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1 Introduction
Human error is perhaps the most prevalent source of vulnerability in a secure sys-
tem, yet it is often overlooked when testing security. One reason is the difficulty of
creating repeatable experiments that introduce human error into large-scale networks.
We report on progress on a project to provide this capability using software agents
that interact with a networked system under test, operate standard software, follow
workflows and introduce human-like errors resulting from models of physiology, emo-
tion and bounded rationality. In an earlier paper we motivated this approach and out-
lined an architecture based on the Beliefs-Desires-Intentions (BDI) agent framework
[Bratman1987, Lin et al.2010]. In this report we describe an initial implementation of
the architecture and its application to an example scenario. We then describe future
plans.

The remainder of this section outlines the benefits of this approach from a secu-
rity point of view, the ways in which humans are irrational that can be predicted and
modeled, and our overall approach. Section 2 outlines the agent architecture and the
scenario we follow, and describes the different agents that interact within this scenario
and their implementation. In Section 3 we describe the networking infrastructure that
ties the agents together and allows them to communicate while operating virtual ma-
chines in which they run everyday email and spreadsheet programs. One aspect under-
lying the agent’s behavior is the role of emotion and related affect, and our approach
is described in section 4. We then describe an initial visualization tool in section 5 that
allows us to view the overall behavior of a group of agents collaborating on a task as
well as investigate the historical behavior of individual agents and their corresponding
affectual states. In section 6 we describe a set of experiments that confirm that our
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agent system behaves reasonably under reasonable assumptions. We conclude with a
discussion of lessons learned and future work.

1.1 Security and human factors
In the literature, computer security is often considered in theoretical terms, for example
it may be proven that a certain cryptographic protocol cannot be broken by a plain text
attack. In the real world, however, the security of a system comes about through a
combination of its capabilities, the software and hardware designed to protect it, and
the actions of the users of the system. If that protocol is too complicated or too slow to
use, it may be implemented incorrectly or simply disabled when a group is most busy,
a time when a cyber attack may be more likely.

Several groups have investigated the effects of usability on system security, e.g.
[Cranor and Garfinkel2005]. Models of the spread of computer infections also need
to take into account that communications between hosts is typically not random, but
follows patterns dictated by collaborative tasks or communities of interest. Natural hu-
man rhythms associated with sleeping, eating and work hours also affect the patterns
of communication and the probabilities of vulnerability to attack. In creating compu-
tational models of human factors to facilitate testing, we must consider the properties
of groups and also individuals. Below, we briefly discuss our approach to modeling
groups. We also consider three broad aspects of individual human behavior: bounded
rationality, physiology and emotion.

1.2 Collaborative work
In many of the networks whose security is of interest, human users are engaged in
collaborative work, typically geographically distributed. The structure both of the col-
laborative task and of the organization performing it determines the nature and patterns
of network traffic to a large extent and therefore should be modeled when testing se-
curity approaches. In the scenario that we describe below, a small team is engaged in
a report generation task that involves gathering information from various sources on
the internet and populating a shared spreadsheet that is implemented in a cloud system.
The team has one central manager and one agent designated as IT support as well as
a number of information workers. In a related experiment, the overall task is driven
by the need to respond to a natural disaster, leading to an externally generated burst of
activity for the group.

Different kinds of groups have different organizations in order to perform their
tasks. Some are more loosely or democratically organized than the central hub-and-
spoke structure we have considered here, and in some, organizational patterns might
emerge temporarily in response to the environment. We are interested in modeling
a number of different typical organizational structures, focusing on their impacts on
system security.
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1.3 Physiology and emotion
Humans are not machines and are strongly influenced by physiology and emotion in
both decision-making and performance of lower-level tasks. There has been a great
deal of work understanding how fatigue builds in humans and its effect on performance
in a variety of settings. Our agents include simple models of fatigue inspired by some
of this work. We focus in particular on time-on-task rather than the effects of sleep
deprivation, since our intended experiments do not yet span timescales that make this
relevant.

Section 4.2 describes our approach to modeling emotion and its effect on human
decision-making in more detail. These are inspired by work on computational models
of emotion including appraisal theory, e.g. [Ortony, Clore, and Collins1988] and as-
sociative networks with spreading activation [Anderson1983]. However, the approach
described there is not implemented in our current agent system, but is intended for a
future version.

1.4 Bounded rationality
Many agent systems model cognition in terms of rational choice, i.e. the agents attach
a utility to probability distributions of possible outcomes of their actions and seek to
maximize their expected utility. It is well-known, however, that humans do not be-
have in this way [Tversky and Kahneman1981]. Instead, they apply heuristic decision-
making that, while provably sub-optimal, allows them to make decisions when the full
space of actions cannot be explored and the full utility function is probably unknown.
Human decision-making behavior cannot only be explained by limited information or
processing time, however, but also by certain systematic differences from utility the-
ory. Humans tend to discount the value of future gains or losses compared with current
ones even when the overall value function is known not to be time-dependent. Humans
are more conservative about risk when considering gains than they are when consider-
ing losses, however the distinction between the two is often based on a heuristic and
arbitrary ’zero’ point in the space of possible rewards for actions. Humans also make
systematic errors in judgments of probabilities that effect their decisions under uncer-
tainty, for example believing that more easily remembered events are more common.
Once humans settle on a decision, they tend to put more effort in seeking confirmatory
rather than disconfirmatory evidence.

Our current agent framework does not model bounded rationality, though it has
been argued to play an important role in security decisions such as neglecting to install
security software based on cost or convenience or ignoring warnings. We are investi-
gating ways to include some of these effects in future versions of our agents.

2 Agents
For our scenario we use autonomous agents that collaborate on tasks to meet their top
level goal. We created specialized agents that handle different tasks in the scenario.
Attributes given to the individual agents are used to create a base level of fidelity and
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to allow for diversity in the simulations. The core of each agent is based on a standard
belief, desires and intentions (BDI) architecture[Morley and Myers2004]. Each agent
is initialized with goals, beliefs, intentions, and a cognitive state. We will discuss the
extensions to the BDI system in a later section. The following are descriptions of the
attributes and actions of each agent in our scenario.

2.1 Agents and Organizations
Traffic patterns and information flow are very important to the security of a networked
system. The level of activity in a network depends on daily and weekly work schedules,
and so on time of day and particular deadlines as individuals perform tasks. If a node
is infected, the probability of neighboring nodes becoming infected may depend on the
number of emails sent between individuals operating the nodes or patterns of usage of
networked drives. Our scenarios therefore model organizations comprising teams of
agents with shared as well as individual goals. Network traffic arises as agents work
together to perform collaborative tasks and therefore follows a pattern that is more
similar to that in human organizations. Agents in the organization have a number of
differentiated roles, including managers, workers and IT support. However, the agents
share a common understanding of their world in terms of a means to communicate and
shared goals. In the next sections we describe the shared agent structure and then the
features of the specialized agent types.

2.2 Agent Base
The Agent Base is a generalized agent that contains the attributes and actions that are
fundamental to all agents in our scenario. Each specialized agent in the scenario is a
subclass that extends the capabilities and beliefs of the Agent Base.

In the current implementation, on SPARK, agents use an easily extensible predicate
representation scheme in which new attributes can be added as needed for new scenar-
ios. Below we describe the knowledge used for the example scenario that we anticipate
will be relevant for other scenarios under construction. We draw a distinction between
attributes, which are predicates that represent features of the agent that are possibly
unknown and beyond its control, such as tiredness, and beliefs, covering predicates
that represent the agents beliefs, such as its position in the organization. These are not
all classifiable as “knowledge” since the agent’s beliefs about the environment may be
incorrect but still are used to guide its actions.

2.2.1 Attributes

All agents possess a number of attributes that control their physiology and aspects of
their emotions. This includes the agent’s current level of tiredness and also its tire-
ability, or how quickly it becomes tired as it performs tasks and with the passage of
time.
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2.2.2 Beliefs

All agents have knowledge of their job position, which determines the type of spe-
cialization and role of the agent in the scenario. Each agent is also an assigned work
identification number to uniquely identify them within an agents social network and the
job hierarchy. Along with the worker identification number the Agent Base contains
knowledge corresponding to the agent’s computer identification number and computer
applications, as well as the current number of tasks that the agent must complete.

2.2.3 Actions

The Agent Base contains an initialization cue that triggers each agent to set up its spe-
cialized state. After initializing its agent state, the Agent Base proceeds to work on its
current goals. While the agent is taking actions to meet its goal, it listens for commu-
nication from othe agents. The Agent Base defines the actions used to communicate,
which include receiving and initiating telephone messages, face-to-face communica-
tion and email messages.

2.3 Agent IT
The IT agent is a collaborative agent that works in Information Technology Department
in the example scenario. With the help of an IT agent, other agents can respond better
to unforeseen circumstances. Its duty is to help other agents with errors, bugs and
viruses the agent’s computer might have. Figure 1 illustrates the main work flow of the
IT agent.
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PC and Log In

Try To Fix 
Bug
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Agent is to tired to work

Figure 1: The main work flow of the IT agent

2.3.1 Beliefs and Attributes

The IT agent knowledge base contains information about the different types of errors,
bugs and viruses that can go wrong while an agent is working. It also has attributes
that define its technological competency and the thresholds needed to diagnose and fix
problems.
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2.3.2 Actions

The IT agent’s goal is to keep software in working condition. It can log in to another
agent’s computer to perform the diagnosis on the computer. If it finds a bug it can
attempt to fix it. If the IT agent fails to fix the computer it can delegate the tasks to
another IT agent within its social network. If the computer was fixed the IT agent logs
out and returns to its office where it waits for messages from agents asking for help.

2.4 Agent Worker
The Worker agent’s goal is to fill the spreadsheet cells that were assigned to it by its
corresponding Manager. The Worker agent searches in online websites for the infor-
mation needed to fill the spreadsheet cells. A Worker can also work collaboratively
with its co-workers to meet its goal, by delegating tasks to them. Figure 2 illustrates
the main work flow of the Worker agent.

doWork

checkSprea
dSheet

/PC

doFillCellTa
sk LookForData InsertValue

delegateTas
k

doWork

callCoWork
er

If the agent cannot complete an 
action then check the pc

Call 
manager

Agent IT

Found 
Bug

Take a 
break

Agent is to tired to work

Initialize

Get On 
Computer

Task on 
Stack

Agent is 
lazy

Figure 2: The main work flow of the Worker

2.4.1 Beliefs and Attributes

The Worker agent knowledge base contains information about websites containing data
to insert into the spreadsheet. It also keeps a track of what values it has inserted into
the spreadsheet it was assigned. The Worker agent also has the attribute related to
the tendency of saving the correct value into the spreadsheet and the likelihood of
delegating a task.

2.4.2 Actions

The Worker agent begins the scenario by logging in to its assigned computer. It then
waits for a call from the Manager agent or works on any tasks it currently has. If the
Worker agent has tasks to fill the spreadsheet it will begin to look for data online. Then
it will fill the assign spreadsheet cell with the information it has retrieved. If the Worker
has too many tasks to handle it will attempt to delegate one of the tasks to a co-worker.
Periodically, the Worker agent will validate the information on the spreadsheet. If the
information is compromised and it cannot fix the problem itself, it will contact an IT
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to help with the problem. After the Worker agent has finished a task it will report the
completed task to Manager agent.

2.5 Agent Manager
The Manager agent is derived from the Worker agent and therefore contains all of
its emotions and capabilities. Unlike the Worker agent, the Manager agent is able to
accept large tasks from the Scenario Director and break them into smaller tasks to
be delegated to other Manager or Worker agents under there respective managment.
Finally the Manager agent is able to verify or delegate verification tasks to Worker
agents to check if spreadsheets was properly filled in.
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Figure 3: The main work flow of the Manager

2.5.1 Beliefs and Attributes

The Manager agent’s knowledge base contains information about its given tasks and
its computer. The task it is given when it is initialized is to fill a spreadsheet of certain
dimensions. It will then divide the spreadsheet tasks into subtasks and keep record of
the number of subs tasks it has created. The attributes it has includes the tendency to
look for data, check its computer and tendency to delegate tasks.

2.5.2 Actions

In the present implementation the Worker agent will call its Manager agent to notify
that the given task assigned was completed. The Manager agent assumes the Worker
agent has completed the task correctly. The Manager agent currently communicates
with one or more of each type of the following agents: Scenario Director, Worker and
IT.

The Manager agent is initiated by the Scenario Director. When the Scenario Di-
rector calls the Manager agent’s Knowledge Base is updated with the details and size
of the task. The manager assigns subtasks individually to worker agents in its group.
The Manager additionally waits until the worker calls him to notify that the given sub-
task has been completed. Finally when all subtasks have been completed the Manager
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agent’s Knowledge Base is updated. The Manager agent then waits for more tasks to
be assigned by the Scenario Director, possibly waits indefinitely until the end of the
simulation.

As a derived Worker agent the Manager agent can have problems with his computer
throughout the process mentioned above. The Manager agent can attempt to fix its
computer and calls the IT if the computer is infected. Thus delays can occur throughout
the process. For a full overview of these capabilities please refer to the Agent Worker
section on page 6.

2.6 Scenario Director
The main purpose of the Scenario Director is to ensure that any pre-determined events
within a scenario unfold as expected. It is implemented as an agent in order to share the
agent framework for communication, but it does not model other agent characteristics
such as tireability. The Scenario Director monitors the scenario and directs events to
occur according to a predefined script. The agents in the scenario are unaware of the
Scenario Director and its influence. Figure 4 illustrates the main work flow of the
Scenario Director.

doWorkinitialize viewScene inject event

Sets up 
Initial 

Scenario
Events 
Occur

Cue 
Occurs

Not A 
Cue doWork

Figure 4: The main work flow of the Scenario Director

2.6.1 Beliefs and Attributes

The Scenario Director’s knowledge base contains information about events that will
cue the director to cause scripted events to occur. Along with information on all of the
agents involved in the scenario.

2.6.2 Actions

The Scenario Director is able to see all events that occur amongst all agents by way
of the Subscription Service (see Subscription Service sub section in the Infrastructure
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section on page 9 for details). The Scenario Director responds according to the cues it
is waiting for. In the case of the given scenario the Scenario Director is waiting for a
certain spreadsheet cell to be filled in order to trigger a bug/attack on the spreadsheet.

3 Infrastructure
The infrastructure consists of multiple processes passing messages on dedicated ports
for each process. Processes may exist on the same machine or multiple machines con-
nected on a network. Figure 5 is an overview of the process connections. The Process
Controller spawns the Middleware, Logger, Visualizer, Agents, and Scenario Director
processes, depicted by the dashed line ending with a solid square. Each process lis-
tens on one or more ports for incoming messages, the messages use a general format
throughout the network, to be processed by the receiving process. Message communi-
cation links are represented by a solid line with a solid arrow pointing to the receiving
process. The Middleware process uses inner communication between sub processes
(threads), illistrated with a dotted line and solid arrows. The Logger and Visualizer
both access the centeral DataBase Managment System (DBMS) to access and record
the message history, depicted with a solid line and a solid circle connecting to the
DBMS.

There are six different types of processes on the network, with not all existing on
each machine; Processes Controller, one instance per machine, all machines in the
network. Middleware, at most one instance per machine, but at least one per network.
Subscribers (e.g. Loggers), zero or more instances per machine, but not the same
type of Subscriber per machine. Agent(s), zero or more instances per machine, each
instance network wide having a unique ID to distinguish the Agents (to route a message
approperately). Scenario Director, exactly one instance per network. Commander,
exactly one instance per network at a static address.

3.1 Agent Api
The agents use an API to communicate with other agents and broadcast their state
information to the subscription service. The agents are defined using an agent platform
called SPARK [Morley and Myers2004]. SPARK is written in Python and executed in
Java using a package called Jython. The agent API itself has Spark/Python wrappers to
the interface that sits at the highest virtual level of the execution stack (figure 6), Java.
Using Java for the API posed many advantages over writing the API in pure python
(Jython); All Python code is executed in Java. Java’s object-oriented style made it
easy to reuse classes for the Middleware. Serializable java objects were used to pass
complex data forms between communicating agents. Finally, Java eased the debugging
and unit testing process for the agents and Middleware.

When one agent communicates with another, the API abstracts the communication
layer to several API calls based on the type of communication (e.g. in person, phone,
email). The API wraps the communication message in a generic message that is passed
to a Middleware server (see Middleware sub-section below for details). The Middle-
ware server routes the message to the appropriate agent. The receving agent unwrapps
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Figure 5: Infrastructure

the message and puts it in a queue to be processed later.

3.2 Middleware
The Middleware process consists of three subprocesses running on threads: the router,
directory service and subscription service.

3.2.1 Router

Upon receiving a new message from an Agent the Router looks up the intended recipi-
ent in the Directory service, to translate the Agent ID to a network address. A clock tick
message is sent to all Agents, to preserve ordering in dependent messages([Lamport1978]).
A copy of the received message is added to the Subscription Service Dispatch queue
and finally the message is sent directly to the recipient agent’s network address on their
unique port. See figure 7.
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3.2.2 Directory Service

The Directory Service maintains a table of all the known agents, mapping their unique
IDs to their network address. The Agent when instantiated sends a registration message
to a known Directory Service, thereby adding the Agent to its lookup table (figure 8).
The registration and lookup table is based on the idea of a DNS system(RFC-882,
RFC-883).

3.2.3 Subscription Service

The Subscription Service maintains a list of all known subscribers, for example the
Logger, Visualizer and Scenerio Director. The Subscription Service also dispatches
messages to all subscribers in its list. When a message is added to the dispatch queue
by the Router, the Router releases a semaphore, that the dispatch thread is waiting on.
When the dispatch thread is released it reads then removes the top item in the dispatch
queue, sends the message to all subscribers in the subscriber list and then goes back to
waiting on the semaphore. See figure 7.

3.3 Subscribers
The subscribers read all messages sent over the network. They do not send messages
back to any agent, with the exception of one hybrid process, the Scenario Director.
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3.3.1 Logger

The Logger records all messages sent from agents, storing them in a DBMS. The
recorded data is used to evaluate the behavior of the Agents, and replay Scenarios.

3.3.2 Visualizer

The Visualizer is a Graphic User Interface (GUI) to the Scenario, used both for live
view or re-playing recorded data from the DBMS. For more details see the Visualizer
section on page 24.

3.3.3 Scenario Director

Unlike the other subscribers, the Scenario Director sees all messages and interacts with
the agents, pushing some agents to behave in a particular way to keep the scenario on
track. See the Scenario Director sub-section on page 8, for details.
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3.4 Process Commander & Controller
Process control is very important in a large distributed system. The order in which
processes startup and exit is also important. For instance, the Middleware service has to
start up before any agent, so the agent can register its self with the Directory Services.
The same goes for the Subscribers(ex. Logger). The Middleware must be running
prior, otherwise the Logger can not register with the Subscription Service.

3.4.1 Spawning Processes

The Process Controller allows the overall infrastructure to be dynamic and scalable.
Each process can either be started alone or via the Processes Controller, which waits for
messages from the Process Commander or Scenario Director (figure 9). The Scenario
Director sends a message to the Controller to start up the Agents after the Scenario Di-
rector has created each agent’s knowledge base file. Therefore, the Controller process
needs to be already running in order for the Scenario Director to spawn the agents.

3.4.2 Process Order

The Process Commander enforces an order to in the process startup, waiting for each
process to confirm it is running before the issuing the command to the Controller to
startup the next process. The order in which our system starts the processes using the
Commander is as follows:

1. Controller

2. Middleware

3. Subscribers(Logger, Visualizer)

4. Scenario Director

5. Agent(s)

3.4.3 Killing Processes

The Process Controller also has the ability to send a special termination message to
all the processes. When a process receives this message it sends back a conformation
message, then proceeds to exit gracefully. The order in which the processes die is also
important. For example, if the Middleware dies before the Agents do it cannot send the
termination messages to the agents. This is easily solved by sending the termination
messages in reverse order to the start process order, waiting for each process to confirm
it received the message and is exiting gracefully.

3.5 Scaling for the Future
Multi-machine Clock Tick (see Router in Middleware sub-section for details) synchro-
nization, Directory lookup, and Subscription Service posses the major issues in scaling
to thousands or tens of thousands of agents running concurrently on a single network.
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The Clock Ticks will need to be syncronized between Routers on all machines running
the Middleware. This is done using a list of all known Routers on each Middleware ma-
chine. The alternative is to use a central server that maintains a list Middleware servers
and sends the Clock Ticks to them. The Directory Service would need a root server to
maintain a list of all agents. When a Directory Service does not have an agent in its
list, it will ask the root server for the mapping and then cache it locally (figure 10). The
subscription will need to be changed to use a root Subscription Server that a subscriber
will register with. The root Subscription Server will then register the subscriber to all
known Subscription Services on the network.

4 Emotions and Appraisal Theory

4.1 Introduction
Research on the interaction between emotion and cognition has become particularly
active in the last twenty-five years. Notably, the work by Bechara and Damasio
[Bechara, Damasio, and Damasio2000] showed the necessity of emotion for decision
making: loss of emotion likely leads to indecision or disadvantageous life decisions.
This result challenged and largely overthrew the classical view that emotions could
only cloud rationality, though that effect has also been documented
[Gmytrasiewicz and Lisetti2000].

Also motivating research on emotion is the characterization of emotion as an in-
terrupt alarm signal to cognition [Simon1967, Bower1992]. The signal is particularly
responsible for heightening the importance of concepts associated with the emotional
episode, and for refocusing attention [Ohman, Flykt, and Esteves2001, Bower1992]
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(causing distraction from a non-emotionally relevant task at hand when an emotional
episode occurs). Damasio also asserted that emotion facilitates special recall of con-
cepts when high emotional arousal occurs [Damasio and Sutherland1994].

We believe that seemingly disparate emotional theories and experimental results
can be integrated smoothly into a single computational model of human cognition. As
part of the rise of emotion research in the AI and cognitive science communities, re-
searchers have created several computational models of cognition and emotion, based
on psychological theories and experimentation. A typical implementation of emotion
generation is bound to a single theory, which usually conflicts with other theories on
which factors generate emotion and how. Computational models of affect tend to focus
on a single effect of emotion on cognition. These research practices have led to incom-
plete, competing models which leave aside the question of a complete integration of
emotion and cognition. We set forth proposals for a deeper integration than previous
cognitive-emotional architectures, and present the design of a cognitive architecture,
EmoCog, which embodies these ideas.
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4.1.1 Background

Our approach is fundamentally built on theoretical and experimental work in psychol-
ogy, cognitive systems, and neuroscience. Appraisal theories dominate the realm of
computational models of emotion generation. Appraisal theory generally argues that
people are constantly evaluating their environment, and that evaluations result in emo-
tions such as fear or anger. Traditional game playing programs which evaluate their
environment and/or self are not emotional, since they do not produce the necessary
appraisal data for emotion and affect. There are many different appraisal theories, no-
tably those of OCC [Ortony, Clore, and Collins1988], Frijda [Frijda1987], Smith and
Lazarus [Smith and Lazarus1990], and Scherer [Scherer2001]. Each theory differs in
its appraisal variables and the manner in which appraisals are generated (e.g. simulta-
neously vs. specific order).

Several theories inform our work on emotional cognitive effects. The Somatic
Marker Theory predicts that emotionally enhanced memory is useful for decision-
making, as shown in the Iowa Gambling Task [Bechara, Damasio, and Damasio2000].
According to similar experiments, “gut feelings” during emotionally stressful mo-
ments are a heuristic to making a decision quickly, bypassing cognitive evaluation
[Slovic et al.2007, Finucane et al.2000]. The related mood congruence theory
[Bower1983, Bower1992] hypothesizes that facts or concepts learned during a positive
or negative mood are thereafter easier to remember when in a similar mood. Con-
versely, the Yerkes-Dodson law [Yerkes and Dodson1908] predicted that high levels
of emotional arousal creates distraction from non-emotionally relevant tasks at hand
[Kaufman1999]. The cue utilization theory [Easterbrook1959] elaborates this effect:
under high levels of arousal, environmental or internal cues not central to the arousing
agent or situation will be increasingly ignored.

Simon’s emotion-as-interrupt theory [Simon1967] highlights autonomic arousal as
a factor of emotion. Many of the widely cited emotion generation theories use arousal
as a factor and can be applied to our model. Emotion generation theories usually also
incorporate valence (degree of pleasantness or unpleasantness), which we can use to
model further emotional effects on cognition, such as mood-dependent retrieval.

We also draw from a long tradition of work in computational cognitive architec-
tures. Such systems usually try to address cognition as a whole. Our work has been
most directly influenced by ACT-R [Anderson et al.2004], CLARION [Sun2006], PRS
[Ingrand, Georgeff, and Rao1992], and Soar [Laird2008]. See
[Langley, Laird, and Rogers2009] for discussion on this topic.

4.1.2 Related Work

Integration of emotions into cognitive architecture can be broken down into two sepa-
rate parts:

1. Emotion generation - how cognitive processes play in the generation and decay
of emotions

2. Emotional affect - how emotional signals, once generated, effect cognitive pro-
cesses such as learning or planning
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Some researchers have theoretically integrated emotion and cognition [Schorr2001,
Bower1992] but leave out many details about the processes and the data that underlie
them. Several computational models have been developed in attempt to flesh out some
of these details.

The prominent systems that address emotion generation in a cognitive architecture
include Soar-Emote [Marinier, Laird, and Lewis2009], EMA [Marsella and Gratch2009],
and WASABI [Becker-Asano and Wachsmuth2010]. The Soar-Emote work discusses
how appraisal would occur in Soar, using Newell’s theory of cognitive control. It is
bound to a number of theoretical assumptions that stem from a single theory of emo-
tion. EMA addresses the process of appraisal over a previously generated plan. Nei-
ther Soar-Emote nor EMA address how various cognitive processes would influence
appraisal. WASABI is closest to our work on emotion generation. It presents primary
and secondary emotions, where secondary emotions depend on past experiences and
learned expectations and map to three discrete emotions (hope, fear, relief). The scope
of this work lacks interaction with most cognitive processes and is limited to explaining
few emotions.

Prominent systems that address effects of emotion on cognition include Soar-Emote,
EMA, ACT-R [Cochran, Lee, and Chown2006, Fum and Stocco2004], and MAMID.
Soar-Emote has work limited to how emotion may be input to reinforcement learn-
ing [Marinier and Laird2008]. EMA models generation of coping strategies following
an emotional episode (e.g. change own beliefs). What are still missing are mecha-
nisms for how the cognitive processes can be affected. Cochran’s work in is limited to
how emotional arousal may affect memory and Fum’s work is similarly limited to how
emotional memory would affect recall and subsequently decision making. MAMID’s
emotional effects on cognition are limited to altering the speed and parameters of a
prescribed perception-action cognitive cycle. No previous computational model has
attempted to integrate all of this work and other emotional effects on the function of
cognitive processes in a single cognitive architecture or under a single theoretical per-
spective.

4.1.3 Overview

The remainder of this section presents our propositions. This can be broken down into
three parts:

1. EmoCog Architecture - modules, interactions, and data structures required

2. Mechanisms - processes that operate within EmoCog in context of emotion gen-
eration and affect

3. Discussion and Examples - rational and alternate perspectives on EmoCog’s de-
sign, and some examples to illustrate ability to model observed phenomenon

4.2 Approach
The primary theoretical proposals for our computational model of emotion and cog-
nition require certain programmatical groundwork to implement in a cognitive archi-
tecture. We outline the key design decisions of EmoCog, but leave detailed discussion
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of implementation to a future report. The novel features of EmoCog are the interac-
tions between emotion and “rational” cognitive processes. In this particular version
of our proposed architecture, we focus on emotion generation and emotional effect on
memory, attention, and planning.

4.3 Architecture
The architecture diagram is shown in figure 11. At a high level, the architecture bears
much resemblance to existing cognitive architectures such as Soar, CLARION, EPIC,
and ACT-R. The potential cognitive modules are not limited to those shown.

Figure 11: EmoCog cognitive architecture

EmoCog’s short-term memory is based on ideas outlined by Bower in his associa-
tive network theory of emotions [Bower1981], and the spreading activation theory of
memory by Anderson [Anderson1983], similar to that which has been implemented in
ACT-R [Anderson et al.2004]. EmoCog’s model of memory (both long-term and short-
term) is a graph made up of generic nodes and links, and will function as an associative
and semantic network.

There are several types of links between nodes, each with a label, a value, start
node, end node, and optional direction. All nodes that are connected have an asso-
ciation link, which carries an association strength value. Associative link creation,
reinforcement, and decay are all managed by the association management module (see
below). In addition to associative links, there can be semantic links between nodes
(e.g., causality), which can also carry values. These semantic links are maintained by
cognitive processes (e.g. causal inference placing a causal link).

Each node can represent, but is not necessarily limited to, an episode, object, dead-
line, utility, concept, plan step, or procedure. The following node features are used by
the appraisal system:
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1. Current arousal (range 0 to 1): emotional arousal at current time

2. Remembered arousal (range 0 to 1): average arousal over time

3. Current valence (range -1 to 1): degree of like/dislike

4. Remembered valence (range -1 to 1): average valence over time

Other node features, such as recency of recall and how many times the node has been
brought into working memory before, are not used by appraisal.

The current arousal and valence values are generated by the appraisal module. That
process is presented in the following section. Remembered arousal and valence are av-
erages of the current arousal and valence over time, which can span many episodes
of the agent’s experience. The remembered arousal feature allows modeling the re-
call facility of nodes associated with strong emotions [Damasio and Sutherland1994].
The inclusion of remembered valence allows modeling mood-state dependent retrieval
[Bower1992].

4.4 Mechanisms
The mechanism set of EmoCog may be broken down into three key process groups:
directly controlled cognitive processes, automatic cognitive processes, and
meta-management. Figure 11 identifies the cognitive modules we propose to be di-
rectly controlled through meta-management. All other processes are assumed to be
automatic and run in parallel.

For purposes of this section, the details of the majority of these modules are ab-
stracted, as we defer discussion of these to later reports. The sensory and encoding
module handles the addition of new nodes into short-term memory from perception.
Action regulation can be seen as the cognitive architecture’s interface (mainly output)
to the body.

The attention module is responsible for selecting an associated cluster of nodes
for cognitive elaboration. Selection determines which node cluster to use in cogni-
tive elaboration by finding a single node with the greatest weighted sum of current
arousal, associated utility, and associated urgency. All nodes directly and indirectly
associated with the core node are also selected, using a breadth first search until a
threshold is met to form the cluster. The shifting of attention via emotional processes
[Simon1967, Bower1992] has been marginally addressed in architectures such as Co-
gAff [Sloman2001]. Meta-management is able to exercise limited executive control
over attention by setting the weight of each of these parameters.

The association maintenance module performs spreading activation to create asso-
ciation links, and to reinforce current associations in working memory. With time and
neglect, associations between nodes decay in long term memory. For example, when
an object is perceived, a node is created for the instance of object perceived. If the
object is in long term memory, an association must be made to the symbol representing
that object in long term memory. If the object is previously unknown, associations can
be made through various methods (e.g. matching by analogy or temporal relation).
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The appraisal module adjusts the current arousal and valence values of nodes in
short-term memory. When a node enters short-term memory, association maintenance
occurs, and then the node is subjected to immediate first level appraisal. This appraisal
is based on remembered arousal and valence and innate feeling (e.g. evolutionary
dislike of predator or a negative utility node) if remembered arousal and valence is
unavailable. The innate feeling is typically grounded in the body (e.g. pain is bad, and
intensity of pain dictates arousal).

The node will be subject to reappraisal for as long as it remains in short-term mem-
ory. This may be best characterized as the influence of associated nodes on how an
agent feels about the focal node. A graphical walk takes place on associated nodes,
propagating the current arousal and valence values (these values are scaled down based
on association strength). The traversal is terminated, if not earlier, when all nodes
in short-term memory have contributed. Four values are produced by this process:
sum of arousal of negative valence associations, sum of arousal of positive valence
associations, average negative valence, and average positive valence. The valence
with a higher summed arousal will dominate and inhibit opposing valence. The ap-
praisal module then incorporates the average arousal and valence into the node’s cur-
rent arousal and valence. When a new node enters a cluster and is appraised using first
level appraisal, it will similarly influence neighboring nodes in an outward fashion.

Overall mood of the agent will also be maintained by the appraisal process. The
current intention is to compute mood as an average of all current arousal and valence of
nodes across working memory. A single node’s appraisal can still influence our mood
over a long period of time, given that the node remains in working memory. This needs
elaboration, however, as mood is not only an overall emotional state based on working
memory, but may persist, decay, or change independent of the changing emotionally
charged nodes in working memory.

Physiological signals will relate the needs of the body to the cognitive architecture.
In the human body, these signals might be of hunger, thirst, or fatigue. The physiologi-
cal modula interprets a body signal and maintains a node in short term memory as well
as associated urgency and utility. The strength of the signal is directly translated to an
interpretation of urgency, while utility is innate.

The meta-management module is where metacognition and cognitive control will
take place. The vital components of this module are the metacognitive rules, decision
cycle, and list of directly invoked cognitive processes. In practice, the metacognitive
rules and the rules describing cognitive processes are represented and applied within
the same reasoning platform. Actions, in addition to existing as nodes in the associative
memory, are also reasoned about and decomposed within the same platform. This
approach gives EmoCog an unprecedented ability to represent interactions between
emotional and physiological processes and cognitive processes such as planning and
inference.

The decision cycle is the driving force of the meta-management. It typically pro-
gresses as follows:

1. Perception - Short term memory is updated with information from perception.

2. Attention - Metacognitive rules determine weights of attention parameters. At-
tention module is invoked.
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3. Elaboration - The node(s) which gain attentional focus are given limited cog-
nitive processing. Rules of the metacognitive module choose which cognitive
process runs1.

4. Decision evaluation - Metacognitive rules determine if enough elaboration has
been performed.

5. Action selection - If elaboration has produced a set of candidate actions, one is
selected based on metacognitive rules that weigh utility and emotional bias.

6. Action execution - If there is a selected action, it is initiated. The decision cy-
cle is then repeated. Note that subsequent decisions, or exogenous events, may
interrupt the execution of the action.

During the elaboration phase, individual cognitive processes are invoked through
metacognition, although they share the same rule space. All cognitive processes exe-
cute in an anytime fashion, with a limited amount of available computation before the
elaboration process repeats, possibly switching attention. Cognitive processes are only
able to use the cluster of nodes under attention focus.

4.5 Discussion and Examples
We view EmoCog as an embodiment of principles needed for full integration of emo-
tion and cognitive architecture and it will be particularly apt for modeling affective
behavior as described in psychology and neuroscience literature.

One particular phenomenon we address is that of emotions both as interference and
heuristic. It was observed that emotional signals can disrupt normal cognitive function,
particularly when not relevant to the processing at hand.

For example, an agent is assigned a cognitive task to recall and output a list of
words in order from long-term memory, under a deadline. Attention is focused on the
first word and the node in associative memory representing this word. The metaman-
agement invokes the recall process to find the most strongly associated node. After
some iteration, several nodes are recalled into short-term memory via this cycle. At
some point, the word “tiger” is retrieved and following the next recall cycle, the most
strongly associated node of a traumatic “tiger attack” experience is recalled. That node
has high activation strength due to high remembered arousal and extreme negative va-
lence. When the “tiger attack” node is brought into working memory, an appraisal
based on the remembered arousal and valence is assigned to the node’s current arousal
and valence. This causes the attention focus to be drawn away from the task to dwell
on the tiger attack. Meanwhile, other nodes which do not hold attention focus have
their arousal levels decay, allowing the dominance of the aroused thought.

Metamanagement, referencing the agent’s goals, attempts to refocus attention to
the task by raising the weight of utility. The emotional episode, however, is so strong,
that the thought of a tiger attack continues to hold the agent’s attention. The attempt to
return attention to the task succeeds only when the urgency of the task also increases,

1Processes like learning are automatic and are not among those selected
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due to impending deadline. These rules in metamanagement are used to reason over
the various cognitive tasks. It is similar to Soar’s metacognition in this regard.

This particular model of metamanagement stresses the importance of metacogni-
tion when our emotions can lead us astray. A person could have been taught to ignore
emotionally compelling issues to focus on his work, so he may try to do so, but emo-
tions are very difficult to fully ignore. Sufficient emotional arousal will wrestle cog-
nitive attention away from a rational train of thought. “People who are more rational
don’t perceive emotion less, they just regulate it better” [De Martino et al.2006].

If a person focuses on a certain task, usually irrelevant emotions fade, but it is not
necessary that he has completely forgotten about the invoking fact, it’s that it has been
tuned out. Neuron signal strength typically decays over time, so under the impression
that emotional signals occur in the human brain as simple neurological pulses, we
model current arousal of unattended nodes to decay similarly, allowing concentration
on a task. That is, unless something particularly compelling draws attention away.
There are also well studied mechanisms of signal inhibition and winner take all from
neuroscience literature, which we leverage by having the appraisal process inhibit and
suppress nodes excluded from the attention cluster.

When relevant to a task, emotion can serve as a heuristic for various types of cog-
nitive processes. Emotion acting on the recall process can model the emotionally-
enhanced recall demonstrated in the Iowa Gambling Task, and also model Bower’s
mood-congruent retrieval effect. For instance, an agent wins a lottery by picking the
number 7. The agent creates an association link between a node containing the num-
ber 7 and a node containing the experience of winning. The appraisal process confers
higher arousal and positive valence to the number 7 via its association with winning.
When the prospect of picking a number to win another lottery becomes the agent’s goal,
7 is more likely to be recalled than other numbers, as it is positively associated with
winning (“lucky 7!”). The agent’s mood will also influence the choice. An agent in a
positive-valence mood will be more likely to recall 7, as that number has the highest
valence among the choices in long-term memory.

Since all cognitive processes work with the associative network and emotional data
is embedded within all the nodes, any process can use emotion data to model emotional
affect. For example, arousal and congruence may influence the action and goal choices
an agent makes when it constructs a plan, and also the fidelity with which it executes a
plan. The agent may omit or curtail steps whose actions or objects have lower arousal,
even though they are logically necessary to the plan.

EmoCog is designed to be extremely flexible, so that further dimensions and al-
ternate views of emotion can be incorporated into both the associative network and
mechanisms. For example, different appraisal theories can be modeled for emotion
generation, as many postulate some form of arousal and valence. Other appraisal vari-
ables such as surprise can be viewed as a combination of our current appraisal and
violation of expectation (generated by planner or expectation process), or the appraisal
variable “causal agent” as causal inference followed by association and appraisal.

To illustrate this, consider an agent looking at a table with several objects on it. You
may ask the agent how it feels about each object on the table, and it may answer very
differently for each object, and why, by following the associations in working memory
with each object. The emotions experienced may also depend on the co-existence of
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objects (e.g. a kitchen knife alone vs. a kitchen knife next to a puddle of blood). The
only system with a similar capability is Soar-Emote, but its agent would only feel one
momentary emotion for each object individually as it perceives it, and is limited on
expressiveness in introspection.

Finally, much of our initial design subsumes previous work in computational emo-
tion with some modification. Soar-Emote’s appraisal in PEACTIDM can be seen as
appraisal during our decision cycle. EMA’s appraisal over a plan can be seen as having
a series of plan steps associated in some cluster. WASABI’s primary and secondary
appraisals also have equivalents in EmoCog, but the proposed system of secondary
appraisal in EmoCog is much more powerful.

4.6 Conclusion and Future Work
The core proposals which allow deep integration of emotions in a cognitive architecture
are in associative network memory, cognitive attention, and appraisal following cogni-
tion. The associative network allows for concepts to influence each other emotionally,
as well as hold emotional information for general consumption by cognitive processes,
allowing affect. The cognitive attention model allows for controlled elaboration and
emotional rise and decay. And finally, the ideas of how appraisal and association man-
agement follow cognition in the associative network, really allows the cognition to
influence emotional generation.

A majority of these ideas are not novel, but we believe the perspective on their
integration has great potential. It provides a general framework to reconcile and unify
existing computational models. The framework should also have greater explanatory
power for emotion-related phenomenon and provide a sandbox for understanding the
role of emotions in a fully cognitive being.

The scope of this project is broad, encompassing aspects of cognitive architecture,
emotion generation, and emotional effect. We have started to implement EmoCog, and
are working to complete an initial version. After this we plan to incorporate lessons
learned from its deployment in a number of settings, including behavioral simulations
and computer games.

We also intend to elaborate on much of the underlying groundwork we have pre-
sented here in subsequent publications, including the topics of attention, physiological
mechanisms, learning, semantic/associative networks, metacognition, and knowledge
representation and the relevant algorithms, equations, and data structures.

There are also plans to demonstrate various well studied emotion-related behavioral
phenomena. As we have argued here, we will be able to reproduce human behavior
with greater fidelity considering both when emotions can aid us in decision making
and when emotions can lead us astray. Some of the more beneficial effects include the
emotion-enhanced judgment demonstrated in the Iowa Gambling Task, and the affect
heuristic used in resource-bounded decision making. Examples of negative effects are
short-sighted exhilaration over a stock bubble, or extreme emotional trauma states such
as PTSD.
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5 Visualizer
The purpose of the visualizer is to provide an interface for users to view both live and
recorded simulation data. Users are able to view the organizational hierarchy of the
simulation, as well as inspectible data from individual agents. The visualizer currently
displays several agents arranged in a cluster around their manager, along with their re-
spective actions and internal states, as shown in Figure 12. Users may view a histogram
of an agent’s state to show how the agent’s mood and physical attributes have evolved
during the course of the simulation. It is also possible to view the agent’s desktop as
they complete tasks, as shown in Figure 14.

Figure 12: The visualizer displaying a simulation consisting of six workers, one man-
ager, one IT support agent and one cloud support agent.

5.1 Agent visualization
Agent objects in the visualizer store a history of their previous actions and states. Their
visual representation (Figure 13) consists of a clickable button icon set according to
the agent’s type (worker, manager or IT), progress bars for each of their states, a speech
bubble to show if an agent is working or on break, and textual information describing
their last action. Agents also have a computer button, which opens a VNC instance
connected to the agent’s desktop. When called to display, the agent retrieves its most
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current action and statemap from its history to provide the necessary information to
draw.

Figure 13: Detail of an agent. This displays that agent #3 is a worker, and is currently
busy with a task and in a normal emotional state, and has just typed an address in a
web browser. This agent has a tiredness level that is 25% of the level at which it needs
to rest and has one job in its queue.

Figure 14: The visualizer shows a number of workers along with their desktops.

5.2 Interface Arrangement
Agents are arranged in clusters. Workers are arranged in a circle around their manager,
while IT and cloud support agents assigned the group are shown near the manager.
Multiple managers in a simulation will create multiple clusters on the interface. Click-
ing on an agent will display a histogram of their states, and clicking on their computer
will open a VNC to display the live contents of their desktop.
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5.3 Agent Timeline
The histogram displays an agent’s history of their state during a simulation, as shown
in Figure 15. The histogram refreshes its data when the selected agent updates its
state. If a new agent is clicked on, the chart is reinitialized with the new agent’s state
history. Because dynamic data sets are not supported in JFreeChart, the chart must
be reinitialized with each update. The histogram is scaled at all times to fit its panel
located at the bottom of the window.

Figure 15: The timeline can be shown for any agent. This timeline shows four different
state elements over time, and is built from the event stream shown below the timeline.

5.4 Message Passing
A message passing system has been implemented to adjust the display in response to
various events that occur during the simulation. When the visualizer receives a mes-
sage, the message type determines which action the visualizer performs. A ‘Register’
message will add a new agent into the visualizer, while an ‘Action’ or ‘State’ message
will be passed to the agent specified in the ‘From’ field of the message. That agent will
add the payload portion of the message into its action or state history.
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5.5 Execution Modes
The visualizer has two modes for execution: live mode, which displays data as the
simulation is running, and history mode, which replays a recorded simulation. Both
modes use the same message passing system described above, but they differ in how
those messages are generated.

5.5.1 History Mode

In history mode, the visualizer connects to a database and retrieves the appropriate
project (simulation). It parses the list of actions performed by agents in the project to
determine what agents are included in the simulation. Then, a priority queue is con-
structed. The database handler of the visualizer constructs a message for each action
and state update found in the project, and inserts them into the priority queue. These
messages sorted by the timestamp associated with each database entry. After all mes-
sages have been constructed and added to the priority queue, a new thread is created.
This thread feeds all messages in the priority queue into the message passing system,
pausing after each message according to the difference between message timestamps.

5.5.2 Live Mode

In live mode, the visualizer connects to a subscription service, which listens for mes-
sages being passed through the server from the simulation. Messages are handled as
soon as they are received.

5.6 Future Work
Because we aim to support thousands of agents running in a simulation, future work
will address scalability. To avoid an explosion of memory allocation, agent histories
will have to be streamed on the fly, instead of loading all data upon application ini-
tialization. Different zoom levels will be added to both panels of the display. The
workspace panel will have different levels of detail according to zoom, with clusters
of agents being abstracted to single icons if the user zooms out. For the histogram’s
panel, zooming will adjust the x-axis scale. When a manager is selected, the histogram
will show an average state of its employees. Also, a time slider will be added so that
the user can jump to any point of the simulation.

6 Evaluation
In this section we describe results from our initial architecture and scenario that demon-
strate that the global behavior is reasonable under reasonable initial conditions. In par-
ticular, we show how the time for the whole group to complete its task depends on the
ease with which the IT agent tires, along with the length of break taken when his tired-
ness threshold is passed. In addition to verifying the system, this experiment highlights
the combined effect of human factors, task characteristics and organization structure
on understanding the effect of a particular attack on important task metrics such as
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the time to complete a task, or percentage completable or reductions in probability of
correctness.

6.1 Experimental design
In the experiments that follow we used a fixed organization consisting of one man-
ager, four workers and one IT agent. The manager’s task is to fill in several cells of a
spreadsheet with values derived from various urls. This task is delegated evenly to the
workers, which store the values in a spreadsheet operated through a cloud and which
also periodically check values they previously entered. Workers become fatigued as
they enter values based on a fixed exponential time decay coupled with a stochastic
value attached to each task. When workers reach a threshold fatigue value, they take a
“break”, pausing work on their tasks and instead accessing personal email and urls, for
a fixed amount of time after which their fatigue levels are reset.

At a fixed point in the scenario, one agent receives a prompt from the scenario
director to initiate an attack, modeling either an insider threat or a successful attack on
the agent’s computer. After this, the agent begins altering values that other agents had
already inserted in the spreadsheet. In this scenario, none of the agents suspect that
the spreadsheet values are being changed by a third party. Therefore, when an agent
notices that a value has been altered, it assumes that the computer it is using may be
compromised, and so stops work and notifies an IT agent of the problem. The IT agent
will log into the worker’s computer to look for any signs of a problem, find none and
tell the work that it must have made an error when entering the original value. The
worker agent fixes this error and then continues with its work.

6.2 Results
In this scenario, then, the attacking agent has the effect of slowing down the work of the
group, since a worker agent waits for the IT agent and then rectifies the error. We run
the scenario until the other agents have completed all their tasks, which includes fixing
the problems that they notice, and measure the traffic generation rate of the overall
group.

Figure 16 shows the effect of the IT agent’s tireability and recovery rate on the
overall work rate of the group. The gold line shows the average rate when the IT agent
never takes a break from fatigue. The blue line shows average rate when the IT agent
tires and needs to take a break after 40 time steps and the green line shows the effect
when the agent needs to take a break after 10 time steps. No other agent’s profile is
changed between these trials, and each graph is an average of five trials.

It can be seen that the IT agent has a significant effect on the traffic rate of the
group, despite being only one of a team of six agents. For example, the blue line takes
almost twice as long to reach the point where 120 urls have been accessed as does the
gold line. This is because the IT agent becomes a bottleneck in the workings of the
group. Each worker agent requires the IT agent to clear its computer after noticing an
error, but the IT agent clears the computers one by one. It can also be seen that in the
earlier stages of the scenario, the difference between tiring after 40 time steps or after
10 time steps is not as important as the fact that the IT agent tires at all. At this point
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Figure 16: Average cumulative traffic generation for an agent team based on different
values for the tireability and recovery rate for the IT agent.

the IT agent is able to service all the requests of the worker agents until it takes a break.
Later in the scenario, the blue and gold lines merge while the green line diverges. This
is because the IT agent is able to keep up with the rate of attacks when it tires after 40
time steps, and so eventually the other agents achieve all their tasks. When the IT agent
tires more quickly, however, the number of attacks keeps the workers from performing
their tasks for a much longer time, and in some cases permanently.

We draw two general lessons from this experiment. First, the global behavior of
the agent system is as expected in this scenario. Second, the experiment illustrates the
complex group behavior that can arise from the agent system through the interplay of
the task structure and the social network of the agent team.

7 Conclusions
This report presents work on a multi-agent system designed to test network security.
Our agents operate standard windows software and hardware through the Skaion Con-
soleUser API, work in teams to perform tasks and model human traits of bounded
rationality, physiology and emotion. We described a visualization tool used to see the
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states and desktops of individual agents and the progress of the group, and reported on
initial verification experiments.

Our future work is concerned with supporting further experiments on a security
testing range. We are developing libraries of typical organizations with differentiated
individual types, organizational structure and typical tasks, to allow experimenters to
test security software under a range of realistic, typical conditions. We are also im-
proving the integration of emotion and cognition in our agents and developing a more
powerful and expressive model of action and cognition. This model will support ac-
tions that have duration and whose effects change continuously over time. It will also
provide stronger support for inheritance of agent characteristics and reasoning about
organizational policies. Finally, we are investigating ways to model human bounded
rationality in cognition [Tversky and Kahneman1981].
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