
96 March/April 2007 Published by the IEEE Computer Society 0272-1716/07/$25.00 © 2007 IEEE

Graphically Speaking Editor: Miguel Encarnação

Mobile gaming is one of the fastest growing seg-
ments in the video game industry.1 The $680 mil-

lion acquisition of Jamdat by Electronic Arts to form EA
Mobile in 2006 is indicative of how lucrative this seg-
ment is becoming to game development and publish-
ing companies. The attraction lies in the huge, accessible
market of mobile phones: it is estimated that more than
two billion are in use. Most of these mobile phones have
at least the computing power of earlier Pentium-based
PCs. Yet, development on these phones is still far from
simple, with various standards and platforms available
for the plethora of phone types on the market. Even
Java game developers have to publish hundreds of ver-
sions to cover the great variety of mobile devices.

Recently the push has been toward using open source
Linux as the basis for a standard platform. Some mobile
devices already ship with Linux, and the share of Linux
devices is expected to grow. The bulk of today’s devices
ship with proprietary operating systems, while the rest
use Linux, Symbian, Windows Mobile, AJAR, and other
platforms. Platform fragmentation characterizes the
industry, and Apple’s iPhone, with its OSX-based plat-
form, will not improve the situation.

Fragmentation makes it hard for mobile developers,
who must support many different implementations.
Working toward a common platform will enable faster
and less expensive development and deployment of appli-

cations for third-party developers. Based on this broad-
er direction is the initiative to build open source games
that use the Linux platform and its rich functionality.

Through a partnership between Motorola Laboratories
and GamePipe Laboratory at the University of Southern
California (see Figure 1), we are exploring Linux’s capa-
bilities for mobile gaming and to provide developers
with an alternative to what is predominantly a Java-
based medium. Moving beyond Java lets game devel-
opers fully leverage the hardware advances and
software capabilities of high-end smart phones. Doing
so will help bring to mobile game development the same
kind of developer’s utopia we already have in PCs.

Initial preparation
To help achieve our goals, we divided the project into

two phases: analyzing existing technology and under-
going required training.

Existing technology
To begin with, we evaluated current technology

(hardware and software) to determine whether it was
mature enough to provide the basic functionality we
needed to build games—namely graphics, networking,
and sound.

On the hardware side, we used Motorola’s Linux-
based E680i smart phones. The E680i has strong hard-
ware specifications (see Figure 2 on page 92), with a
huge touch screen and ample memory and processing
power. Interestingly, the games preinstalled on these
devices for China Mobile are nearly all Java-based,
reflecting the current market.

On the software side, we chose to use whatever
standard graphics, network, and audio libraries were
available on the phone as part of the EzX platform.
EzX, Motorola’s Linux framework for mobile phones,
is built on Montavista’s Linux Consumer Electronics
Edition running on a Linux Kernel 2.4 core. The
framework comes with a range of APIs for standard
applications, such as communications and multime-
dia. However, with the exception of Java 2 Micro
Edition, the framework didn’t have direct support for
games. We chose to use the existing APIs for game
development and, as the platform matured, add fur-
ther API support to provide full flexibility to mobile
game developers.

Michael Zyda,
Dhruv Thukral,
and Sumeet
Jakatdar
University of
Southern
California
GamePipe Labs

Jonathan
Engelsma,
James Ferrans,
Mat Hans, Larry
Shi, Fred Kitson,
and Venu
Vasudevan
Motorola Labs

Educating the Next Generation of
Mobile Game Developers ____________________________

1 GamePipe Laboratory at the University of Southern California. Continued on page 92

Graphically Speaking

92 March/April 2007

In terms of graphics, the phones come with Trolltech’s
Qt. This is a C++-based GUI toolkit that developers use
to build complex interfaces, such as the Linux K Desktop
Environment. Although not primarily intended for game
programming, Qt provides a powerful ability to build
widgets, sprites, and other GUI-based elements that
attracts game developers. The Qt API comprises useful
graphics-related classes suitable for building 2D games.
Through OpenGL, Qt also can provide an interface to
3D graphics, but this feature does not come with the
E680i.

For networking capabilities, although the commer-
cially shipped phones support numerous commonly
used Bluetooth profiles, they didn’t support the personal
area networking profile. So, Motorola added the open
source BlueZ Bluetooth stack for our use.

For sound, we chose to use either Qt’s internal API for
sound support—the E680i’s implementation of the
MPEG Audio Decoder library—or Libmad—a sound-
decoder library that works for MP3 files.

Training
The next phase of the project involved the training we

needed to work with all the internal tools that Motorola
provided to GamePipe. The EzX framework is built on
layers of standard as well as EzX-specific APIs, and has
an SDK not yet generally available outside Motorola.
Two graduate students went to Motorola’s headquarters
in Schaumburg, Illinois, for training on various aspects
of EzX, ranging from setting up the desktop develop-
ment environment to working with the phone setup.

Next, the two students undertook a project to create
a multiplayer prototype game that used Qt for the graph-
ical interface and BlueZ for networking. The purpose
was to test the framework’s feasibility for game devel-
opment as well as test the learning curve for such an
effort, considering that this collaboration was to teach
students how to build games on Linux-based phones
using APIs that they had never worked on before. The
result of the effort was Symon Says, built in a space of
six weeks.

The success of Symon Says (see Figure 3) enabled fur-
ther possibilities of integrating new APIs into EzX.
Moving from 2D to 3D was the next obvious direction.
For this, we used Simple Direct Media Layer, a multi-
media library written in C that abstracts over various
graphics platforms and is widely used for Linux-based
games. We ported SDL and SDL Mixer—SDL’s audio
component—to EzX to enable both 2D and 3D game
development.

In addition to providing multiple API support for
graphics and audio, Motorola provided another option
for networking in the form of WiFi Secure Digital I/O
cards. This option lets programmers use the standard
UNIX sockets interface rather than going through the
Bluetooth adapter and BlueZ specific bindings.

Design philosophy
With significant involvement from Motorola, the

University of Southern California offered Advanced
Mobile Games and Devices for the first time in the Fall
2006 semester. Mitch Lasky and Zack Norman, the
founders of Jamdat, gave our introductory lecture. This
confluence of a relatively new and constantly maturing
platform and the participation of two of the best-known
and well-respected personalities in mobile gaming made
the course very attractive; thus, class enrollment was
beyond both our expectations and planned capacity.

In their talk, Lasky and Norman stressed that despite
the recent advances in mobile devices’ graphic capabil-
ities, mobile game development still favors design inno-
vation over flashy graphics and extra features. They
emphasized that mobile devices are inherently mobile,
and that developers and designers must factor into game
design that the end user is not sitting at home. People
play games on mobile phones on demand, wherever
they are. Mobile games must be tolerant of interference
from the real world, as the human world is often noisy,

2 E680i technical specifications.

Network: GSM 900/ GSM 1800/ GSM 1900
Size dimentions: 109 � 53.8 � 20.5 mm, 105 cc
Display type: TFT touchscreen, 65K colors
Navigation: 8-way navigation key
Memory: 50 Mbytes shared memory
Card slot MMC/SD: Up to 2 Gbytes
Processor: Intel xScale 300 MHz processor
OS: Linux
GPRS: Class 10 (4�1/3�2 slots), 32-48 Kbps
WLAN: No
Bluetooth: Version 1.1

3 Symon Says uses Qt for the graphical interface.

Continued from page 96

IEEE Computer Graphics and Applications 93

crowded, and busy. Moreover, mobile gaming remains
a spare-time medium, so play time on these games
should take no longer than a few minutes.

When designing a game, developers must also con-
sider mobile devices’ unique interfaces. Keypad layout,
the ability to press multiple key presses all at once, and
finger travel all can affect gameplay. Developers must
also consider screen size, battery life, and network
latency.

The games
Lasky and Norman’s design philosophy influenced the

game design of each of our student project teams in the
class. Altogether, the four-to-five member teams had to
create five multiplayer mobile games by the end of the
semester, when they would showcase the games at
GamePipe’s Industry Demo Day in December 2006.
Each of the games is multiplayer, requiring one phone
per player.

Sizzlin Stylus
Sizzlin Stylus (see Figure 4) is a two-player game

played using stylus pens. The game begins by show-
ing both players a randomly selected path. The play-
ers start from different ends of the path at the same
time and use their pens to move their characters along
the path to the other ends. If a player moves his stylus
outside the path, he must move it back in the path to
continue. The player who finishes the path first wins
the game. Both players have 30 seconds to finish the
game; if neither finishes in time, the game ends in a
tie. Both players’ visited paths are painted in a differ-
ent color, so the players know each other’s position.
The game was inspired by the arcade classic called
Flamin Finger.

BattleBoats
BattleBoats (see Figure 5) is a two-player game in

which each player chooses a fleet of three ships each
drawn from types that have positive and negative attrib-
utes. They take turns moving and/or attacking the oppo-
nent’s ships. At the beginning of each round, each player
is given several points to allocate to moving ships, laying
mines, or attacking enemy ships. Any unused points roll
over to the player’s next turn. The game ends when one
player loses all of her ships.

Finger Football
Finger Football (see Figure 6) is a multiplayer game

in which players take turns and try to score a goal in a
maximum of three strokes. Like the tabletop game,
three coins form a triangle, and each stroke consists of
attempting to hit the rearmost coin between the two
front coins.

An unlimited number of players can participate in
one game. Tournament play is in a knockout fashion,
with the winner of each round advancing to the next.
During one player’s turn, the other players watch the
strokes and coin positions. This turn-based game was
designed to continue for a fixed number of rounds.
The player with the most goals at the end of all the
rounds wins.

Titan
Titan (see Figure 7 on page 94) is a two-player game

in which each player is building a castle, along with walls
that shield it. By drawing cards from a deck, a player
either builds up his castle to 100 points to win the game
or destroys his opponent’s castle by bringing it down to
zero points.

The game also adds strategic elements in the form of
card attributes, chief of which are strength, resource,
God’s favor, and gold. Strength is the ability to attack
and destroy your opponent’s castle and attributes.
Resource includes such abilities as restoring your
defenses and building up your castle. God’s favor is the
magic in the game, used for such actions as carrying out
an enormous attack on your opponent’s castle.

4 Sizzlin Stylus.

5 BattleBoats.

6 Finger Football.

Graphically Speaking

94 March/April 2007

Pac-Mania
Pac-Mania (see Figure 8) is a two-player version of the

classic Pac-Man arcade game. Each player controls a
Pac-Man and races the other player to eat the most dots
on the screen. Players can also eat each other for a time
after eating “power pills.” The player with the most points,
or the one who eats up all the other Pac-Mans, wins.

Lessons learned
Last fall, GamePipe Demo Day showcased the work

of students taking project classes at GamePipe. More
than 35 representatives from companies such as Disney
Buena Vista Games, Electronic Arts Los Angeles, THQ,
Activision, Disney Feature Animation, Verizon Wireless,
Crystal Dynamics, EA Mobile, and Motorola attended,
and each appreciated the efforts of the students of the
Advanced Mobile Games and Devices course.

Participants analyzed each game from design and
technical standpoints to determine the project’s matu-
rity. At the end of the day, games from the Advanced
Mobile Devices and Games course were considered
sound in technology and design, and a few graduating
students were also offered internships as a result.

Getting to this point, however, was an uphill battle.

Technological hurdles
The course’s technological aspects were too intense

for some students, most of whom had never worked on
embedded systems. Every game leveraged various tech-
nologies, and each technology had its own learning
curve, making progress estimation difficult.

However, once the students were past the learning
curve, they warmed up to the platform quite well and

completed almost 70 percent of production during the
last six weeks of the semester. During that time, some
teams even dabbled in adding multimodal features to
their games. Multimodal user interfaces integrate voice,
visual, and sometimes other user-interface modalities.
Motorola ported their multimodal application frame-
work to the E680i for our use.2

A couple of team projects also faced design flaws
halfway through their implementation because they
overlooked limitations of the medium. These teams had
to rethink their game designs and modify their existing
implementations to fix the design flaws without affect-
ing their final production schedules. For instance, the
alpha version of Titan was difficult to play because of
information and display overload on the phone screen.
There were just too many visual elements, making it
hard to comprehend what was going on. The team need-
ed to modify the game engine core to work with fewer
game strategy elements, so that the team could simpli-
fy and unclutter the look and feel of the game.

Interpersonal hurdles
Team dynamics turned out to be an interesting soft

issue. The students selected the initial four games by
vote—out of 20 proposed game concepts. It was diffi-
cult to convince a few of the students whose games
weren’t chosen to work on teams, since they didn’t like
any of the games chosen. A couple of those students pro-
posed forming a separate team so they could work on
their own games. To avoid fragmenting the class into
small groups, they finally chose to work on two select-
ed projects and ended up making significant contribu-
tions to each. This approach reflects a philosophy
adopted by GamePipe for all its classes, using such sit-
uations to acclimate students to real-world soft issues
such as the ability to work in a team. The exercise also
demonstrates that in industry you sometimes might be
assigned projects you don’t like, but you are still expect-
ed to do a good job.

By the end of the course, both the instructors and the
students learned a lot about the entire process.

Future work
In the Fall 2006 semester, two projects tried multi-

modal interfaces in small ways. For example, one project
used a multimodal interface to activate cheats in the
game to make gameplay more interesting. The next iter-
ation of Advanced Mobile Games and Devices will be
offered in Spring 2007 and have a stronger focus on using
multimodality as a key area in mobile gaming. Games
will use speech recognition as a part of gameplay, and
teams will design games around this multimodal enabler.

As we mentioned, Motorola developed and deployed
a multimodal application framework on the E680i for
this purpose.2 As Figure 9 shows, the game server and
game client software on the devices work in conjunc-
tion with a multimodal voice server deployed on the
same local area network. Motorola’s client framework
allows access to multimodal enablers from within a Qt-
based game. So, when a user gives a voice command to
the game, it makes a request to the voice server (in our
case over the WiFi connection).

7 Titan.

8 Pac-Mania.

IEEE Computer Graphics and Applications 95

This multimodal server is actually a slightly modified
commercial-grade VoiceXML server. VoiceXML is the
World Wide Web Consortium’s standard markup for
specifying interactive voice dialogues between a human
and a computer.3 It lets developers create and deploy
voice applications in an analogous way to HTML for
visual applications. Just as a visual Web browser inter-
prets HTML documents, a voice browser interprets
VoiceXML. Billions of calls are made each year using this
technology. This VoiceXML example says “Hello world!”
in synthesized speech:

<?xml version=”1.0”?>
<vxml version=”2.0” xmlns=
”http://www.w3.org/2001/vxml”>
<form>
<block>
<prompt> Hello world! </prompt>
</block>
</form>
</vxml>

Conclusion
One topic that came out of this experiment was the

controlled multiplayer environment in which the games
were built. The world space in all the games was highly
localized, limited by the Bluetooth and WiFi ranges to
either a room or a building. We did not test any games
over the wide-area carrier data networks. A better test
for the games’ usability would be playing them on such
a network, wherein latency and data consistency issues
could drastically affect gameplay.

We were encouraged by the many possible directions
to take the Advanced Mobile Devices and Games
course in the future. With access to camera APIs, sema-
code image recognition, and rich context aware infor-
mation that today’s mobile devices can provide,
developers can radically change gameplay. The expec-
tation is to produce results of the same or better qual-
ity than what has been produced, and therein lies the
challenge.

Despite various challenges, this collaborative effort
to produce games on an open source mobile platform
provides a feasible and flexible medium on which future
developers can build state-of-the-art games using cut-
ting-edge technologies. ■

References
1. J.R. Engelsma et al., “Ubiquitous Mobile Gaming,” Proc. Sys-

tem Support for Ubiquitous Computing Workshop (UbiSys),
2006; http://www.magic.ubc.ca/ubisys/positions/
engelsma.pdf.

2. D. Pearce et al., “An Architecture for Seamless Access to
Distributed Multimodal Services,” Proc. 9th European Conf.
Speech Communication and Technology, Int’l Speech Com-
munication Assoc., 2005, pp. 2845-2848.

3. S. McGlashan et al., “Voice Extensible Markup Language
(VoiceXML) Version 2.0,” World Wide Web Consortium
(W3C) recommendation, Mar. 2004, http://www.w3.
org/TR/voicexml20/.

Contact author Michael Zyda at zyda@usc.edu.
Contact department editor Miguel Encarnação at

me@imedia-labs.com.

Wi-Fi
access point

Telnet session
over Wi-Fi

Voice server

Voice
feedback

VXML
commands

Wi-Fi link

Game client Game server

VXML
commands

Voice
feedback

9 Motorola multimodal application framework.

IEEE Distributed Systems Online
brings you peer-reviewed articles,
detailed tutorials, expert-managed

topic areas, and diverse departments
covering the latest news and

developments in this fast-growing field.

Log on for free access
to such topic areas as

Grid Computing • Middleware
Cluster Computing

Peer-to-Peer • Web Systems
Security • and More!

To receive monthly
updates, email

dsonline@computer.org

THE IEEE’S 1ST ONLINE-ONLY MAGAZINE

http://dsonline.computer.org

