only the position but also the
trajectory of a moving object. If each participant can
locally compute the position based on the trajectory, only
changes to the trajectory need to be sent. Faisstnauer et
al. [2] propose an algorithm to schedule outgoing
messages. Messages that describe updates to objects that
deviate more from their previously sent trajectories are
given higher priority. The result is that the overall
system-wide error is minimized. In small DVEs, the
differences in performance between the participating nodes
can also be exploited. If a particular node is sending
updates faster than the other nodes can process them,
bandwidth and resources are being wasted. In a previous
paper [9], we explored this issue and obtained a decrease
in bandwidth utilization as well as improved
responsiveness in slower nodes. Terrence and Dew [8]
make a theoretical characterization on the number of
messages that can be dropped in order to keep a good
frame rate in a Collaborative Environment.

Being able to manage the Quality of Service provided
to the participants is a desirable feature. Greenhalgh et al.
[3] propose a system that allows users to exchange video
streams in a virtual environment. The scarce multicast
groups are assigned to users based on the interest of the
users and their proximity in the virtual environment.

3. Our Approach

As discussed in the introduction, conflict can arise
between the constraints imposed by the designer of a
CVE and the heterogeneity that results from node
diversity and user preferences. Our approach provides a
mapping from the system-design domain to a
mathematical domain. This mapping is accomplished by
modeling the user preferences and the administrator
constraints as equations. Since a mathematical
correspondence can be defined between these two
domains, solving the model in the mathematical domain
provides for an objective and fair solution in the system-
design domain. These relationships are depicted in
Figure 1.

We discuss below how the mapping between the two
above-mentioned domains can be accomplished.

3.1. Mathematical Model

The different dimensions of shared information that
can be tuned by the user and, possibly, be enforced by
global policies in the system, are called variables.
Examples would include: the number of video frames per
second; the quality of visualization (wire-frame, shaded,
etc.); the quality of sound (mono, stereo, 3D, etc.).
Variables take on discrete possible values within a certain
range, determined by the computing power of the nodes
taking part in a session. The Cartesian product of the
possible values of the different variables forms an n-
dimensional search space, n being the number of
variables. Assigning a fixed value to a variable can
directly affect the amount of computing power dedicated
to processing data related to it. Variables that are fixed in
this manner are called independent variables. The
designer might allow the operating system to freely
allocate computing power to other variables, which will
then take values depending on the fixed-value variables
and other factors. These are called dependent variables.

Our approach works by controlling certain variables
and letting the operating system (OS) assign all
remaining computing power to the dependent variables.
The amount of computing power dedicated to the
dependent variables will depend on the total computing

Policies/Preferences Solution

Mathematical
Model

Mathematical
Solution

Figure 1. Mappings between the design and math
domains.

power of the node, the availability of specialized
processors and OS scheduling policies. The value of the
dependent variables will therefore vary from one node to
another. The values that the dependent variables take in a
particular node, for a given set of independent variables,
depend on the performance of each node. This mapping
is called the performance mapping. The performance
mapping is determined by a set of benchmarks run at each
participating node before the beginning of the
collaborative session.

Global policies can be expressed as inequalities over
certain variables. An example of a global policy might
be: “Each system must be able to display at least 2 video
images per second”.

An Individual’s preferences can be expressed as a
linear combination of the variables. The normalized
coefficients of the variables determine their relative
importance. Normalization of the coefficients must be
done carefully, taking into account the ranges of the
involved variables.

Global policies partition the space into valid
subspaces. The intersection of these valid subspaces is,
in turn, either a finite or an infinite n-dimensional space.
In order to enforce the global policies, variables at each
node are limited to taking only values that lie inside the
intersection of valid subspaces. The points of the search
space that lie inside the intersection of valid subspaces
form the valid search space.

The linear combination of variables that describes the
individual preferences becomes the objective function,
which needs to be maximized. The function is evaluated
at each point of the valid search space looking for a
maximum. The optimum values of the dependent
variables are assumed to be the results of the performance
mapping at the point that maximizes the objective
function. The user controls the coefficients of the
objective function through a control panel with one
sliding control for each variable. Moving up the slider
for one variable means assigning more relative importance
to it, at the expense of another variable(s).

The mathematical model consists of the following
parts:
• Each user’s objective function, of the following form:

˜̃
¯

ˆ
ÁÁ
Ë

Ê
¥+¥ ÂÂ j

j
ji

i
i DWIWMax (1)

Here, I are the normalized values of the independent
variables;
D are the normalized values of the dependent
variables;
W are the weights representing the user’s preferences.

• Constraints representing minimum information
representation levels have the following form:

ii KI ≥ (2)

K is the minimum level of information representation
allowed for variable Ii.

• Constraints limiting the maximum number of
messages the server can process per unit time have the
following form:

Â £
k

ik LV (3)

Here, L is the maximum number of messages related
to variable V that the server can process per unit time.
Sub-index k covers all participants in the CVE.
Linear equations of type (1), (2) and (3) together form

the mathematical model, which is similar in form to a
linear programming problem. But the model cannot be
handled with linear programming techniques because the
variables do not take continuous values and because the
dependent variables are not linear with respect to the
independent variables (recall that the values of the
dependent variables are obtained experimentally via the
performance mapping). However, given the small size of
the search space, the objective function can be evaluated at
each valid point in order to find the maximum very
quickly. The values of the variables at the point where
the objective function is maximized correspond to the
fidelity level that the client must set in order to adapt as
well as possible to the user’s preferences while complying
with the global policies.

Our approach works in two phases.
• Off-line: Prior to actively joining the session, each

node runs a series of tests. During the tests, the node
is set to work under the Cartesian product of the
independent variables, and the values of the
dependent variables are measured and recorded
(performance mapping). Thus, the search space is
predetermined for each node. It is assumed that every
node’s behavior will remain relatively constant.

• On-line: During the collaborative session, the
system needs to adapt to changes that may occur.
For instance, the user might change her preferences,
thereby changing the relative importance of the
variables. A new search for the maximum value
inside the local valid search space has to be
conducted. Or a new user might join the session,
adding to the number of messages the server has to
process.

3.2. The Switchboard Architecture

The architecture we propose is described in Figure 2.
The server receives updates from the clients and
distributes those updates into the switchboard matrix
according to each client’s capacity and user preferences.
Each row of the switchboard handles a variable in the
system. Updates for a specific variable from all the

participating clients are received in the “receiving-plug”
(Figure 2). The message is then buffered in a small cache
at each “transmitting-plug”. Each transmitting plug has an
associated timer controlling its transmission period.
When the timer expires, all the updates stored in the
plug’s cache are transmitted to the subscribed clients (if
any). In order to reduce traffic, each “transmitting-plug” is
implemented as a multicast group.

In Figure 2, two clients and the server are described.
Receiving-plugs are represented as the column on the left
inside the Server rectangle. Transmitting-plugs are
represented as the matrix on right hand side of the
rectangle. Transmitting-plugs corresponding to more
frequent updates are located at the right hand side of the
matrix. Note that updates coming from both clients
arrive at the same receiving-plugs (one per variable).
Client n, running on a fast computer, subscribes to the
highest frequency of updates for variables 1 and 2, and to
the lowest frequency of updates for variable m. The user
on client n is more interested on variables 1 and 2 than on
variable m. Client 1, running on a slow machine,
subscribes to the slowest frequency of updates for
variables 1 and m, and to a rather slow frequency for
variable 2. The user at client 1 is more interested in
variable 2 than on variables 1 and m.

The effect of this architecture is that the server acts as a
buffer, providing slower nodes with a sub-sample of
messages generated by faster nodes in a controlled manner
that is determined by the client node’s capacity and users’
preferences. The apparent jumpiness of the objects which
are updated less frequently can be compensated, to an
extent, with dead-reckoning.

4. Experimental Setup

As a proof of concept for the architecture and the
model, a shared visualization system was built using
Java3D [7] . Figure 3 shows a screenshot of the system.

Figure 3. Screenshot of the system. Telepointers are
represented as 3D arrows. The sliders allow the user to set

the relative weights of different variables.

Three users meet virtually to discuss over a shared
visualization data set. Users utilize “telepointers” (3D
arrows) as means to point inside the virtual world. Small
video windows are provided to allow users to see the
faces of the other participants. Only one user can
manipulate the visualized object at a given time. The
application directly handles all the media related to the
variables in order to be able to optimize the objective
function. We could use third party applications, e.g., for
video conferencing, if they provide APIs to control the
level of fidelity and the statistics on the number of lost
messages.

4.1. Variables

The variables involved in the system are:
• T: Telepointers update rate.
• O: Visualization dataset update rate.
• V: Video update rate
• G: Graphical representation fidelity

Server

Client 1 Client n

Variable 1

Variable 2

Variable m

…

…

…

… … … …

Server

Client 1 Client n

Variable 1

Variable 2

Variable m

Server

Client 1 Client n

Variable 1

Variable 2

Variable m

…

…

…

… … … …

Figure 2. The Switchboard architecture. Each
“plug” corresponds to a specific combination of

variable and information fidelity. The column vector
on the left represents the receiving plugs and the

matrix on the right represents the transmitting plugs.

• F: Scene visualization frame rate.

Variables T , O, and V can take the following values:
0 (no updates), 1, 2, 10 or 20 updates per second.

Variable G can take value 0 (wire-frame representation)
or 1 (Phong shaded). Another use of variable G could be
different levels of detail of the visualization dataset.
Higher level of detail would correspond to larger values of
G.

Variables T , O, V and G are independent variables.
Variable F is the dependent variable. The values F can
take are the result of the performance mapping, and vary
considerably across machines.

Before using the values of the variables in the
objective function, they must be normalized by dividing
the current value by the maximum value of that variable.
This operation maps the values of the different variables
into dimensionless numbers between 0 and 1. Each
number expresses what fraction of the maximum fidelity
level is set by the current variable value. Note that the
maximum value for F is node-specific and is found
during the performance mapping.

The ranges of the variables can be defined with finer
granularity, thereby increasing the controllability of the
system. But the search space would become larger and
the search more expensive.

The sliders shown in Figure 3 provide users with a
way to assign relative weight to the variables. The values
of the sliders are normalized in order to obtain the
coefficients for the objective function as follows:

Â
=

i
i

i
i S

S
W (4)

Si are the values of the sliders, between 0 and 100.
Wi are the values of the coefficients used in the objective
function, Eq. (1).

Note that the selection of the variables for the model is
specific to the application. In a battlefield simulation, for
instance, one variable might be assigned to slow moving
vehicles, such as tanks and another to fast moving
vehicles, such as airplanes. Users of one type of vehicle
will probably be more interested in (and will assign higher
priority to) messages originating from vehicles of similar
type.

4.2. Scenario for Applying the Model

Here we describe a typical scenario for employing our
mathematical model in a collaborative session.

Initially, a benchmark program is run on each node in
order to create the data for its particular performance
mapping. The node subscribes sequentially to every
point in the Cartesian product of the dependant variables
for a certain period long enough that the behavior of the

dependent variables stabilizes. In our case the dependent
variable is frame rate and the required time is 5 seconds.
The dimension of the search space in our example is 250
(5 ¥ 5 ¥ 5 ¥ 2). During that time, the server generates
fake updates for telepointers, object movement and video.
Each message is marked with a sequence number, in order
to detect lost messages. At the node, an entry is added to
a vector every time a frame is displayed in order to
determine the average frame rate for the particular search
space vertex. Additionally, for each message that is
processed, an entry is added to a vector, in order to
determine the number of lost messages at each search
space vertex. When the benchmark finishes, the vectors
are saved to disk and summarized in a particular
performance mapping for the node.

Next, the collaborative session starts. Initially, the
optimizer module in the client finds the solution that
maximizes the objective function that corresponds to all
the sliders at 50 (the sliders can take values between 1 and
100). The client then subscribes to the server to the
appropriate “plugs” and sets the fidelity of the
visualization dataset according to the current solution.

Information exchanged between the client and the
server regarding the mathematical model is meta-data and
is sent through a TCP connection.

When the user moves the sliders in order to adjust the
relative importance of a variable, the optimizer module
finds a new solution. The search involves evaluating the
polynomial that represents the objective function at the
valid vertices (250 or less, since some of the search
vertices are marked as invalid). As result, it might be
necessary to unsubscribe from a particular plug (associated
with a fidelity level of a variable) and subscribe to a
different one.

Finally, the flow of the actual data between the client
and the server proceeds as described in Section 3.2. In
the example system, each plug is associated with a non-
reliable multicast group and information is transmitted
via UDP.

In our current implementation, if a node is subscribed
to receive a particular frequency of updates for a specific
variable, it will also send updates for that variable at the
same frequency. This is necessary in order to enforce
equations of type (3), and allows the designer to specify
upper limits on the number of messages the server will
need to process for each variable.

5. Results

Table 1 gives the characteristics of the computers used
for the experiments. The visualization dataset we used for
these particular experiments is a representation of the
human digestive system, and consists of 27,202 vertices.

Table 1. Computers used in the experiments

Processor
Processor

Speed Memory Graphics Card

Bachue Pentium 4 1400 MHz 1 GB GeForce2 – 32MB

Bochica dual Pent III 730 MHz 1 GB FireGL 1 – 32MB

Morlak Pentium II 500 MHz 256 MB Intense3D – 16
MB

The complete performance mapping cannot be graphed
because it involves five (5) different variables. But a plot
of the visualization frame rate (F) versus telepointers
update (T) and video frame rate (V) is shown for Bachue
and Bochica in Figures 4 and 5. Note the difference in
the scale.

0 1 2 10 20
0

10
0
2

4

6

8

10

12

14

v i d e o

t e l e p

Bochica: frame rate vs (video x telep)

Figure 4. Bochica: Impact of video and telepointer
updates on the frame rate.

0 1 2 10 20
0

10
0
5

10
15
20

25
30

35

40

video

telep

Bachue: frame rate vs (video x telep)

Figure 5. Bachue: Impact of video and telepointer
updates on the frame rate.

Note also that as the frequency of video messages
increases, the frame rate decreases noticeably, whereas the
impact of more frequent telepointer messages is small.

Video messages have a larger impact on the simulation
than telepointers messages.

The solutions suggested by the math model are
sensible and consistent with the data captured in the
performance mapping. For instance, when the maximum
priority is assigned to frame rate, the system lowers the
resolution of the model to wire-frame and reduces the
frequency of the video updates, which negatively impact
the frame rate, as shown in Figures 4 and 5.

The number of lost messages is an important
parameter for measuring degradation of the system.
Slower nodes drop more messages than faster ones under
the same load. Again, as the number of messages for a
specific variable increase past a certain threshold, so does
the number of lost messages.

0

10

0121020

0

0.2

0.4

0.6

0.8

1

video

telep

Morlak: Video Drop vs. video x telep

Figure 6. Percentage of video messages dropped
depending on the number of video and telepointers

messages per second (in Morlak).

Figures 6 and 7 show how the number of lost video
messages grows for Bochica and for Morlak.

0

10

0121020

0

0.01

0.02

0.03

0.04

0.05

0.06

video

telep

Bochica: Video Drop vs. video x telep

Figure 7. Percentage of video messages dropped
depending on the number of video and telepointers

messages per second (in Bochica).

Note that Bochica is capable of handling video
messages without dropping any until the frequency
exceeds 10 messages per second. In Morlak, a percentage
of messages is always dropped. Notice also the difference
in scale. Bochica does not drop more than 6% of video
messages, whereas Morlak drops up to 95% in the worst-
case scenario.

We have incorporated the number of dropped messages
during the benchmarks to the algorithm that finds the
solution. Particular points in the Cartesian product of
variables that are found to cause too many dropped
messages cannot be chosen as solutions. If the number of
dropped messages is not considered, these points appear
as good candidates for the solution, because the frame rate
increases as messages are dropped and need not be
processed. In our current experiments, we mark a point
non-valid if it causes more than 50% drop in messages of
any variable. In a real life application, different
thresholds could be applied to different variables,
according to the user’s perception and/or relative
importance.

Since the mathematical model is based on actual data
collected through the benchmarks, the solutions found for
the same set of slider values (directly related to the
objective function coefficients) vary considerably across
nodes. Table 2 shows the solutions found at the
different nodes for the same set of user’s slider values.
The user’s sliders were set to <T = 4, O = 4, V = 4, G =
51, F = 100>. This set of sliders values assigns the
highest importance to frame rate, some importance to the
graphical representation of the model and very little to the
remote events. Note that in both Bochica and Bachue
(the faster machines) updates from the telepointers and
objects can still be received at maximum speed, without
affecting the frame rate. Morlak, on the other hand, has
to reduce the frequency of all remote updates. Note also
that all nodes, fast and slow, need to reduce the frequency
of video updates, which have a big impact on the frame
rate.

Table 2. Solutions found at the different nodes for the
same set of user sliders values.

Teleptr. Object Video Resol’n.
Morlak 1 2 1 1
Bochica 20 20 2 1
Bachue 20 20 1 1

In order to test the improvement in frame rate when
utilizing the proposed architecture, a node was set to
simulate 20 updates per second for each variable
(telepointers, object, video). Data was collected about the
frame rate at each node with and without the Switchboard
Architecture. The results are shown in Figure 8.

Bachue Bochica Morlak

No S.A.

S.A.0

1

2

3

4

Frame Rate Increase (%)

No S.A.

S.A.

Figure 8. Increase in Frame Rate in the presence of
the Switchboard Architecture and the solutions described

in table 2.

The largest improvement is naturally obtained for the
slowest machine, which benefits most from the buffering
effect of the server. The frame rate increases found were
as follows: Bachue: 33%, Bochica 10% and Morlak
366%.

6. Conclusions and Future Work

We have presented the Switchboard Architecture and
the underlying mathematical model. Current results show
that the architecture provides an effective way of enforcing
global constraints while allowing users to modify the
characteristics of the user interface according to their
preferences.

The situations that can benefit from the framework we
propose can be characterized as follows:
• Participating nodes have diverse degrees of

computing power.
• The modalities for sharing information can be

represented with varying degrees of fidelity in
space/time dimensions.

• There is not enough computing power at each and
every node to represent at the same time all the
modalities at their maximum level of fidelity.

In such an environment, our solution allows the
following to happen in a controlled manner:
• Users can choose the fidelity or the modality for

information presentation to meet their preferences
(within globally specified restrictions or policies).

• A global administrator can define global policies
regarding minimum requirements for information
representation/sharing, as well as the maximum
number of messages the server can process per unit of
time.

The data collected in the benchmarks that are run
before the collaborative sessions form a static snapshot of
the system. If conditions change during the collaborative
session (for instance if the network becomes congested),
the current system does not have a way to react to the
change. We thus plan to explore how to add dynamic
monitoring and adaptation under changing conditions.

In order to make the system adaptive, it is necessary to
collect, during the collaborative session, the same
statistics that are collected during the benchmarks, that is:
frame rate and percentage of dropped messages. If the
percentage of dropped messages exceeds the upper bound,
the current solution is temporarily marked as invalid. In
this case, the optimizer module has to be invoked in order
to look for a new solution. Since the optimizer module
uses the whole search space as input, the statistics
collected during the benchmark have to be extrapolated
based on the current statistics collected during the
collaborative session. We are currently experimenting
with different formulations for this extrapolation.

Acknowledgements
The work presented in this paper was sponsored by

Eafit University and the CAIP Research Center. The
authors are grateful to Professor Manish Parashar, from
Rutgers University, for his ideas and comments on how
to make the model adaptive.

References

[1] Capps, M.V. Fidelity Optimization in Distributed Virtual
Environments. Ph.D. thesis, Naval Postgraduate School,
Monterey, CA 2000.

[2] Faisstnauer, C., D. Schmalstieg and W. Purgathofer.
“Priority Round-Robin Scheduling for Very Large Virtual
Environments”. Proceedings of IEEE VR 2000, pp. 135 –
142.

[3] Greenhalgh, C., S. Benford and G. Reynard. “A QoS
Architecture for Collaborative Virtual Environments”. In
Proceedings of ACM Multimedia 1999, pp. 121 – 130.

[4] Macedonia M.R. and M. Zyda. “Taxonomy for Networked
Virtual Environments”, IEEE Multimedia, 1997, pp. 48-56.

[5] Macedonia M.R. A Network Software Architecture for
Large-Scale Virtual Environments. Ph.D. thesis, Naval
Postgraduate School, Monterey, CA 1995.

[6] Singhal, S. and M. Zyda, Networked Virtual
Environments, ACM Press, New York, 1999.

[7] Sowizral, H., K. Rushforth and M. Deering. The Java 3D
API Specification. Java Series. Addison-Wesley, December
1997.

[8] Terrence F. and P. Dew. “A Distributed Virtual
Environment for Collaborative Engineering”. In Presence,
Vol 7, No 3, June 1998, pp 241 – 161.

[9] Trefftz H. and I. Marsic. “Message Caching for Global and
Local Resource Optimization in Shared Virtual
Environments”. Proceedings of VRST 2000, pp. 97 – 102.

