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l\ecent technological advances in computer image
generation have opened up exciting new horizons for
real-time computer graphics applications. Perhaps the
single most important application using real-time com-
puter image generation is visual training simulation. In
the most general sense, visual training simulation is the
presentation of 3D scenes to an observer to facilitate
repetitive practice ofvarious tasks in a particular appli
cation area. The classic example is illustrated by the
development of computer-generated visual systems for
flight simulation and pilottraining. A detailed and com-
prehensive review of flight simulation devices, as well as
the related benefits of those devices, is provided by
Schachter.l

The decision to design and build a computer-based
flight simulator is driven by pure economics. The cost
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of providing extensive, long-term flight training to both
military and commercial pilots is prohibitive, given the
finite supply of natural resources for fuel and the shrink-
ing budgets of most organizations. In fact, as illustrated
during the 1973 oil embargq the shortage of aircraft fuel
and the resulting high cost threatened the readiness of
US military forces by imposing drastic reductions in
flight training time. Therefore, it is no surprise that alter-
native methods, such as sophisticated flight simulation
systems, emerged to supplement the actual "in-flight"

training time of pilots. While the overall cost effective-
ness of flight simulators has been demonstrated, the
extremely high cost of development has limited their use
to the military and other large organizations.2

Given the history of computer image generation and
the evolution of flight simulation devices, the Graphics
and Video Laboratory of the Department of Computer
Science at the Naval Postgraduate School recently
embarked on a research project to test the practicability
of developing "low-cost" flight simulators using off-the-
shelf, commercially available hardware. For this
research, a low-cost flight simulator is defined as a sys-
tem with hardware costing under $100,000. This is at
least an order of magnitude less than the current cost of
many operational flight simulation systems that top the
multimillion-dollar mark.

This article presents the results of the design, develop-
ment, and implementation of the flight simulation sys-
tem, focusing on the relative hardware, software, and
database issues. The capabilities and limitations of the
prototype system are also discussed, as are the potential
uses of such devices.

Background
Working in conjunction with the US Army Combat

Developments Experimentation Center, our laboratory
was asked to develop a prototype flight simulation sys-
tem to model the performance of a new Army weapon
system, the Fiber-Optically Guided Missile, or FOG-M.
The FOG-M is a remotely piloted missile system with an
on-board television camera capable of transmitting live
battlefield pictures to an operator's console on the
ground. The operator can view the terrain as if in flight
using the pan, tilt, and zoom mechanisms of the camera
and thereby locate possible targets for the missile. The
flight dynamics of the missile can also be controlled by
the operator through a joystick and other controls. After
a target is located by the operator on the ground, it is
"locked in," with subsequent control passing to the auto-
matic tracking system. The operator can visually follow
the flight of the missile until impact.

The first release of the prototype flight simulator dis-
plays a dynamic, 3D, out-the-window view (as seen from
the operator's console) of the terrain in real time. An
interactive user interface and two-dimensional contour-
map display allow the operator to input initial launch
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position and estimated target location during the
prelaunch phase of the flight simulation. After the final
missile-launch countdown, a 3D view of the selected ter-
rain is displayed. The terrain data is obtained from a spe-
cial digital database product prepared by the Defense
Mapping Agency, and the realism of the terrain is
enhanced through the use of an illumination model. The
operator can interactively control the FOG-M television
camera by using the mouse for pan, zoom, and tilt adjust-
ments within specified parameters. The operator also
has interactive missile control for in-flight changes in
direction, speed, and elevation.

Hardware implementation
The FOG-M flight simulator is implemented using off-

the-shelf, commercially available hardware from Silicon
Graphics, The system is built around the Iris 3120, a high-
performance color graphics workstation. The Iris 3120
uses the Motorola 68020 microprocessor and special
graphics hardware. Figure L shows a general overview
of the Iris architecture

On the Iris, the graphics speed required for real-time
flight simulation displays is realized by the use of
advanced VLSI technology. Proprietary VLSI circuits
provide hardware implementations of many fu lamen-
tal graphics operations. A pipeline of 12 5 oometry
engines performs matrix operations for rotati:n, trans-
lation, and scaling-as well as clipping, perspective, and
orthographic viewing-at 80,000 matrix operations per
second. The customized chip design results in a highly
parallel architecture that is well suited for the rapid cre-
ation of terrain displays for flight simulation.3

The Iris provides a double-buffer display system that
is crucial to the realistic display of motion in the flight
simulator.3 The z-buffer option available for hidden-
surface removal is not used, as it is too slow to support
the simulation of motion over terrain in real time.

The total list price for the hardware used to support
the project is under $75,000.

Database implementation
The source of data used for the representation of ter-

rain in the FOG-M simulation is a digital database
provided by the Defense Mapping Agency (DMA). The
digital terrain database is an array of data points for Fort
Hunter Liggett, California, and vicinity. Each data point
consists of t0 bits of information. The first 13 bits specify
one of 8192 possible elevation values. The last three bits
designate one of eight possible surface-covering categor-
ies for the height of the vegetation at that particular
point, that is, less than 1 meter, 1 to 4 meters, 4 to 8
meters, etc. The data points are sampled at 12.S-meter
intervals, producing a terrain database of much higher
resolution than the standard Level I or Level II Digital
Terrain Elevation Databases provided by the DMA. The
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Figure 1. Block diagram of the Silicon Graphics Iris workstation.

exact geographic location of each sample point is deter-
mined implicitly by the sequential positions of the data
points in the terrain file.

The terrain database covers a region 35 x 36 kilometers.
Each 1-kilometer grid square contains 80 data points

along the latitudinal axis and 80 along the longitudinal
axis, for a total of 6400 sample elevations/vegetations per
grid square. The data points are arranged sequentially
by column within each 1-kilometer grid square, starting
from the lower southwest corner. The patterns are
repeated throughout each grid square in the database,a

The entire 16M-blte digital terrain database resides on
a DEC VAX 77/785. An interactive database program

written in C allows the user to create a subset of the mas-
ter terrain database by specifying a region where the
FOG-M is designated to fly for a particular mission. The
user-supplied input parameters consist of (1) the size of
the test area (in square kilometers), (2) the Universal
Transverse Mercator (UTM) grid coordinates of the
lower southwest corner of the test area, and (3) the sam-
ple frequency to extract from the database, that is, 12.5-
or 100-meter grid spacing.

The current implementation of the FOG-M flight
simulator assumes a 10-square-kilometer potential flight
area and uses 100-meter samples for the digital data

]anuary 1988

points. The 10-kilometer assumption is based on the
average distance projected for FOG-M missions, given
the missile's minimum and maximum ranges. The
100-meter sampling is sufficient to capture the realistic
features of the terrain without sacrificing the speed
required for real-time display. Upon completion of the
database program, a binary file is produced that serves
as the input terrain source file for the flight simulation
system. The binary file is subsequently transferred to the
Iris disk storage area in preparation for running the
FOG-M simulation.

Currently, the input terrain source file is created off
line. The operator cannot change the flight area of the
missile directly from the Iris workstation. However, a
recently completed data communications interface
using Ethernet allows direct user access to the master
digital terrain database from the Iris workstation.s This
feature promotes maximum flexibility in allowing rapid
changes to flight areas when multiple runs of the simu-
lator using different test areas are required.

Software implementation
The FOG-M flight simulator represents the design,

analysis, and programming efforts of three graduate stu-
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dents during a beginning computer graphics course at
the Naval Postgraduate School. The extremely limited
developmenttime and resulting software reflectthe sim-
ple programming environment inherent in the Iris
graphics system. The total software package supporting
the flight simulation system was produced in less than
6 man-weeks.

Programming tools and environment
The flight simulator is implementedusing a simple yet

powerful program development environment. This envi-
ronment, which includes an optimized C-language com-
piler and a complete graphics library, is available on the
Iris workstation through use of the AI&T Unix System
V operating system. The graphics library provides a full
set of high- and low-level graphics routines for system
development in the areas of fast polygon fill, hidden-
surface removal, and fast pixel access.3

Implementation strategy

The flight simulator was developed in a top-down,
modular fashion, taking full advantage of an object-based
segmentation technique available on the lris. This meth-
odology employs the concept of "graphical objects," or
sequences of graphics commands, that are used repeat-
edly within the applications program. The commands
are placed into an object and compiled into a display list
as defined. Calls to the previously defined objects,are
interpreted directly without further compilation. This
technique greatly reduces the overhead associated with
continuous translation of graphics commands.6 Cou-
pled with the hardware mechanism of double buffering,
this modular approach results in a marked increase in
the speed of display for real-time flight simulation. A
description of the graphical objects and the methodol-
ogy used to achieve 3D motion through the terrain is
provided below

The software system supporting the FOG-M flight
simulator is divided into a prelaunch phase and a post-
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launch phase. The prelaunch phase provides an environ-
ment for capturing all of the input parameters necessary
for the simulated missile flight, as well as an opportunity
to create the graphical objects required for the 3D terrain
displays. The postlaunch phase provides an environment
for dynamically updating the terrain displays in real
time, on the basis of operator-controlled changes in the
camera (pan, tilt, zoom)and in-flight modifications to the
speed, direction, and elevation of the missile.

Prelounch phose
The prelaunch phase is the interactive input compo-

nent of the flight simulation program. The display screen
is partitioned into three areas, as shown in Figure 2. The
large square area to the left (768 x 768 pixels) represents
the 2D contour map of the 10-kilometer flight area. The
contours are developed from the elevations provided by
the original digital terrain database source file. The con-
tours are color coded on the basis of the vegetation codes
associated with the various elevation points. A color map
created forthe FOG-M flight simulator provides a set of
colors to illustrate graphically the changing heights of
ground vegetation. The second and third areas ofthe dis-
play screen provide simple instructions to the operator
during preflight operations and a summary of preflight
statistics. These statistics include grid coordinates of the
launch position and target location, direction of flight,
and distance to target.

During the prelaunch phase, the operator can move the
cursor freely around the contour map using the mouse.
The current UTM grid coordinates are displayed con-
tinuously in the appropriate area of the statistics box.
When a launch site is selected, the coordinates are
"locked inl'by pressing one of the three available mouse
buttons. Next, the operator moves the cursor to the loca-
tion of a possible target. A rubberband line shows the
potential flight paths of the missile from the launch site.
The final destination is selected as above, with the
respective coordinates appearing in the target location
section of the statistics box. From this initial informa-
tion, the missile heading and distance to target are com-
puted and displayed for the operator. Changes to either
the launch site or target location are possible before
launching the missile and entering the postlaunch phase.
Once the operator selects the launch and target positions
and all preflight statistics are computed, a mouse button
is pressed to initiate the countdown. Then, during the
countdown, the graphical terrain objects are created.

To create individual graphical objects for the terrain
model, the 1O-kilometer flight area is partitioned into 100
1-kilometer grid squares. A typical graphical object (1 kil-
ometer square) consists of triangular polygons con-
structed by connecting every set of three data points
within the given array of elevations from the subset of
the digital terrain database. The object plane is bounded
by the x- and z-axes, with the y-axis representing eleva-

Figure 2. Prelaunch missile course display.
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Figure 3. In-flight view of ridgeline and road. Figure 5. Distant view of vehicle convoy.

Figure a. In-flight view of mountain pass. Figure 6. Medium view of part of vehicle convoy.

tions at particular data points. The l-kilometer graphi-
cal object contains a total of 200 polygons, the result of
building the triangles throughout the array of data
points. Two triangles are created at a time, constituting
one cell of the total 100 cells in the object.

A point underneath each triangle is computed and
sent to an illumination routine for color selection' The
illumination model uses a single point source in comput-
ing the respective colors of the polygons. The calculation
is based on the application of Lambert's cosine law to
compute the intensity of the reflected light from the
angle of illumination.t The colors returned for the two
triangles are averaged, and a polygon-fill routine from the
graphics library completes the construction. A checker-
board effect is created for the terrain surface by chang-
ing the color ramp for alternating grid squares. This
effect creates an artificial texture on the surface to
emphasize the variability of the terrain'

Postlounch phose
The postlaunch phase provides successive real-time

terrain displays to the operator as the missile approaches
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its target. The display screen is partitioned into four
areas, as shown in Figures 3-7. ln this case the large
square area to the left represents the 3D, out-the-window
view of the current terrain area visible to the camera in
the nose of the missile. The right-hand portion of the dis-
play screen consists of three control boxes (navigation,
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Figure 7. Close view of target vehicle.
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instrumentation, and instruction) that provide critical
command and control information to the operator. The
navigation control box (top) is a reduced version of the
2D contour map that appears during the prelaunch
phase. A red rectangular box outlines the region within
the 1O-kilometer flight area currently displayed in the
out-the-window view. A red arrow within the box indi-
cates the missile heading. The arrow and containment
box are continually redrawn as the missile direction and
view area (camera angle) change during flight. The
instrumentation control box (middle) displays in-flight
statistics for missile heading, elevation, and speed, as
well as camera-angle readings for pan, tilt, and zoom.
The instruction controlbox (bottom) provides informa-
tion to the operator regarding the use of the mouse and
button box/dials to modify the flight and camera
parameters listed above.

The realistic display of 3D terrain surfaces and simu-
lated motion is accomplished through a perspective
projection and a special algorithm for computing the
number and display order of the previously constructed
graphical objects. Several Iris commands from the
graphics library implement the terrain displays. The Per-
spective command defines an aspect ratio, near and far
clipping planes, and field of view.

Working in conjunction with the Perspective com-
mand, the Lookat command defines a viewpoint, a refer-
ence point,  and a twist  angle.6 The viewpoint
designates the x, y, and z coordinates of the missile or
camera position. The coordinates of the viewpoint are
a function of the missile's speed as well as elevation. For
the FOG-M flight simulation, the missile is programmed
to remain a constant 200 feet above the terrain at all
times. The reference point specifies the x, y, and z coor-
dinates of the place the camera is looking at. The coor-
dinates of the reference point are a function of the
direction in which the camera is looking and the dis-
tance ahead of the missile that the camera can see. The
"look" direction is computedby adding the missile head-
ing to the pan angle of the camera. The look distance is
a function of the tilt angle, and the maximum distance
of 10 kilometers is achieved when the camera is level.
The twist angle is assumed to be 0 degrees for the flight
simulation.

To minimize the number of polygons sent through the
graphics pipeline, a candidate set of graphical objects is
selected for display on the basis of the missile's position
and where the camera is looking. Initially, the grid
square containing the look position of the camera, plus
two grid squares surrounding the center square in each
direction. is included in the candidate set. The result is
a minimum candidate set of 25 graphical objects (5x5
out of the 10 x 10 total). If the current viewpoint (position
of the missile) is not in the minimum candidate set, the
set is expanded in the direction of the viewpoint. This
expansion continues until the graphical object contain-
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ing the viewpoint is reached and included in the candi-
date display set.

While the minimum candidate display set is a
5 x S-square set of graphical terrain objects, the final can-
didate set may in fact be rectangular, depending on the
viewpoint or position of the missile. In the worst case,
the candidate display set contains all tOO graphical ter-
rain objects. In all cases, however, the viewpoint is con-
strained by the boundaries of the lO-kilometer flight area.
The appearance of motion is achieved by successively
computing viewpoints and refergnce points and display-
ing the perspective projections of the new candidate sets
of graphical terrain objects.

The order of polygon display is critical for the realis-
tic display of terrain surfaces, as the Iris does not cur-
rently have real-time hidden-surface-elimination
hardware except in a rudimentary form. In our simula-
tor, hidden-surface elimination is accomplished in the
main processor by a real-time implementation of the
Painter's algorithm.T The Painter's algorithm amounts
to nothing more than drawing the picture in the farthest-
polygon-to-closest-polygon order. For the terrain, the cor-
rect polygon ordering for hidden-surface elimination is
an easily computable function of the missile's line of
sight (see Figure 8). That function is nothing more than
a scan-line algorithm on the 2D grid of previously con-
structed triangles. For vehicles driving on the terrain, we
merely specify that the vehicles be drawn immediately
after the grid cell on which they reside has been drawn.
Vehicles that cross boundaries between grid cells are
drawn multiple times. The vehicles used in the simula-
tor are stylized in 20 polygons or less. The vehicle
hidden-surface-elimination problem is resolved through
a combination of backface polygon removal, which the
Iris has in hardware, and simple sorting, using the vehi-
cle's direction and the missile's line-of-sight information.
Our research group is currently investigating the
applicability of Fuchs' binary space partitioning algo-
rithm to our hidden-surface-elimination problem.s

System capabilities and
limitations

The FOG-M flight simulator, in its current configura-
tion, possesses significant capabilities as well as some
noteworthy limitations. On the positive side, the flight
simulation system draws between 1500 and 2000 poly-
gons per frame at three to four frames per second. A
frame consists of the graphical terrain objects in the can-
didate display set. The number of polygons created
increases in proportion to the number of graphical
objects in the candidate set. This capability is due to the
geometric transformation and polygon-fill hardware of
the Iris as well as the segmentation procedure the sys-
tem uses for graphical objects. As a result, there is com-
plete freedom of movement in semi-real time within the
3D display.
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One of the limitations of the current system is the ina-
bility to display the graphical terrain data using a higher
sampling of data points provided by the digital terrain
database. As stated above, the prototype implementation
of the flight simulator uses 100-meter samples for the
data points instead of the 12.5-meter samples available
in the data file. Increasing the number of data points per
grid square affects the ability of the system to display the
graphical objects in real time. Thus, there is a trade-off
between the degree of variation in the terrain surface and
the speed at which the surface can be displayed.

Ultimately, any system must be evaluated by measur-
ing its capabilities and limitations with respect to the
specific requirements of the application. However, the
ability to build a flight simulator for under $100,000
using simple graphics techniques and novice graphics
programmers is important in itself because it puts vis-
ual simulation technology within the reach of many
more computer users. Certainly it is possible to build
elaborate flight simulators for millions of dollars. But an
alternative approach provides a significant amount of
capability for a minimal investment and makes visual
simulation training feasible for small organizations. I

Future system enhancements
We have described the initial design and implementa-

tion of the FOG-M flight simulator. Research is ongoing
to enhance the simulator hardware and software while
maintaining the original goal of the project: production
of a low-cost flight simulation system. Software enhance-
ments include efforts to provide additional features to
the system and optimize or improve the current capabil-
ities. Additions will consist of missile dynamics and the
inclusion of stationary/moving targets within the 3D ter-
rain display. Another goal is to drive the on-terrain vehi-
cles from other workstations on the local area network.
To optimize or improve the current software, continued
research is necessary to develop better algorithms for
selecting the candidate sets of graphical terrain objects.

Future hardware enhancements include the addition
of a fast, double-buffer z-buffer mechanism to provide
rapid hidden-surface removal. Such a z-buffer is
expected from Silicon Graphics in the next-generation
workstation.

Conclusions
The research and development associated with the

FOG-M project clearly illustrate the feasibility and prac-
ticability of producing low-cost flight simulators. Specif-
ically, a complete flight simulation system was
constructed from off-the-shelf, commercially available
graphics hardware for under $100,000. We use the fig-
ure of $100,000 rather than the lris' cost of $2b,000
because soon we will have graphics workstations in the
higher price range with polygon-fill rates some 6 to 35
times faster.
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