
102 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

GAMES

A fter 17 years at the University of Southern Cal-
ifornia (USC) of founding, running, and build-
ing the games program, the question most
often asked of me is, “How do I get a position in

the games industry?” This is being asked at all levels—by se-
niors in high school, soon-to-be-college-graduates who have
not taken any game-building classes, and many others who
started down other career paths that ended before they did. I
attempt to answer it in the kindest way possible using my sage
years of experience. There are many subquestions that are part
of this, and I list and answer them as smartly as I know how.

First of all, you really have to
want to get a position in the games
industry and be compelled to do
this—if that is you, then great! Read
on! If you are just thinking about it
but studying/working in something
else, it’s probably not for you. In mod-
ern times, getting a position in the
games industry means some years

of study at the right university and experience with build-
ing games in teams. It used to be that all you had to do was
take beginning programming and data structures courses
and then drop out of school to found your own studio. That
is rarely true now and not a recommended pathway to the
games industry, says the professor who teaches games
courses in a university… . So, let’s start out by assuming you
really want to do this, and you are ready for some education!

WHAT GAMES PROGRAM
SHOULD I ATTEND?
This question gets asked of me all the time, even though
I have been at USC for 17 years and founded the games
program there. I usually do not answer this with, “USC, of

Digital Object Identifier 10.1109/MC.2022.3151459
Date of current version: 6 May 2022

How Do I Get a
Position in the Games
Industry? The FAQ
Michael Zyda , University of Southern California

 The question most often asked of me at all

levels is, “How do I get a position in the games

industry?” I will attempt to answer this in the

kindest way possible using my sage years

of experience.

EDITOR EDITOR NAME
Affiliation;

EDITOR MICHAEL ZYDA
University of Southern California;

zyda@usc.edu

course”; I usually try to provide guid-
ance as to what the potential student
should look for in a games program.

The way I usually start out is to let
the questioner know where hiring
is happening in the games industry.
First of all, one of the constants in
the games industry is that the de-
mand for engineers/programmers is
always strong:

› 60% of the demand in hiring for
positions in the games indus-
try is for engineers who know
how to build games and work in
cross-disciplinary teams

› 30% of the demand is for artists
who know how to utilize the
tools used by the games in-
dustry and produce art for the
cross-disciplinary team

› 5% of the demand is for creatives
in music and sound production
for games

› 5% of the demand is for game-
play designers—and, for the
most part, that demand is for
seasoned designers, not fresh
university graduates.

 Cross-disciplinary teams means pro-
grammers, artists, gameplay design-
ers, musicians, and sound engineers.
Notice that I am not including busi-
ness, legal, and marketing people, who
are also essential. I am just going to fo-
cus on the actual game developers, not
the corporate-side leeches. No. I really
appreciate everyone!

SOME GAME SCHOOL
PROGRAM QUALIFICATIONS

Engineers/programmers
When I say engineers/programmers,
the school you are looking for ought
to be teaching you C++ as a first lan-
guage, followed by a data structures in
C++ course, followed by a team-based
project of some sort where your C++

skills are utilized. If the school you
are considering is still teaching these
courses in Java, you ought to run away.
If the hiring people in the games in-
dustry hear that you learned Java as
a programming language before you
learned C++, they will terminate the
interview and not consider you fur-
ther. That’s just the way it is. Also, C#
is not C++, and, while skills in C# are
great for building side-scrollers for the
mobile market, C# will not help you
get a position in a AAA-title-building
game development studio. I pointer
you to C++! programmer humor.

That program also needs to include
a solid course in networking, prefera-
bly at the applications layer, and a solid
course on operating systems. All AAA
titles are networked and need respon-
sive software built with an understand-
ing of operating systems. These two
courses are essential, and any program
on game development that does not
have this solid base for the engineers
ought to be avoided, as the games in-
dustry hiring people will expect that
you have had these. They will test you—
you cannot just skip these courses and
get found out later in the interview.

Another course engineers typically
take is game engine development—
this is not a course on how to use a
game engine but how to build one.
This course has been stuck inside of
most games programs since their start
circa 2005—when the expectation was
that students would build their own
game engine because there were not
any good open source ones then. Now,
a real game engine is a big piece of soft-
ware. For example, Unreal Engine has
more than 16 million lines of code, and
your custom code on top of that engine
will be 200,000–1,000,000 additional
lines by the time your game ships.1

Epic has probably spent more than
US$1 billion developing this engine.

Therefore, the expectation that you
will build a fully functioning game

engine inside of your university course
is a bit off. The closest I have ever seen a
student team get to developing its own
game engine was during our year-long
advanced game projects course, where
one half of the development team built
its game, Tales From the Minus Lab (Fig-
ure 1), on top of the Unity game engine,
while the other half developed a game
engine that supported the functions
Unity provided to the game. This could
have been a train wreck, but the team
was awesome and delivered both a
game and a game engine. Most game
engine development courses just task
you with building the graphics render-
ing pipeline part of the game engine in
C++. That is probably an excellent ex-
perience, and I highly suggest that you
find a program that requires it.

Once you are so equipped with ap-
propriate programming/engineering
skills, you should then take a course on
game design, which ought to use your
programming skills to actually build
something, not just hand you scis-
sors, cardboard, and markers for you
to paper-prototype something over
a whole semester. Don’t waste your
time—build it!

The next thing you ought to do
in this program is spend a semester
working in a team, designing and pro-
totyping a game that you can pitch for
development over a two-semester pe-
riod—we call this the advanced game
projects (AGP) course. This ought to
be a simulation of an industrial team,
meaning you build a game over an aca-
demic year that is so unique that, when
you show it to hiring people, they will
immediately want to know your role in
its development and, maybe, even con-
sider hiring your entire team. That is
the goal—it might be a reach, but that
is what you should be shooting for.

Now, today, it is very easy to down-
load game starter kits from Unity
or Epic, but, if all you are going to do
is build yet another side-scroller, no

M AY 2 0 2 2 103

104 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

GAMES

one is going to care. You need to build
something that shows off your tech-
nological prowess and game design
skills. If your game doesn’t have net-
working, 3D characters, cool shaders,
and something that grabs a players’
need for gameplay, then you will not
get far with the hiring people for the
AAA-title games industry.

Artists
The most important lesson is that
there is not just one kind of artist in
the games industry—remember that
30% of the hiring demand is for art-
ists. Roughly, there are concept artists,
3D modelers (character modelers and
environment modelers), texture art-
ists, lighting artists, and animators.
Therefore, if you are selecting a games

program, you ought to choose one that
has a substantial offering in game
art and design that joins with the en-
gineers and gameplay designers in a
yearlong AGP course.

Concept artists are required at the
start of most game development to
sketch out or model what the game
will maybe look like. This is nice
to have at the beginning, as it has a
large impact on the selection of the
technology to be used in building
the game. Concept artists are spe-
cialized—they have skills that sell
the project before production, when
the money people have not yet said
yes. They are also great for putting
together a storyboard for the illus-
tration of a complex part of the game
during development.

There are two kinds of 3D modelers:
character and environment modelers.
Character modelers build the 3D per-
son/animal/robot you want for your
game. Animators rig those 3D char-
acters so they can move. Sometimes,
your character modeler can rig, but
model rigging is highly specialized,
and it may be another person with dif-
ferent talents.

Environment modelers build the
3D models of the gamescape where the
game takes place. They build build-
ings/mountains/forests where our 3D
characters can frolic/run/shoot—or
whatever they do in such scapes. The
tool used by environment modelers is
the same one character modelers and
animators use, Autodesk’s Maya.

Texture artists take the 3D models
and apply a texture to the polygons
that make up the 3D models. Texture
artists tend to act strangely if you give
them a digital camera to use—they
will take pictures of paint peeling,
dirt, sand, mud on your car, and just
about anything that they might be
tasked to apply onto the 3D models. I
appreciate them greatly, as they make
the 3D models/worlds look dirty and
used, like the real world. Texture art-
ists often work with lighting artists
to add shaders to the polygons of the
model so those textures are applied.
Lighting artists light the scene, the
entire 3D world and all its parts, with
the hope that that lighting runs in real
time, with the 3D modelers getting the
blame if they use too many polygons
for that world.

It is a rare games school that has
such a comprehensive game art and
design program—usually, game schools
have to reach out to art schools and
beg them to please do art for the games
being built in the AGP course. Such re-
lationships are valuable and delicate,
and they should be treated with the
utmost care.

Check if the games school you are
considering has 1) a game art and de-
sign program or 2) strong relationships
with outside art schools. If neither of
these is true, then consider looking

FIGURE 1. The Tales From the Minus Lab poster from the USC Advanced Games Proj-
ect course.

 M AY 2 0 2 2 105

elsewhere. The alternative is that all
your games use “Asset Store down-
loaded” models, which look nice indi-
vidually but never look well together,
as they rarely match the concept art
you have, in either digital form or your
head. Access to real artists makes the
games school great—be there.

Gameplay designers
Gameplay design is how you create the
story and interactions the player of
the game performs. There is the over-
all story, sometimes called the back-
story, and then the story for the player,
meaning the player’s role in that story
and how he or she executes that role
through some kind of interaction—
button presses, keystrokes, and so on.

Game schools that teach you how
to do gameplay design are going to
teach you the history and vocabu-
lary of gameplay, the various genres
of games that have been created, and
how you produce a game design doc-
ument (GDD) that becomes the guide
for your development team, a guide
that needs to be continuously up-
dated as game production proceeds.
GDDs have sections for the introduc-
tion, audience, platform, system re-
quirements, key features, reference
games, gameplay overview, gameplay
elements, gameplay verbs, game-
play philosophy, pillars of gameplay,
what-this-game-is-not disclaimer,
gameplay overview flowchart, win/
lose conditions, replay value consid-
erations, user interface (UI), game-
play scope chart, player character dis-
cussion, game world structure, levels,
story overview, full narrative, and
one-page production plan.

The introduction is a brief para-
graph on what the game is about—the
succinct game name and what do you
do in that game. The audience is whom
the game for and their ages—you want
to build your game for a particular
audience, and you need to know that
before you start building it or draft-
ing the rest of the GDD. The platform
is what kind of device the game being
built for, and system requirements are

any special requirements for that plat-
form—if you can’t answer this in the
GDD, stop.

The key features are three or four
bullet points on what is interesting
about the game you are proposing—
if you cannot think of these, then
why are you suggesting building this
game? Do we really need yet another
2D side-scroller? I believe we do not
and, in fact, suggest that Unity and
Epic remove that starter kit from their
websites! Please.

Reference games are the games
that have inf luenced you to draft
your GDD—they might be reference
games in that “your game will play like
them,” “your art style will be similar to
them,” or “your story will be reminis-
cent of them.” Hopefully, it will not be
“the same game as xxx with different
character skins,” a 2D side-scroller, or
a tower defense—I don’t like tower de-
fenses, either.

The gameplay overview has two
parts—one is a single-sentence log line
that tells you succinctly what the game
is about. If you need two sentences, de-
lete the second one. The other thing
the gameplay overview section has is
about three or four paragraphs that
provide a high-level overview of your
game’s story and the character’s role in
it. I know that writing the short story is
much harder than writing a novel, but
you must resist making this overview
overly overt.

The gameplay elements section is a
short bullet point list of things like ex-
ploration, puzzle-solving, and sword-
play. These are high-level things your
player will be doing. Gameplay verbs
are the things the player can do to ex-
perience the gameplay elements with
the press of a button on the UI—walk,
examine, pick up, use, and swing axe.

The gameplay philosophy is the
overall philosophy of the development
team with respect to the proposed
game: “Our game seeks to innovate
in the first-person shooter realm by
drawing indelible chalk marks around
each passed virtual character until the
original sidewalk is no longer visible,”

or something like that. Usually, an
additional five to six paragraphs are
provided to explain this innovation to
convince the green-light committee or
investors that this is not just another
side-scroller.

The pillars of gameplay section is a
short bulleted list of how we are going
to deliver on our promise of innova-
tion in the game. “What this game is
not” is a disclaimer to the reader (the
development team, investors, and so
on) to assure them that we are not cre-
ating yet another 2D side-scroller; we
are building a significant 3D slice of
the global metaverse that will surely
make us all entertained and wealthy
beyond our wildest dreams, along with
a signature in blood.

The gameplay overview flowchart
is a block diagram that shows how the
various levels of the game are con-
nected. Levels are complete, stand-
alone parts of the game that are en-
tered via success at another level or
from the start of the game. Each level,
typically, has a win/lose condition
that lets you go on to either the next
level/game end or the respawn lo-
cation when you have lost the level.
Each game must have an overall win/
lose report when you get to the end of
all levels or the end of all experience
when it has been determined that you
have completely lost.

The replay considerations section is
the part of the GDD where you indicate
either that you can only play the game
once through, as things are exposed to
you by the end of the game, or that you
can play again and receive a new ex-
perience. The UI is where the buttons
you press are and how they activate the
gameplay verbs. In the UI are also in-
formational displays that tell you your
score or health so that you know if you
are about to experience a miserable
and humiliating virtual pause in your
online entertainment.

The gameplay scope chart has way
more detail than the gameplay over-
view chart. Its purpose is to provide
an understanding of the complexity
of what needs to be built. The player

106 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

GAMES

character discussion tells the devel-
opment team the point of view of the
character—first or third person—and
how the player relates to the character
in the overall narrative of the game.

The game world structure is a de-
tailed narrative on what the hopefully
3D world of the game entails and how
the characters move through it. Each
level is broken out as to what it looks
like and how it integrates into the
overall game world.

The story provides the context for
the game and a detailed understand-
ing of how the player character moves
through and operates inside of that
story. There is an overview as well as
a full narrative, with as many details
as are useful for the development of
the game.

There is a one-page production plan
that indicates how many expected
days each major task should take with
respect to each specialized person in-
volved in the game’s development. The
game producer who puts this together
and does a good job has a position for
life. If the game ends up taking eight
years to produce after all of the devel-
opment money has run out, then that

producer might consider a different
career in life.

That is what a GDD contains, and
your mileage may vary. Gameplay de-
signers are taught how to draft these
through multiple projects in their ed-
ucational program, sometimes testing
their ideas with paper prototypes and,
more frequently nowadays, via quick
prototypes using starter kits down-
loaded from the Unity or Epic web-
sites. The game school that you choose
should provide you with some notion
of how they provide you this education
and as to how many of these gameplay
designs have gone on to be deployed
inside of hit commercial games.

Gameplay designers who do well
in their educational programs rarely
move directly into an industry role
as lead designer. They typically enter
industry as a level designer; techni-
cal designer; or, sometimes, assis-
tant producer. Level and technical
designer roles require skills beyond
just gameplay design, and it is recom-
mended that that additional educa-
tion be pursued.

THE AGP COURSE
Now, at all of the schools you are
looking at, one thing you want to
make sure is that there actually is a
12- to 14-month long projects course,
maybe wit h t he t it le “AGP.” The
structure of this course is that it is
a two-semester-long development
project—say, the fall and spring se-
mesters—with the game designs se-
lected for production in the previous
academic year’s spring semester. At
USC, we typically receive about 20
GDD submissions, and a faculty and
industry committee gets this down to
six or seven finalists for production.
Winning teams in the AGP course
receive lab space; a team of student
developers—maybe 20–65 students;
and oversight from faculty with expe-
riences in gameplay design, engineer-
ing, art, music, and sound. This course
has run from 2005 to the present and
has placed some 3,000–4,000 students
into positions in the games industry.

Look for a school like that and have
that kind of experience, and it should
be rather straightforward for you to
get a position in the games industry.2

DEMO DAY, EXPO, WHATEVER
THE NAME—SHOWING OFF
YOUR GAMES TO INDUSTRY
Whatever games school program you
are considering ought to have some-
thing called Demo Day or Games Expo,
a biannual event where student-built
games are shown off to the games in-
dustry. I say biannual meaning that
there is a demo day at the end of the
fall semester and one at the end of the
spring semester. The fall demo day
is the best one for hiring and intern-
ships—most such decisions are made
during the time period from Decem-
ber through March. Therefore, show-
ing off great projects at a demo day
in December is essential. The spring
demo day is also nice, as it is a great
way to celebrate the game school’s
experience for its graduates—it is
important to note that, by the end of
the spring semester, all of the intern-
ship and hiring positions are already
filled, and little in the way of hiring
will occur at that end-of-spring-se-
mester event.

Now that you know these demo day
experiences exist, attend them for the
game schools you are considering.
They will get you excited about the
game development career path and
let you know about limitations in the
game school’s educational program. If
most of the games are side-scrollers,
maybe find another school that is
pushing the boundaries of technol-
ogy and game development. Figure 2
is provided as a reference for what you
should be looking for.

ADDITIONAL EVALUATIONS
FOR GAME SCHOOL
SELECTION
Once you have studied the educational
programs at the game schools you are
interested in, you next need to con-
sider the people who run them—you
want to learn from those who have

COMMENTS?
I f you have comments about this

article, or topics or references

I should have cited or you want

to rant back to me on why what

I say is nonsense, I want to hear.

Every time we finish one of these

columns, and it goes to print,

what I’m going to do is get it up

online and maybe point to it at

my Facebook (mikezyda) and my

LinkedIn (mikezyda) pages so that

I can receive comments from you.

Maybe we’ll react to some of those

comments in future columns or

online to enlighten you in real time!

This is the “Games” column. You

have a wonderful day!

 M AY 2 0 2 2 107

FI
G

U
RE

 2
. A

 p
ro

to
ty

pe
 e

du
ca

tio
na

l p
ro

gr
am

 fo
r t

he
 G

am
e

D
ev

el
op

m
en

t U
ni

ve
rs

it
y.

T
h

e
G

am
e

D
ev

el
o

p
m

en
t

U
n

iv
er

si
ty

G
am

e
D

ev
el

o
p

m
en

t
G

am
e

D
es

ig
n

G
am

e
D

es
ig

n
W

or
ks

ho
p

P
ro

fe
ss

io
na

l C
+

+
 P

ro
gr

am
m

in
g

3D
 C

om
pu

te
r G

ra
ph

ic
s

an
d

R
en

de
rin

g
G

am
e

E
ng

in
e

D
ev

el
op

m
en

t
G

am
e

N
et

w
or

ki
ng

 In
fr

as
tr

uc
tu

re
s

M
et

av
er

se
 D

es
ig

n
an

d
D

ev
el

op
m

en
t

A
rt

ifi
ci

al
 In

te
lli

ge
nc

e
1

M
ac

hi
ne

 L
ea

rn
in

g
fo

r
G

am
es

G
am

e
D

es
ig

n
W

or
ks

ho
p

G
am

e
V

is
ua

l a
nd

 In
te

rfa
ce

 D
es

ig
n

G
am

e
S

ou
nd

 D
es

ig
n

M
et

av
er

se
 D

es
ig

n
an

d
D

ev
el

op
m

en
t

G
am

e
D

ev
el

op
m

en
t 1

G
am

e
D

ev
el

op
m

en
t 2

C
o

n
ce

p
t

A
rt

 T
ra

ck
G

am
e

D
es

ig
n

W
or

ks
ho

p
B

as
ic

s
of

 C
on

ce
pt

 A
rt

S
ty

le
s

an
d

A
na

to
m

y
C

ha
ra

ct
er

 D
es

ig
n

W
or

ld
 D

es
ig

n
P

os
e

an
d

Li
gh

tin
g

C
on

ce
pt

3D
 M

o
d

el
in

g
 T

ra
ck

G
am

e
D

es
ig

n
W

or
ks

ho
p

B
as

ic
s

of
 3

D
 M

od
el

in
g

an
d

D
ig

ita
l S

cu
lp

tin
g

E
nv

iro
nm

en
t M

od
el

in
g

C
ha

ra
ct

er
 M

od
el

in
g

M
od

el
 P

ro
du

ct
io

n

G
am

e
A

ni
m

at
io

n
Tr

ac
k

G
am

e
D

es
ig

n
W

or
ks

ho
p

B
as

ic
s

of
 3

D
 A

ni
m

at
io

n
C

ha
ra

ct
er

 A
ni

m
at

io
n

1
C

ha
ra

ct
er

 A
ni

m
at

io
n

2
A

na
to

m
y

S
tu

dy
 a

nd
R

ig
gi

ng
S

tr
uc

tu
ra

l P
ro

du
ct

io
n

S
ta

rt
-U

p
P

itc
he

s,
P

ro
du

ct
iz

at
io

n,
B

us
in

es
s

M
od

el
s

an
d

In
te

lle
ct

ua
l

P
ro

pe
rt

y
D

ev
el

op
m

en
t

T
he

 b
es

t p
ro

je
ct

s
go

 to
 th

e
in

cu
ba

tio
n

an
d

ac
ce

le
ra

tio
n

ce
nt

er
 fo

r
ga

m
e

an
d

te
ch

no
lo

gy
 s

ta
rt

-u
ps

.

G
am

e
A

rt
an

d
D

es
ig

n

A
G

P
 1

A
G

P
 2

108 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

GAMES

designed, developed, and shipped hit
games. You don’t want to learn game
building from faculty who have not
had commercial game-building expe-
rience, nor do you want to learn from
someone whose primary experience
in the games industry was to bank-
rupt the studio and put 800 develop-
ers out of work. The best way to dis-
cover something about the faculty is
look them all up on LinkedIn and see
who is best connected to the hiring
people and leads in the games indus-
try. The last time I looked at LinkedIn,
I found that I was connected to 8,900
people in the games and computing
industries and am followed by another
8,640. Reach into industry is import-
ant if you are expecting to actually get
a position in the games industry upon
graduation. You might also do a Goo-
gle search on the key personnel to see
how they have appeared in news and
press releases.

That is how you get a position in
the games industry: education,
education, and lots of game

building. Have fun in your pursuit of
that dream!

ACKNOWLEDGMENTS
When one establishes a games pro-
gram, there are many people who con-
tribute and help out. This list is not
comprehensive. Gerard Medioni, chair
of the USC Department of Computer
Science, let me create the syllabi for 16
new courses and plan to establish the
program. Chris Swain and Victor La-
cour were instrumental in making the
initial offerings of the advanced games
projects course outstanding. Scott Eas-
ley, St John Colon, and Laird Malamed
helped cast the AGP into something
that will live forever at USC. All of my
past students helped make the games
program professional; great; and, most
importantly, fun!

REFERENCES
1. “What is the size of Unreal Engine’s

source code currently?” Quora.com.
https://www.quora.com/What-is
-the-size-of-Unreal-Engines-source
-code-currently (Accessed: Mar. 14,
2022).

2. M. Zyda, “Educating the next gener-
ation of game developers,” Computer,
vol. 39, no. 6, pp. 30–34, Jun. 2006,
doi: 10.1109/MC.2006.197.

MICHAEL ZYDA is the founding
director of the Computer Science
Games Program and a professor
of engineering practice in the
Department of Computer Science,
University of Southern California, Los
Angeles, California, 90089, USA.
Contact him at zyda@mikezyda.com.

Computing in Science
& Engineering
The computational and data-centric problems faced
by scientists and engineers transcend disciplines.
There is a need to share knowledge of algorithms,
software, and architectures, and to transmit lessons-
learned to a broad scientific audience. Computing in
Science & Engineering (CiSE) is a cross-disciplinary,
international publication that meets this need
by presenting contributions of high interest and
educational value from a variety of fields, including
physics, biology, chemistry, and astronomy. CiSE
emphasizes innovative applications in cutting-edge
techniques. CiSE publishes peer-reviewed research
articles, as well as departments spanning news and
analyses, topical reviews, tutorials, case studies, and
more.

Read CiSE today! www.computer.org/cise

Digital Object Identifier 10.1109/MC.2022.3166647

