
1

From Viz-Sim to VR to Games:
How We Built a Hit Game-based Simulation

Michael Zyda, Alex Mayberry, Jesse McCree, Margaret Davis
The MOVES Institute

Naval Postgraduate School
700 Dyer Road, Bldg 245, Room 271

Monterey, CA 93943
zyda@movesinstitute.org

Abstract
Program managers want games for their next
training simulator or combat-modeling system.
Corporations want their messaging put forward
in game form. These desires are sharpened by
the enormously successful career of the America’s
Army game, the first “serious” large-scale game
ever produced. In this paper, we discuss why
people want their next-generation simulation to

look like a game and where they got that idea.
We then describe the development of America’s
Army to elucidate what is required for such
an effort. America’s Army’s can be studied as a
case history of the issues that will occur as we
go forward with game-based simulation for
training and combat modeling.

Introduction
Why do so many people want games
for their next training simulator?
For one thing, games boast intuitive
interfaces, which is one reason kids
spend hours playing games the world
over. The average America’s Army fan
spends something like sixty hours
in the game, counting those who
completed the basic-combat training,
and it is only one of the top-five online
games: their cumulative hours must be
staggering. Ask any parent of an avid
online gamer—the number of kids
hooked and time spent is scandalous.
Games and their interfaces have
become second nature to youth.

Dawn patrol: Soldiers take positions in
the America’s Army online game

2 3

As new games appear, they are adapted to
instantly. Game interfaces are as standardized as
automobile dashboards—drive one, drive them
all—and in any case, setup functions allow for
preferences. Because there is next-to-no training
time for embarking on the latest game, attention
is riveted to the story and challenges to be
traversed.

Games are also attractive for their immersive
qualities. As a rule of thumb, there is more
immersion in a typical game that in a typical
training simulator. Teenagers often enter a
game world before dinnertime, after which it
is difficult to prise them out to eat: need more
be said? The same is rarely true of training

simulators. If the training world were to achieve
this level of immersion, they would have to
invest heavily, as the game world does, in story
and design. Training developers spend little
on story and even less on design; most time
and money goes to technology. Conversely,
technology gets perfunctory treatment from
game makers, who use entertainment tricks to
convey story rather than worry about the real
modeling of the displayed system.

So there are strong reasons to move our training
simulations to a game basis. But there are
problems.

One of the larger problems is the
generation gap. Games mean “frivolous
wastes of time” to the older generation,
so it is hard to convince them to buy off
on such training systems or even the term
“game-based simulation.” Eventually this
resistance will fade, but at present it is
our biggest impediment. Meanwhile, we
know we have to move to game-based
simulation. When we hear stories about
nine-month learning curves for the latest
combat-modeling system, we cannot
but think of the five minutes it takes to
drive the latest game. As a community,
we want our systems to offer training
in five minutes. We want our systems
as immersive as games. We want them
entertaining, so that work is play and
people don’t leave. In short, we want our

training systems so immersive, soldiers forget to
eat.

Where did we start?
If we go back to the mid-1980s, when we
launched the field now known as virtual
reality, the motivation was to make 3D virtual
environments available to everyone who could
afford a workstation.

A Black Hawk helicopter
as modeled in America’s Army

2 3

At that time, all we had were very expensive,
multi-million-dollar visual-simulation systems.
In the NPSNET project [Macedonia,1994]
[Singhal/Zyda,1999], we deemed ourselves
successful when we had over a hundred
organizations ask for tapes of the NPSNET
source so they could adapt NPSNET to their
training needs. We simplified lives by giving
away the source codes to NPSNET I through IV.
We enabled anyone with a $60K workstation to
play in SIMNET and DIS simulations or extend
that code for their own purposes.

So how do we get back to such a notion for
games?

Again, remember
that games are
m a i n s t r e a m
entertainment—and
big money. Games
look way better than
the old-style virtual
worlds and visual-
simulation systems we used to build. With
games, we harness the creativity of artists and
designers, rather than engineering acumen, to
get our training simulators built.

Why did we start thinking about
games?
The 1997 National Research Council report
entitled “Modeling and Simulation – Linking
Entertainment and Defense” [Zyda/Sheehan,
1997] states that games and interactive
entertainment—not defense research
expenditures—have become the main drivers
for networked virtual environments. To keep up
with developments in modeling and simulation,
that report indicated, DoD ought to examine
networked entertainment for ideas, technologies,
and capabilities. We thought a lot about this
insight when forming the MOVES Institute

as a center for research in modeling, virtual
environments and simulation, and game-based
simulation became a focus.

What does game development
cost?
So if we make games, what’s the bill? In Table
1, we see a notional cost for America’s Army.
America’s Army was built as an entertaining
vehicle for strategic communication [Davis,2003],
[YerbaBuena,2004] [Zyda,2003a&b]. We start by
discussing a notional/approximate cost for that
development. With luck, our training simulator
will be less costly.

The first row lists notional game-engine costs.
Game engines licensing for use in one game
runs from $300K to $1.5M. (“Game engine,” by
the way, is a poor term. It ought to be “game
engine and authoring-tool set,” as that is what
you expect with your license.)

We want to get our game out in twenty-four
months, so for the moment let’s banish the notion
of developing our own engine and toolset. Let’s
assume the lowest cost, $300K is the figure to use
notionally for the price of a game engine. Then
there is software maintenance on that engine,
usually about 33% of the cost of the engine, so
another $100K per year. Let’s bear in mind that
the engine is good for about three years (until
the next generation comes out), so in year four
we see both the purchase of the next-generation

Table 1. Typical entertainment-game costs (loosely based on AA costs)

Typical costs Year 1 Year 2 Year 3 Year 4
Game engine $300K $100K $100K $400K
Dev costs $2.0M $2.5M $2.5M $2.5M
Operational
costs $1.5M $1.5M $1.5M $1.5M
Total $3.8M $4.1M $4.1M $4.4M

4 5

engine and the software-maintenance fee for the
old engine. And when we build on that licensed
engine, we cannot send the source code for our
training simulation to anyone not licensed. So
having chosen to license a commercial game
engine to save time, we are stuck paying
licensing forever.

The moral: if we are really to follow the path
towards game-based simulation, DoD needs
an open-source game engine yesterday. DoD
also needs to consider open sourcing the
painstakingly developed art within its games, so
teams don’t throw scarce resources at reinventing
3D soldiers, weapons, and environments.

Development costs are the next line in the table.
In the first year of development, we are building
a lab, comprising computers and servers for the
dev team, and getting software tools installed.
We are growing from zero staff towards, say,
twenty-six. So in year one, we will spend about
$2M on the dev team and setup. Year two has
us spending $2.5M for our team of twenty-six,
plus management and admin costs. At twenty-
four months, the game debuts on the Internet. In
the case of America’s Army, there were then four
single-player levels and six multi-player levels
(the complete release history through version
2.0.0a is presented later in this paper). Year
three, we are adding new content for additional
online releases and again spend some $2.5M.
We ought to be spending more as we start the
second version of the game. We ought to bubble
up in cost by something like $1M to $2M at the
start of the third year. For this paper, however,
we will eke by with a spartan staff and not show
such a bubble. Year four is again $2.5M, and so
on.

Operations costs begin near the start of the
project, as we fund servers to host the game,
a marketing firm to build booths for E3, and
travel costs associated with promotion. If we
are building a training system, we don’t really

a substantial publicity cost, but we cannot get
around server costs. So building a game with
as complex an agenda as America’s Army’s (say,
infantry-based combat in a small-terrain box)
is on the order of $2M to $3M per year. Add in
bigger pieces of terrain, HLA networking, and
costs go up.

The tough issue is team
building and maintenance
So what is the biggest challenge in building
games? If you’re coming at this from the visual-
simulation or virtual-reality world, it’s team
building—which is a whole new proposition
when you’re talking games.

If we were building a visual simulation in the mid-
1990s, we might hire twenty-six programmers—
and if one of those programmers had taken an
art class in college, we would consider ourselves
good to go. And what we would end up with
was a well-engineered training sim with
displays that sport “engineer art.” Engineer
art is not immersive. Nor is it engaging. It
inspires the outsider to utter the developer’s
most dreaded words: “my kid’s video game
looks better than that and it only cost $50.” The
ignorant public will also point out that Game X’s
AI seems superior, the scoring system is way
more thought out, and the networking is better.
These comments are industry standards—your
mileage may vary.

Team building for game development is
different. In a team of twenty-six, we will have,
say, four game programmers (perhaps two
with CS degrees and two self taught, who can
do scripts but maybe not C++). The remaining
twenty-two will be level designers and artists.

4 5

The formal education of the designers and artists
is of practically no interest. What is important is
their demo reel showing past work, whether in
school, game companies, or on their own. Of
highest important is the recommendation of
persons you already hired and trust. Because
many first-rate artists and designers lack
degrees, traditional hiring procedures beat the
wrong bushes and come up empty. Human-
resource departments and program managers
should not be expected to build effective game
teams; insiders build these teams.

Getting your team to function pipeline-fashion
is the job of the executive producer or creative
director. He may be thirty—maybe younger—
but he is the father figure for the group. Under
the executive producer are a lead programmer,
lead artist, and lead designer (for the story and
presentation of the game). The EP’s job is to
make sure his team masters the selected game
engine and tool suite and maintains an efficient
resource-management system, and that this
cross-cultural, interdisciplinary group behaves
well enough and long enough that a game pops
out after twenty-four months of concerted effort.
Whiners are culled. In the game-dev community,
exactly how to make this team work is widely
understood.

Back to our goal of building training systems
with such a team: we begin to perceive an
incipient cultural challenge; namely, we will
have to ensure that the game people and training
people get along. Put military officers in charge
of the project, and we have an extra dimension
of fun and understanding. One group shows
up at 11am in t-shirts and flip-flops. The other
group comes in at 6am in uniform—but leaves
at 5pm, while the gamers toil till midnight.
This makes for a prickly cultural interface
and requires patience and understanding. You
can help things along by supplying the right
management and keeping the program manager
away from the dev team.

Americaʼs Army Development
Pipeline
To suggest the development process, we sketch
the production of America’s Army (AA). We then
cover AA as a case history of what can be done
in a given time through that process.

Positional and Core Component
Breakdown for FPS Video Games
In the industry, a game like AA is called a first-
person shooter (FPS). This genre assumes that
the game is rendered in real-time and the point
of view is that of the player looking through the
eyes of his character. To develop an FPS, skilled
individuals are needed in some key positions.

Positions and Duties

Programmer: Programmers are the technical
glue that holds the myriad pieces of the game
together. They maintain the game engine,
merge code updates, add features and tools,
ensure hardware compatibility, identify and fix
bugs, and integrate all game content into one
package that users install on their machines.
They interact with all other team members to
weave strands of content into a final product.
Without programmers, creating a game would
be impossible.

Level Designer: Level designers provide the
biggest tangible piece of the game. Their job is to
design and construct worlds in which the player
can interact. They create terrain and buildings,
place objects and sounds, add special effects, and,
like stage managers, array each environment for
the its particular use. Level designers maintain

6 7

frequent contact with everyone on the team.

Artist: Artists are responsible for the look and
feel of the game. They create the surface, or
“texture,” of every wall, ceiling and floor, as
well as flora, fauna, and faces. Artists typically
develop the user interface and game icons and
provide the artwork for special effects such as
explosions, fire, water, smoke, muzzle flashes,
lightning, etc. Generally speaking, if it can be
seen in the game, an artist had something to do
with it.

3D Modeler: While artists give you the outward
appearance of things, 3D modelers construct
the bones. They create the frameworks for the
artifacts that populate the game environment,
from furniture to fire hydrants, phone poles
to forearms. Without 3D modelers, game
environments would be nothing but static,
empty shells. Some 3D modelers develop
specialties; two pertaining to AA are as follows:

Character Modeler: A character modeler
must have a highly developed sense of body
proportion and structure to create realistic
figures. They must also have a good sense of
bipedal locomotion for realistic animation.
Character modelers typically work with more
polygons, which adds extra complexity to
their craft. Generally speaking, they will work
primarily on characterization tasks throughout
the course of development.

Weapons Modeler: The weapons modeler takes
into account how each weapon will be animated.
Since weapons will typically be the largest
element on a user’s screen, the weapons modeler
works in minute detail (for which he has a large
budget of polygons) to ensure verisimilitude.
The weapons modeler will typically work on
weaponry alone, with little time for any other
modeling work.

Sound Engineer: The sound engineer creates,
mixes, and imports into the game engine all
the sounds the player hears. From bullets
to footsteps to crickets, the sound engineer
provides the hundreds (perhaps thousands) of
effects that make an environment sound alive.

Project Leader: Games can be highly complex,
and the FPS is one of the more difficult genres
to work in. Every good development team
includes a number of project leaders, including
a producer/director, lead designer, lead artist
and lead programmer. Depending on the size
of team and the complexity of project, a small
support staff will also be necessary.

Core Game Components
The following diagrams illustrate the core
components of a typical FPS game. Figure 1
depicts a hierarchy of these components, while
subsequent diagrams break down positions
and interdependencies. Note that there is a
deeper interdependency that cannot readily be
depicted.

Weapons, such as these M-9
pistols, receive fine detail

6 7

Figure 1. General Hierarchy of Core Components

Game Engine

Game Code/
Scripting

Editor/Tools

AI

Textures Sound/Music

ObjectsWeaponsCharacters

LevelsLevels

User
Interface/

HUD

Special
Effects

Animations

Sound/Music

ObjectsWeaponsCharacters

8 9

Figure 2. Game Engine

At the foundation of every game is the game
engine (Figure 2). Every element of the game
will depend on this low-level piece, and it is the
task of the programming department to ensure
the game engine can support the fi nal product.
It is extremely important that this complex and
crucial element be maintained and organized
properly. If the game engine fails, the project
fails with it.

Game Engine

Programmer

Level
Designers

Artists Modelers AnimatorsSound
Engineer

Game Code/
Scripting

Programmers

Figure 3. Game Code/Scripting

Programmers write game code and scripts to
produce the game’s peculiar atmosphere and
identity. Written on top of the game engine,
this code incorporates all assets into a coherent
interactive experience. Programming and every
other department work together in a give-and-
take manner to successfully integrate the pieces.
It is the game code and scripting that realize
the scope of the game design and provide the
functionality that distinguishes your game from
all other games based on the same engine.

8 9

Figure 4. Editors/Tools

To facilitate the use of game code, the
programming department provides the team
with a game editor and tools for importing assets.
Although these tools can be time consuming
to create and maintain, ultimately they save
countless man-hours and prevent bottlenecks
by providing an assembly line for developing
and integrating content. As the game evolves, so
must the tools that support the team.

Figure 5. Artifi cial Intelligence

Level
Designers

Artists Modelers AnimatorsSound
Engineer

Editor/
Tools

Programmers

Level
Designers

Artists Modelers AnimatorsSound
Engineer

AI

Programmers

Artifi cial Intelligence (AI) is similar to game
code, but more specialized and complex. To
create AI, programmers work directly with each
department of the team. For example, computer-
controlled characters need an environment
to run around in, so the programmers work
with level design to ensure their proper setup.
The art and modeling teams provide character

models to attach the AI to, and the animator
and sound engineer breathe life into these
characters through movement and sound.
Only when all these elements come together is
AI fully functional in the game. It is typically
a long process and requires one or more
dedicated programmers through the course of
the development cycle.

10 11

Figure 6. Textures

The sound engineer creates all sound and
music fi les in the game. Background noises
are distributed to the level designers for
implementation. Sounds needed for the user
interface and other effects go directly to the
programming staff. For sounds that need to be
synchronized with the movement of weapons

Level
Designers Modelers

Textures

Artists

Level
Designers

Sound/
Music

Sound
Engineer

Animators Programmers

Modelers

that they wrap precisely around the model in
a custom fi t, while environments require that
textures be painted according to a mathematical
paradigm. Texture maps are essentially the basic
building materials of the game; without them,
the characters, weapons and environments they
cover would be invisible.

The artists provide texture maps to the level-
design team, who then place them on walls,
ceilings, and fl oors of their game environments.
Texture maps are used on all game objects (such
as furniture, characters, weapons, etc.), in the
user-interface screens, and for all in-game icons.
For 3D objects, texture maps must be painted so

Figure 7. Sound/Music

and characters, the engineer collaborates with
the animation team. These elements, along
with the models they are associated with, are
then given to the programmers, who import
them into the code and ensure their unifi ed
functioning.

10 11

Characters

Modeling

Art

Programming Sound

Level
Designers

Animation

Figure 8. Characters

Character models are created by a specialist 3D
modeler then texture-painted by an artist (or
the modeler, if he has the skill). When fi nished,
the painted character is passed to an animator.
Motion-capture data is applied to the object, and
it is hand tweaked. The completed object and
animation data are sent to the programming
team, who integrate it with the game code
and attach any available AI functionality. The
sound engineer then creates and synchronizes
sounds for the character for addition by the
programming team. Finally, the level-design
team places the functional character into the
game environments.

12 13

Figure 9. Weapons

A specialized 3D modeler creates weapons
models. Once the model has been crafted, he or
an artist paints a texture for it. It is then handed
to an animator, who sets up the model and
animates it, sending the model and animation
data to the programmers, who incorporate
them into the game code. The sound engineer
provides sounds for the weapon and the
artists create special effects. Programmers then
integrate these elements and write game code
that defi nes the weapon’s functionality. The
level designers add the fi nished weapon to the
game’s environments.

Weapons

Modeling

Artists

Programming Sound
Engineer

Level
Designers

Animators

12 13

Figure 10. World Objects

3D Modelers create the world objects that are
placed in the game environments: for example,
light fi xtures, vehicles, trees, grass, bushes,
fences, and rocks. Once a world object has been
created, an artist paints its texture map. The
fi nished object is imported into the game code
and placed in the game environments by level
designers.

World
Objects

Modelers

Artists

Level
Designers

14 15

Figure 11. Animations

The animator determines the entire range of
motion for all moving elements in the game. If
AI is to be implemented, character behaviors
are examined to determine what animations
are necessary. Once this has been decided, the
animator directs a motion-capture session, in
which an actor performs specifi ed movements
(usually these services must be contracted
out, at high cost. The animator processes the
information and prepares the motion-capture
data for use in the game, taking the game objects
provided by the modelers and applying this
information, after which he makes any needed
corrections and distributes the assets to the
programmers and sound engineer. The sound
engineer supplies audio and turns over the
assets to the programmers for coding. Finally,
level design adds these fi nished components to
the game environments.

Animations

Programmers Sound
Engineer

Level
Designers

Animators

14 15

Figure 12. Special Effects

Special
Effects

ProgrammersLevel
Designers

Artists

User
Interface/

HUD

Artists

Programmers

Figure 13. User Interface/Heads-Up Display

For the user to understand and play the game, a
user interface and icons must be designed and
implemented. These assets are typically created
by the art department, who distribute them to
the programming team for writing into code.

Because the interface has to be updated as new
features appear, it is important that it be robust
and dynamic enough to grow as the game
evolves.

Special effects are an often-overlooked element
that can be applied to virtually every aspect of
the game, adding polish and interest. Clouds
that pan across the sky, muzzle fl ashes, tracer
fi re, and water dripping from a leaky pipe
are just a few of the effects can make the
game environment feel alive. These effects are

usually created by the art team, who relay them
either to level design for integration into the
environments or to programming, who place
them directly into code. Typically, special effects
are added towards the end of the project, when
all other assets have been completed.

16 17

Figure 14. Game Environment

The game environment is created by level
designers. Like the dish on which a fi ne meal
is served, it is here that all the components of a
game come together and the end user enjoys the
fi nal presentation. With this in mind, the level
designers work closely with the team to ensure
that each component works as planned. Just as
the programming department is the hub for all
technical elements of the game, level design is
the hub for all content. If the level-design team
misses the target, the entire game will suffer.

Summary

There are many pieces to a game like America’s
Army. Identifying them is half the battle, because
it leads to a solid plan of action, which starts with
good game design and project leaders who can
communicate the design to the team. Scheduling
which pieces are constructed when and by
whom helps the project meets its goals (yes, we’re
talking Microsoft Project). As illustrated above,
there are many interdependencies among the
components of an FPS game, and many risks: if
one element fails, the ripples are felt throughout
the enterprise. But with planning, good staffi ng
and coordination, the development team can
overcome these risks and produce a well-
constructed, quality game.

Level
Designers

Artists Modelers AnimatorsSound
Engineer

AI

Programmers

16 17

Americaʼs Army:
A Case History

To show how much can be accomplished within
three years, the following section describes the
America’s Army development from inception to
the 2.0.0a release of December 21, 2003. We will
describe what was produced for each release,
discuss the concerns associated with it, and
approximate the time spent. This close look at
AA’s development reveals issues that come up
in developing large-scale games. Similar issues
will doubtless occur in your project. We hope
our experience will prove useful.

Americaʼs Army Pre-Release:
August 2001

In August 2001, the AA project was seriously
understaffed and unable to prosecute proper
development. Major obstacles to success
included the following issues:

• Improper Team Balance and
Organization
At this juncture, the team was not well
structured to develop a first-person shooter.
No one had experience in creating and
shipping an actual product, and the team
structure was inefficient and inadequate to
the task. An overabundance of designers was
coupled with a severe dearth of art support.
We had a character animator, but no character
modeler, and no one on sound. Overall, the
team lacked cohesion and leadership.
Solution
1. Hired three game-industry veterans as
team leaders to rebalance the team
2. Acquired a character modeler
3. Acquired a sound engineer

• Lack of Design and Common Vision
The absence of a thorough design document
fragmented the team’s vision and precipitated
confusion between the development team

and the customer (i.e., the US Army). Without
a proper design, it was difficult to guide the
team, schedule tasks, and track progress.
Solution
We focused on the overall mission statement,
which was to develop a game with appeal
similar to the game CounterStrike. We took
CounterStrike as our model, but with heavy
emphasis on realism and Army values and
training.

• Technical Issues
The game engine licensed for America’s Army
was still in development; in fact, during the
entire course of development, the technology
was constantly in flux. Many systems were
not in place or inadequate for the game’s
needs, and completion of the engine was
not anticipated until after the scheduled
release of AA. Due to the development team’s
inexperience, the game’s database structure
was vastly inefficient and lacked consideration
for distribution. Many of the game’s assets
were not optimized or beyond the technical
specifications of the game engine. Many of
the steps and tasks necessary for success went
unaddressed.
Solution
The engineering team wrote a number of new
systems from scratch (approx 150,000 lines of
code for the initial release of the game). We
reorganized the art database and created a
standard structure for all file formats and
a team-wide methodology for database
organization. Game assets were optimized
to run well under the game engine. We cut
a number of elements that were outside the
engine’s specifications. Task-management
software was implemented to organize and
track progress.

Version 1.0 Release: July 4, 2002
The first version of America’s Army was released
on July 4, 2002. With the game a runaway success,

18 19

the Army and dev team were unprepared for
the sheer volume of players that flocked to the
game. Game servers were massively overloaded,
and the need for a professional quality-
assurance team became apparent as the public
discovered critical bugs that detracted from the
experience and even prevented some players
from running the game. On top of this, several
features had been delayed at launch so that
the July 4th deadline could be met. Because of
this, the initial launch of the game was labeled
the “recon” version by the Army, though most
players understood it was really a beta version.
Issues that the development team dealt with
during this phase are as follows:

• Server Overload
Initially, the Army stood up only 140 servers
for the launch of the game. The average server
could accommodate 24 players. With the game
downloaded over 500,000 times that weekend,
the servers were swamped and many players
had to wait days to play. Additionally, the
game used an authentication server that
validated players’ having completed basic
training (required for multiplaying) before
allowing them onto a game server: this
authentication server, too, was overwhelmed,
making it even more difficult for players to
enter the game. Because the game had never
been played by so many players at once, many
nascent errors emerged.
Solution
The Army quickly stood up additional game
servers and authentication servers. The dev
team went to work on addressing the most
critical errors and applying server-side fixes.

• No Server-Browser/Community-Server
 Support

At the release of version 1.0, the in-game
server browser was not finished. As a stopgap,
Gamespy Arcade was included with the
download and was required to find and join
game servers. There was no mechanism by

which users could set up their own servers
or use other server-browser software to find
game servers. This shortcoming exacerbated
the problem of server overload and irritated
players by forcing unwanted software on
them.
Solution
The dev team completed the in-game server
browser, as well as packages for setting
up user servers and user-created browser
software.

• Game-Play Bottleneck
The initial release of the game required
that all players complete the single-player
training courses (rifle-range, obstacle,
weapons-familiarization, and tactical). Once
these courses were finished, players had to
go online and participate in a multiplayer
training exercise before any the additional
scenarios could be played. Until a user had
played online and was part of a winning
team in the MOUT McKenna training level,
he could not proceed to other missions. While
this seemed a good idea, in practice it created
additional server bottlenecks and yet another
barrier to entry for most players. To make
matters worse, the game did not adequately
describe the requirements for participation
in further missions, so people were confused
about what they were supposed to do.
Solution
We did away with the online-training
requirement and changed the game so that
only completing the single-player levels was
necessary.

• Training-Level Bugs
Both the rifle range and obstacle course
suffered critical bugs. In the case of the rifle
range, players discovered an exploit that
allowed them to bypass qualification. In the
obstacle course, a logical error in the script
prevented many players from finishing and
proceeding with the game.

18 19

Solution
The development team immediately fixed these
problems.

• Multiplayer Bugs
A number of critical bugs in the multiplayer
portion of the game were discovered after
initial release, ranging from graphical glitches
to serious flaws in game play that marred
the overall experience. In collapsed-tunnel
mission, a logical flaw in the objective system
caused victories and losses to be counted
wrong. In many cases, a victorious team was
credited as having lost. This frustration led
most users to avoid the mission.
Solution
Identified the most severe problems and
began working on fixes.

Version 1.0.1 Release: July 12, 2002
America’s Army 1.0.1 was released on July 12,
2002. As implied by the version number, this
was a minor release, consisting primarily of a
patch for the worst problems of version 1.0. The
main issues addressed were as follows:

• Corrected client and server-flooding
issues. This fix stabilized servers that were
overloaded by network traffic.

• Fixed training level bugs. These fixes
addressed the most critical issues involving
the rifle range and obstacle course.

• Added community game-server support.
This allowed the use of alternative server
browsers for finding game servers.

• Added a dedicated server executable. This
allowed players to stand up their own game
servers.

• Fixed many bugs

Version 1.1.1: August 1, 2002
On August 1, 2002 the development team
released version 1.1.1, the “marksmanship

pack.” This release added the Army’s sniper
schools and the M24 and M82 rifle positions
to the game, features originally scheduled for
the initial July 4th release, but fallen behind
schedule. Eligibility to play the marksmanship
levels was based on scores from the original
rifle-range training level. A player who shot
36 out of 40 targets in the final test could try
to qualify as a sniper. Only those players who
passed the marksmanship training levels could
take a sniper position in online play.

While finalizing this version, an unfortunate
database error was discovered: the authentication
server was logging only pass/fail results for the
rifle range. Once a player was determined to
have passed the course (with a score of 23 or
above), the authentication server did not bother
to record subsequent attempts, so that players
who had met the basic qualifications could
not return to the rifle range and try for better
scores so they could move on to sniper school.
In the end, we reset the rifle-range scores for
all players to force the necessary changes to
the authentication system. Many players who
had already qualified for the sniper schools (an
extremely difficult feat) found they were obliged
to qualify again. This naturally had a very
negative impact on the player community.

To make matters worse, AA opened the sniper
role only after other team positions were filled,
meaning there were only a few sniper positions
available at any time. With the release of the
marksmanship pack, everyone wanted to be a
sniper. Virtual fratricide broke out as people
killed team members just to steal their sniper
rifles. Needless to say, we did not anticipate this
abuse and had to brainstorm ways to curb it.

During this release we also did away with the
MOUT McKenna online-training requirement.
Ironically, this caused an outcry from those who
had gone through the painful launch experience
and saw completion of the training as a badge of

20 21

honor. Many felt that since they went through
MOUT McKenna, others should too. Regardless,
it was necessary to remove the requirement to
free up server bandwidth.

Other changes in this release:
• Added idle-player kick. In the initial release,

it was discovered that with the limited server
space, many players neglected to even when
they weren’t playing (to preserve their slot).
This infuriated players who couldn’t get in
and annoyed those in the game who saw a
team member just standing there. A fix was
added to time idle players and kick them off
after a certain period. Occasionally players
who were not idle would get the boot,
requiring additional fixing in subsequent
releases.

• An in-game server browser was finally
added. While offering only the most
rudimentary functionality, it at least
appeased players and removed the necessity
of using Gamespy Arcade.

• Added MILES grenades to MILES missions.
MILES is a laser-tag system the Army
uses for training. At the Army’s request,
a number of AA missions were based on
MILES scenarios (the irony of simulating
a simulation was not lost on the dev team).
With release of version 1.1.1, the Army
wanted to add a MILES-equipped grenade
to these missions. Opinions concerning this
addition by the community were mixed.

• The dev team was asked to change the
tracers of enemy fire from amber to green.

Version 1.2.0 Release:
August 22, 2002

Released on August 22, 2002, version 1.2.0
was known as the “airborne/ranger pack.”
This release introduced airborne and ranger
schools to the game. While the airborne school
came with two training levels that depicted an
abridged version of the Army’s actual training,
the ranger school offered no training levels at all.

The original design called for ranger training to
take place online with other players, but after
the debacle of the MOUT McKenna training
scenario adding another round of multiplayer
training requirements was determined not
worth the risk. Instead, the ranger-training levels
were converted to standard online scenarios.
The disadvantage was that there was nothing
players had to do to qualify for these maps. In
the end, we required that all other training be
completed before ranger maps could be played.
While this was a workable compromise, it
clashed with existing paradigms in the game.

Other problems encountered with this release
revolved around the airborne portion of the
game. The technology used for AA was not
ideal for simulating flight, and the artists had to
depend heavily on tricks to create the illusion of
parachuting. While this worked well in the single-
player training missions, where the experience
could easily be constrained, multiplayer
missions posed hurdles and challenges that were
never fully resolved. Parachuting introduced
a host of bugs, not to mention heavy demands
on the processor. While ultimately the team
this feature adequately, associated problems
haunted them for the entire production cycle.
Just some of the bugs encountered included
parachutes not opening (and players falling
to death), parachutes deploying inside planes,
parachutes stuck on the body after landing,
players stuck together or stuck on other objects,
players unable to move after landing, and a host
of related technical issues. Although this was
only a small feature in the game, it represented
a great many man-hours.

Additional highlights for version 1.2.0 included:

• New Voice-Overs for Radio
 Commands, Shouts and Whispers

During development, team members and
Naval Postgraduate School students were
often used as voice actors for the game. While

20 21

this saved the cost of hiring professionals, it
meant that creating good voice-overs (VO)
was a struggle. A particularly good reader
might be a military officer, stationed at NPS
for only a short time, or an original reader
might no longer care to participate. When
this happened, a new VO candidate had to
be located and the entire voice-over sequence
recreated. Moreover, voice files tend to be quite
large, and the continual changes frequently
increased the download size of subsequent
releases. This aspect of development proved
frustrating, an ever-changing facet of the
game.

• Adjusted Team-Balance System
In multiplayer games, it is customary to
include team balancing. If one team heavily
outnumbers the other, the system will shuffle
players to achieve equity. Also, if one team
consistently beats another by large margins,
the system will exchange players to make the
teams equitably matched. While this sounds
good in theory, it can create problems. Players
may not understand the computer’s arbitrarily
changing the conditions of the game, and the
system itself tends to respond to very specific
contexts only. Without a professional QA
department, many of the flaws in the auto-
balancing system aren’t discovered until after
a new version of the game is released and
feedback is received from irritated players. In
the case of America’s Army, this feature was
adjusted several times before it was deemed
acceptable. In all likelihood, it was never truly
perfected and there are still players who are
not satisfied with it.

• Adjusted Vote-Kick Feature
The vote-kick system was created so that
players themselves could enforce the rules of
the server. If an unruly player were causing
havoc, a player could call for a vote to kick
that person off the server. While this is a
common tool in multiplayer games, we didn’t

foresee the ways in which it might be abused.
It was found that many players were causing
players to be tossed for reasons outside the
scope of the system. Like the team balancing
system, it was necessary to adjust vote-kick
numerous times. It’s difficult for a computer
to identify and regulate human behavior, so a
perfect solution to game pests was never truly
achieved.

• Adjusted Weapon Distribution
In America’s Army, players were not allowed
to select any weapon desired, but instead
chose what role they wanted and were given
the accompanying weapons, based on the
actual structure of Army infantry units. The
weapon-distribution system regulated how
the various weapons were dispersed among
players. The problem was that most players
maintained a personal-weapon preference
and wanted to find out what to do to obtain
the favored weapon; at the same time, the
system relied on mathematical voodoo that
did not always provide consistent results. The
result was great confusion among the players
and constant modification by the dev team.

• Added Three New Multiplayer Maps
Version 1.2.0 added three new multiplayer
missions to the game: the FLS assault, the
swamp raid, and the mountain ambush.
Because we had few testers at this point
(as well as an internal network that did not
allow us to test maps with a full contingent
of players), a host of new problems appeared
with these levels: the most dramatic involved
the mountain-ambush level. It was found that
if someone changed teams and then left the
server after the mission began, the round
immediately ended. With players entering
and leaving servers frequently, this level was
in effect unplayable and was temporarily
removed from server rotation.

22 23

Version 1.2.1 Release:
August 24, 2002

On August 24, 2002, only two days after the
release of version 1.2.0, a patch was created to
deal with the critical errors introduced in the
previous release. Specifically, several fixes were
made to the new missions and adjustments were
made to the team-structure system to make the
mountain-ambush level playable.

Map Pack Release: October 3, 2002
On October 3, 2002 the development team
released a map pack including two new missions
for the game: JRTC Farm and Weapons Cache.
These two maps had been finished for some
time, but were delayed by request of the Army so
that they could be used for strategic-marketing
purposes: before releasing them to the public
through standard distribution channels, these
missions were first available through Army
recruiters only. After a time of exclusivity,
the missions were added to the next release.
Although this practice seemed straightforward,
it actually caused the development team several
distribution problems. Patches were created
with every new release so that players had only
to download the new rather than retrieve the
full version again. With the map pack however,
our engineers now had to account for two
different versions of the game (one with the
new missions, one without) and apply the patch
accordingly. Since this map pack fell outside
the scope of the team’s normal distribution
methodology, extra engineering was required to
ensure that all players would be able to update
the game seamlessly for the next release.

Version 1.3.0 Release:
October 10, 2002

Released on October 10, 2002, this version of
AA added a host of new features, bug fixes,
and adjustments. Since the game’s initial
release, the dev team had been scrambling to

finish uncompleted features for release. With
version 1.3, they were finally able to consider
the initial launch finished and begin focusing
on new features and adjustments based on user
feedback. While this release offered only one
new multiplayer level (the mountain-pass arctic
mission), great effort was put into improving the
game overall. Some of the changes made in this
release are as follows:

• Added Combat-Effectiveness Meter
 (CEM)

Because America’s Army attempted to portray a
realistic combat system, there were a number
of factors that could affect a player’s accuracy
and effectiveness while engaging the enemy,
including posture (standing, crouching or
kneeling), movement (e.g., running versus
walking), use of weapons’ iron sights, scopes,
and bipod supports, and proximity to team
leaders. While this allowed for a system more
closely resembling the experience of real
combat, the calculations were done behind
the scenes, and players often were confused
about the variance of weapon accuracy in the
game. In version 1.3, a meter was added to
the player’s screen, resembling the equalizer
bar on a stereo system: the higher the bar, the
more effective the player in combat. As the
player moved (for example, changed posture
and speed), the bar rose or fell to reflect the
effectiveness of the player’s actions. This
feature brought the inner workings of the
combat system to the fore, allowing better
understanding of how to be effective and
what might cause poor performance.

• Added Honor System
For some time, the Army had been looking
for the development team to provide
players with a comparative statistic showing
accomplishment within the game. Version
1.3 answered this desire by adding an honor
system. The honor system attached a persistent
score (between 1 and 100) to every player. By

22 23

tracking points scored against points lost,
players could build their honor score and
wear it as a badge for all to see.

Inevitably, many players wanted the score
to reflect actual ability, rather than simple
time invested in the game. Moreover, the
honor system created a distinction between
official and unofficial game servers, because
only experience racked up on official servers
was counted towards honor gain (to prevent
exploitation of the system). This caused
players to avoid unofficial servers and play
on Army-sponsored servers only, hampering
the growth of the game community. Over the
course of the project, there were also several
bugs and situations that could cause honor
scores to be lost or reset, precipitating an
outcry from the game community. While the
dev team made many alterations to the honor
system, its full potential was never achieved.

• Added Auto Weapon Lowering
In early releases, it was discovered that
occasionally a player’s weapon would
penetrate level geometry and give away his
position. In response, a system was modified
so that when a player was too close to an object,
his weapon automatically lowered to avoid
it. While this solved one problem, it created
others: players found that their weapons did
not always return to proper position when
needed. These glitches were addressed in
subsequent releases of the game.

• Added “Hit the Dirt” Feature
This version of the game gave players the
ability to perform a combat dive while
running, quickly hitting the ground. While
the feature was well received, it was eventually
scaled back because players were sometimes
stuck in level geometry after performing the
maneuver. While scaling back solved the
problem, many players were disappointed by
the changes.

• Added Night Vision to Spectator Mode
In America’s Army, once a player is killed he
is out of the action and may watch the game
from a number of spectator cameras or by
viewing a particular team member. In night
missions, spectators found that they often
couldn’t see the action due in the low lighting.
To compensate, night vision was provided to
spectators and camera points.

• Adjustments to Server Browser
More detailed player and game info was
added to the server browser so that players
could better select the game servers they
wanted to participate on. More options were
also provided to sort the data received in the
server browser.

• Adjusted M249 Fire Mode
In previous versions, it was discovered that
many players had learned to tap the fire key of
the M249 to turn it into a powerful, long-range
weapon. This was at odds with the weapon’s
real-life performance, so adjustments were
made to add variance to the burst-fire
capabilities of the weapon.

• Adjusted Weapon-Accuracy System
We made adjustments to the weapon-
accuracy system so that all weapons fired
with increased realism in shot patterns and
bullet spread.

• Adjusted Prone Movement
Movement in the prone position was adjusted
to provide better performance over terrain
and more flexibility when performing certain
actions.

• Adjusted Footstep Volume
It was discovered in previous versions that
footsteps were too soft to hear well. The
volume was turned up to give players a better
sense of immersion in the game.

24 25

• Adjusted Sniper-Rifle Accuracy
Adjustments were made to the sniper-rifle
accuracy system, so that shots fired always
hit the exact spot where the crosshair was
targeted but decreased combat effectiveness
was translated to the player through greater
wavering in the weapon’s scope.

• Numerous Adjustments to Grenades
It seemed that the development team would
forever be adjusting and balancing the way
grenades were depicted in the game. While
we wanted to depict grenades accurately, we
discovered that a realistic grenade in a game
does not necessarily equal a fun experience,
leading to constant rebalancing and enhancing
of the feature. In version 1.3, the following
changes were made to the grenade system.

• Auto Grenade Notification
Many players were dying from grenades
because they were unaware that they had
been thrown. The dev team added a feature
whereby throwing a grenade triggered an
audible warning to other players in the area.
To reward stealth, the warning could be
overridden if players moved slow in lobbing
a grenade.

• Auto Weapon Switch upon Grenade
 Throw

Many players were dying after throwing a
grenade because they couldn’t raise their
weapons in time afterwards to defend
themselves. We added automatic switching
back to the primary weapon after a throw.
Realizing that some players might dislike
the feature, we included a menu option for
disabling.

• Grenade Spin
In previous versions, grenades did not observe
physics and traveled in a frozen position. For
better realism, spin was applied.

• Dive on Grenades
The ability to dive on grenades was added,
thus letting players save buddies from harm.
Unfortunately, because of game perspective, it
was difficult to judge exactly where to land. It
turned to be out rare for anyone to exploit this
ability; the feature was mostly ignored.

• Grenade Physics by Material Type
Changes were made so that grenades would
react differently depending on the type of
surface they encountered. Like the grenade
spin, this increased apparent realism.

• Adjusted Variance of Fuse Length
Originally, all grenades possessed the same
length fuse. We became aware that players had
learned exactly how long they could hold a live
grenade before throwing it, pulling off precision
attacks that would not be possible in the real
world. To compensate, the dev team varied
the fuse length, making accurate judgment
impossible. From version 1.3 on, if players
held on to live grenades, they risked blowing
themselves up.

• Adjusted Roll Distance
We adjusted how far grenades could be rolled.

Version 1.4.0 Release:
November 25, 2002

Released on November 25, 2002, version 1.4 of
America’s Army was a minor release that offered
one new mission (River Basin), and a handful of
new features and bug fixes.

• New Scoring System
A new scoring system was created to de-
emphasize killing the enemy and reward
acting as a team and completing objectives.
While hard-core gamers did not immediately
embrace the system, many players found they
were able to achieve higher scores without

24 25

necessarily using violence. Ultimately, this
created a more balanced experienced while
simultaneously improving the marketing
message the Army sought to express.

• Added “Report In” Feature
Based on user feedback, players’ ability to
a single key and report their location was
added. This well received featured required
the dev team to make substantial adjustments
to, and testing of, every level in the game.

• Added Binoculars
Team leaders were provided with binoculars
to better scout positions and coordinate with
team members.

• Movement with Iron Sights
In previous versions of the game, if the player
was using the iron sights of a weapon, any
movement would drop him to the normal
weapon perspective. With version 1.4, players
could move (albeit very slowly), while looking
through the sights.

• Added “News” to the Login Screen
A news section was added to the login
screen so that the Army could make general
announcements about the game.

• Adjusted Automatic Weapon-Fire
 System

Adjustments were made so that if a player
switched from standing to crouching while
firing an automatic weapon, the weapon
would continue firing during the posture
change. Players had brought this need to the
attention of the development team.

• Fixed Multiple-Login Exploit
It was discovered that players were using
multiple machines to login to different game
servers under the same account. By playing
simultaneous games with one account,
players were building their honor score at an

unacceptable rate. To address the issue, the
development team caused the authentication
servers to check for multiple logins and kick
offenders from the server.

• Another Grenade Adjustment
To increase grenade realism, a change was
made so that if the player pressed the fire
button while selecting a grenade, the grenade
was made available with the pin already
pulled and ready to throw.

Version 1.5.0 Release:
December 23, 2002

On December 23, 2002, the development team
released version 1.5. Around this time, the
game had come under fire by a Miami attorney
on a crusade against violence in video games.
Because America’s Army was funded by the US
government, it proved an irresistible target.
The development team was required to make
several modifications to counter the negative
press generated by this man, including the
elimination of the word “sniper” from the game
(which involved major changes to several levels
and weapon systems), as well as new voice-
overs for the marksmanship schools. Parental
controls were added so that parents could
monitor language, weapon usage, and mission
types and limit displays of blood. These changes
were designed to differentiate AA from many
commercial games by letting parents control
content.

In addition to parental controls, other changes in
this release included:

• Weapons-Cache Special-Edition Map
One of the most popular levels in the game
was the weapons-cache mission. Many
fans pointed out flaws in the map, as well
as desired improvements. Based on this
feedback, a new version of the mission was
created, effectively doubling its scope. These

26 27

changes were applauded, and the mission
remains one of the most popular to date. By
implementing improvements per popular
demand, the team was able to foster goodwill
and to assure the community of their voice in
the game’s evolution.

• Added New Enemy Voices
With the help of the Defense Language
Institute, the dev team created a fictive enemy
language, based on a combination of natural
languages. Voice-overs of foreign students
were recorded to create realistic shouts and
enemy radio commands while ensuring that
no speakers of an actual foreign language
would be depicted as enemies of the United
States. As a bonus, because the enemy
language had its roots in reality, players
found they could learn and understand the
commands issued by opposing forces.

• Added Optional “Reason” to Vote-kick
 System

Previous versions revealed that the vote-kick
system was inadequate because players were
often in the dark as to why a player had called
to ban another player. An optional reason was
added so that when a player called a vote, the
others could see why.

• Added Army Star to Player Listing
The development team added to the scoreboard
the ability to show whether a player was an
active member of the US Army (subject to
verification). When a verified soldier played
in the game (and there were many of them),
an Army star appeared next to his name. This
allowed the community to know when they
were interacting with actual soldiers and
strengthened camaraderie between military
and civilian players.

• ROE Penalty Adjustments
Whenever a player injured or killed a team
member or performed specific detrimental

actions in the game, he suffered a penalty
to his score for violating the “rules of
engagement” or ROE. While this was an
effective way to enforce Army values, the dev
team often found it necessary to tweak the
system to ensure proper play balance.

• More Server-Browser Adjustments
Adjustments were made so that the server
browser distinguished between leased
servers and official servers. How many LAN
servers could be displayed at a time was also
increased.

Version 1.6.0: March 16, 2003
Version 1.6 of America’s Army was released on
March 16, 2003. This release took considerably
longer to complete than previous versions due
to an update of the game’s core technology: Epic
Games, who created the software AA was built
on, had released a major update to the game
engine. The development team had to merge
the updated technology with the game’s current
code base. After the months of work had been
put into the game, there were vast differences
between the code base and the update. The
merger took about six weeks of programming
time, as well as a number of weeks to adjust
content to work with new features. While
painful, it was a requirement if America’s Army
were to keep its cutting edge.

Although only one new mission accompanied
this release, the radio-tower level was the largest
map the dev team had created. This mission
pushed technological limits, and frequent
adjustments were made to reach a smooth
playing experience. Flaws in the authentication
and loading systems were discovered with this
level, and it was found that individuals with
low-end machines were taking so much time
to load the level that the authentication server
would time them out and drop them from the
server. A number of band-aids were applied
before this version could be released. Other

26 27

changes in version 1.6 included:

• Projectile Penetration
Previously, any time a bullet struck an object,
the bullet was blocked and considered spent.
Version 1.6 introduced penetration, by which
bullets passed through penetrable objects and
continued with diminished velocity and force
(depending on the material hit) as well as
condign entry and exit effects. This yielded a
dynamic change in game play, because objects
that had previously served as cover could no
longer be depended on.

• Projectile Ricochets
Along with bullet penetration was added the
tendency for bullets to ricochet when fired
from certain angles. This introduced more
realistic ballistics and added tension.

• Bullet Decals on Static and Dynamic
 Objects

The technology update allowed bullets to
leave marks on static and moving objects.
While this increased the realism of the game,
it also increased processor overhead. To avid
sluggishness in low-power machines, settings
were added to control how many bullet marks
could be displayed at once.

• New Sound Effects
New sounds were added for ricochets, as well
as for footsteps on concrete and carpet.

• Added New Texture-Detail Options
An array of new settings in the menu system
enabled players to adjust texture detail to suit
the power of their machines.

• Added Password-Entry Window to
 Server Browser

To allow users to set up private servers
and control access to them easily, a new
window was added to the server browser for
passwords.

• Added Spam Control for Messaging
 System

It had been discovered that players were
flooding the in-game messaging system,
effectively ruining communication during
play. To compensate, the engineering team
controlled how many messages could be sent
by a player in a given time.

• New Desert Camouflage
During this time, we learned that the Army
had changed its desert-uniform camouflage.
Uniforms were changed accordingly.

• Added New Loading Screen
A new loading screen was added to the game
to indicate when the game engine was tied up
with loading new content into memory.

• Added Fatigue Element to Jumping
 Abilities

Many players were demonstrating a tendency
to jump up and down in the game, a term
known to gamers as “bunny hopping.” Since
soldiers are typically weighted down with
equipment, such action was not in keeping
with the degree of realism we were attempting
to portray. Fatigue was therefore added so
that repeated jumping caused the player’s
character to tire and be unable to continue.

• Added Grenade Aiming
Players found that, because of the perspective
in the game, aiming a grenade accurately was
extremely difficult, requiring a great deal of
guesswork. To make the system more intuitive,
the player’s onscreen hands were changed
so that the gap between the forefinger and
thumb of the lead hand was positioned over
the center of the screen, enabling the player to
use it as a guide.

• Improved Weapon-Jam System
The algorithm for weapons jamming was
altered to reflect real-world rates.

28 29

Version 1.7.0 Release: April 21, 2003
Version 1.7 of the game was released April 21,
2003. Most of the dev team was tied up with
preparations for the Electronic Entertainment
Expo (E3) in Los Angeles the following month.
Since there was no time for a proper update, the
only addition to the game was a new single map,
a special-edition version of the popular bridge
crossing. Although the team did not plan to
increment the version number of the game with
this release, the Army requested it be labeled
version 1.7. The internal version of the code was
in heavy flux, so the previous version was rebuilt
as 1.7.0. Unfortunately, a few bugs crept into the
code packaged in this new version, while an
improper assumption was made that the only
change to the code was the version number;
it was thus released without thorough testing.
The result was a sub-par release that inflicted
several critical bugs upon the community. Once
again, the development team felt the pain of an
adequate testing solution.

Electronic Entertainment Expo:
May 2003

The Electronic Entertainment Expo (E3) show in
Los Angeles is about showing the world what
new things are in store for your players. The
tendency is to shove as much into the game
as possible and somehow make it all work
through smoke and mirrors. While the goal of
the show per se can be met this way, afterwards
developers find themselves with a roster of
features and systems that are incomplete, in
need of optimization and reworking. The AA
dev team spent the rest of the summer trying to
deliver on promises made at the show.

Version 1.9.0 Release: August 8, 2003
On August 8, 2003, version 1.9 was released,
the biggest update yet. It was a difficult period
for the dev team, as there were more features
needing work than time to work on them.
Although the plan had been to prepare a

comprehensive release addressing all E3 fallout,
it became apparent that the load would have to
span multiple updates. The team’s loss of two
employees during this time jeopardized the
schedule further. Examining the various features
in progress, it was eventually determined that
version 1.9 would focus on introducing medics:
thus this version was labeled the “combat-medic
pack.” New features were as follows:

• Added New Damage Model
To create combat medics for America’s Army,
a new damage model for the game was
designed. In previous versions, all bullets
inflicted a specified amount of damage on
striking a player. This system was changed for
version 1.9 so that the player initially suffered
a percentage of damage, while the remaining
portion was doled out over time in the form
of blood loss. If a combat medic reached a
wounded player in time, the bleeding could
be staunched and remaining damage avoided.
The system worked well by supporting the
concept of medics without making it seem
they had magical healing powers, but it was
a dramatic change that players had to get
accustomed to.

• New Character Models
Because version 1.9 was released more
than a year after the initial launch of
AA, it was deemed acceptable to raise
system requirements for the game. Most
conspicuously, the character models in the
game had never satisfied the team. A decision
was made to raise the bar and replace all
characters with new, highly detailed versions.
While the result was a dramatic improvement,
it entailed a colossal amount of work for the
artists.

• New Interface
The original menu system for the game
had been created at the last minute, just
before the initial launch in July 2001, and its

28 29

design was inadequate for the demands of
an ever-evolving product. Aesthetically, it
was unpleasing; operationally, unintuitive.
For version 1.9, an entirely new interface
was designed, with great thought put into
navigability, expandability, and tie-ins to the
game’s official website. While the result was
an extraordinary improvement that gave
users the impression that AA was a whole
new game, the work required to pull it off was
incredibly tedious and time-consuming. There
were so many pieces to the new menu system,
with such a vast array of interdependencies,
that the development team worked on it
till, literally, the last minute. Of necessity,
many smaller elements of the interface went
unfinished, and polishing of the system
would be completed over the next several
releases.

• New Theme Song
Originally, America’s Army had no music.
To open the game and augment the new
look and feel, a distinctive, patriotic theme
song was commissioned for the franchise.
Although this work was not created by the
development team, it involved many iterations
and frustrating changes before the score was
finally approved.

• Added Detail Textures
Capitalizing on a previously unused feature
of the engine, new artwork was created so
that when a player got close to any surface,
a high-resolution texture was swapped with
the normal, lower resolution texture usually
seen from a distance. This allowed for a
high degree of realism when studying world
geometry up close, but kept system overhead
manageable.

• Added Combat Medic
To become a combat medic, players had
to complete a four-level training sequence
involving three classroom lectures and a

field-training exercise. These levels were
heavily scripted and presented actual first-
aid techniques and quizzes. Much research
went into making a realistic course, including
consultation with medical professionals. Once
qualified in the combat-medic course, players
were able to treat injured comrades.

• Added Player Shadows
Detailed player shadows were finally added
to the game. This feature became available
in the previous code merge and technology
update, but required extensive engineering to
work properly.

• Added Lip-Sync and Facial Animation
In previous versions, facial expressions
of characters were fixed. By licensing a
middleware package developed for Unreal
technology, the development team was able to
add facial animations to all characters, with
speech synchronized to mouth movement.
This capability, combined with the improved
character models, boosted character realism
tremendously.

• Added Punkbuster
For a year, the development team tried to
combat multiplayer cheating, but simply
didn’t have the time and expertise to squelch
the growing number of hacks that were
becoming available for America’s Army. The
job was finally contracted to a commercial
anti-cheating firm, who added Punkbuster
service to the game. The several weeks it
took to port cheat protection to the Unreal
technology were well worth it: the feature was
a huge success with the player community,
effectively stymieing those who wished to
ruin the game for others.

• ROQ Video Support
Support was added for ROQ-format video-clip
playback within the game engine, expanding
the team’s ability to add supplemental content

30 31

and offering another means of providing
education about the Army.

• New Scoreboard, Team-Selection, and
 Class-Selection Interface

In keeping with the new look and feel of the
menu system, a new scoreboard and team-
and class-selection interface was created.
Unfortunately, there were so many elements
involved with the new menu that it wasn’t
discovered till the last moment that we had
failed to redesign these particular portions of
it. Realizing the game could not be released
without completing these elements, the dev
team spent the final days of the production
cycle working feverishly to finish them.

• New Server Admin Commands
An array of new commands was created so
that those running their own servers could
easily monitor, organize, and customize the
game experience.

• Added Demo Recording
Added a feature enabling players to record
and view game-play sequences within the
game engine.

• Multiple Bug Fixes
A great many longstanding bugs were finally
addressed in this version.

Version 2.0.0: November 6, 2003
As a follow-up to version 1.9, the development
team released the 2.0 special-forces pack on
November 6, 2003, completing another segment
of the features that had been originally planned
for that spring, as well as tying a number of
loose ends from the previous release. Many
players viewed Version 2.0 as the dev team’s
finest release ever. The changes included:

• Added “Special Forces” Role
After the successful completion of three

training segments, players were qualified to
play four new multiplayer missions as green
berets. The special-forces (SF) role introduced
new character models to the game, as well as
the ability to use and customize an assortment
of new weapons.

• Added “Indigenous Forces” Role
We made it possible for players who did not
pass SF training qualifications to play the new
missions in the role of indigenous soldier.
This ensured that the missions were available
to all players while reinforcing the point
that a major duty of SF units is to train and
fight alongside indigenous forces in foreign
countries.

• New Weapons
The following new weapons were added:
 SOPMOD M4 carbine (SF weapon)
 SPR (SF special-purpose rifle)
 Thermite grenade (SF weapon)
 VSS Vintorez (enemy weapon)
 AKS-74U (enemy weapon)
 RPG-7 (enemy weapon)
 M9 pistol (snipers only)

• Weapon Modifications
The SOPMOD M4 allowed a number of weapon
customizations by the player. A new interface
section was added by which players could view
weapons and add and remove interchangeable
parts, configuring as desired. This major feature
proved one of the most appealing aspects of
play as an SF soldier. The list of customizable
elements is as follows:
 ACOG 4x scope
 ACOG reflex sight
 M68 Aimpoint sight
 M203A1 grenade launcher
 M583A1 flare launcher
 Harris bipod
 M4QD suppressor
 Iron sight
 Heat shield

30 31

• 3D Iron Sights
Additional changes to weapons came in
the form of true 3D iron sights. In previous
versions, the iron sights for all weapons were
depicted using 2D overlays. The new method
involved three-dimensional geometry for
more accurate portrayal.

• Added In-Game IRC Chat Client
A new page was added to the interface to
provide an in-game internet-relay chat (IRC)
client, enabling players to speak with other
users who were not necessarily playing at
the time. This new tool further supported the
community.

• New Andromeda Server Browser
Although for some time the game had
employed licensed and proven server-browser
technology, the Army contracted a third party
to develop a new browser specifically for
the game. In development several months,
the product finally made it into the game
in version 2.0. This technology never quite
lived up to its design and proved a source of
difficulty to the developers, and ultimately
a major point of contention between the
development team and the Army.

• Additional Interface Modifications
Continuing the work begun in version 1.9, the
team made several adjustments to the new
interface. These included:
 New progress bar for the server browser
 New mission-deployment page
 New in-game icon key
 New loading/connecting-message text
 boxes
 New glossary page
 Various detail settings were added to the
 video-options page.
 Tour icons were added to the server
 browser.
 Three new weapon-camouflage skins
 (desert, forest, arctic) were added

 Resized server browser page (for better
 screen fit)
 Page and resolution sizing
 Ultimate Arena tournament server
 functionality for the server browser
 page.
 An updated support page

• New Weapon Animation System
To accommodate the weapon-modification
feature, a new method was developed for
efficient display of third-person weapon
animations.

• New Authentication System
During this period, a third party took over
the task of running the authentication system.
Because of contract issues, this required
the development of new authentication
technology. Since the authentication system
was part of the game’s technological
foundation, a vast amount of work was
required to make the transition to the new
company. Even so, the transition was rough
and there was an extended period when
authentication was unavailable. Additionally,
it was not possible to transfer the full player
database from the previous third-party
company to the new provider. Because of this,
account information for an excessive number
of players was irretrievably lost. The most
frustrating aspect of this changeover was that
many elements were out of the control of the
developers, and though the dev team had not
supported the decision to change, the burden
of making it work fell on their shoulders.

Version 2.0.0a: December 21, 2003
Originally unscheduled, this release reflected
the Army’s wish to provide an update over
the Christmas holiday. Despite the detrimental
impact on the schedule then underway, the
developers effected the following changes:

32 33

• New Multiplayer SF Mission
The mission “SF Sandstorm” was created.

• Resolved Punkbuster Issues
Several operational issues with the Punkbuster
anti-cheating system were addressed.

• Interface Adjustments
Several lingering issues with the game’s new
interface were addressed, including:
1. Overlapping problems with the training

menu
2. Unnecessary authentication messages
3. The need for new authentication messages.
4. Changes needed in the new-account in-

game URL
5. Changes needed in the default in-game IRC

server
6. The need for game-credit updating
7. The need for support-menu updating
8. The need for server-browser adjustments
9. The need for news-page adjustment

• Added Distribution Partner and Version
 Tracking

A new system was created to enable the
Army to improve version tracking and assess
distribution efficiency.

Summary: March 8, 2004
Version 2.0.0a was the last release of America’s
Army developed by the MOVES Institute. In
March 2004, the Army chose to take control
of development and move the project off the
Naval Postgraduate School campus. Although
the MOVES Institute created one of the
world’s most popular video games for the US
Army, differences between MOVES and Army
management saw the game’s production take
a different turn. For many on the project, the
whirlwind development cycle had taken an
emotional and physical toll over the years. In the
circumstances, a lesser team would have found
it to impossible to deliver a game of such high
caliber as AA, illustrating that the importance

of selecting a team more for attitude and work
ethic than seniority cannot be overstated.

Lessons Learned
We learned a lot, but let’s stick with three.

1. Pick the best team you can and support
them. We accommodated our dev team’s
creature comfort by supplying videogames
and sofas for relaxation and (of vital
importance) an industrial-strength canteen,
and encouraged collaboration by offering
a dim, cubicle-free workspace (allowing
each to see what the other was working
on and thereby to keep hold of the big
picture). We assigned them a secretary for
hated administrative chores and shielded
them from direct contact with the client.
Result: they stuck together and worked like
madmen.

2. Talk to your clients till you hammer out
what they want, and have them sign off
on it. If they choose to deviate, tell them in
writing what alterations will cost in time,
money, and the abandonment of agreed-on
features.

3. Don’t just build a game, build the
infrastructure for a game community.
Our fan website proved of incalculable
worth. Well beyond providing a forum for
suggestions and bug reports, the AA site
enabled far-flung individuals, alone at their
computers, to become a tight-knit virtual
brotherhood that circled the globe. The
community displayed an intense regard
for our dev team; they were thrilled when
a developer signed on to play, and the news
spread like wildfire. The fans’ pumped-up
energy and immediate appropriation of
the game was a source of refreshment and
inspiration throughout our time on the
project.

32 33

Conclusion
We began this paper under the premise that
future training simulations and combat-
modeling systems need to look and feel
like games to be embraced by soldiers. We
then showed how to organize a full game-
development team, like America’s Army’s. We
embarked on a history of AA’s various releases
and the problems and solutions involved. As
an exercise in development, America’s Army
represents a huge success; we can look at the
vexation level of its various setbacks as the
least one can expect in such an undertaking,
a lower bound on the difficulties developers
can encounter. That going forward with game-
based simulation in a governmental or corporate
environment will always produce stresses and
issues should be well understood. Nevertheless,
with eyes wide open and heads stuffed with
guidance, knowledge, and peer sympathy, let us
stride confidently into the game-based future of
training simulation.

Acknowledgements
The authors salute the development
team, pictured in the Yerba Buena guide
[YerbaBuena,2004], for their incredible efforts
in producing one of the top-five played online
games—the first game ever produced fully
inside a research institute (the MOVES Institute)
or based on a university campus (the Naval
Postgraduate School).

We wish to acknowledge Michael Capps as the
original executive producer of America’s Army,
from May 2000 through the 1.0 release in July
2002. Michael did a spectacular job getting this
project off the ground, and we think fondly of
his time with the project.

John Falby’s role in making all contracting,
hiring, purchasing, and operations happen

flawlessly and expeditiously from May 2000 to
May 2004 is gratefully acknowledged.

Thanks to Rosemary Minns, who as team mom
kept admin far away from the dev team and
guaranteed the flow of sugar snacks so necessary
for the game’s proper development.

References
1. [Davis,2003] M. Davis, R. Shilling, Alex Mayberry,
J. McCree, P. Bossant, S. Dossett, C. Buhl, C. Chang, E.
Champlin, T. Wiglesworth and M. Zyda “Researching
America’s Army,” in Design Research: Methods and
Perspectives, edited by Brenda Laurel, MIT Press, 1
October 2003, ISBN 0262122634

2. [Macedonia,1994] Macedonia, Michael R., Zyda,
Michael J., Pratt, David R., Barham, Paul T. and Zeswitz,
Steven “NPSNET: A Network Software Architecture for
Large Scale Virtual Environments,” Presence, Vol. 3, No.
4, Fall 1994, pp.265-287.

3. [Singhal/Zyda,1999] Singhal, Sandeep and Zyda,
Michael Networked Virtual Environments - Design and
Implementation, ACM Press Books, SIGGRAPH Series,
23July 1999, ISBN 0-201-32557-8, 315 pages.

4. [YerbaBuena,2004] Yerba Buena Art Center
“America’s Army PC Game - Vision and Realization,”
published by the MOVES Institute and the US Army,
February 2004, 40 pages.

5. [Zyda,2003a] Michael Zyda, John Hiles, Alex
Mayberry, Michael Capps, Brian Osborn, Russ Shilling,
Martin Robaszewski and Margaret Davis “Entertainment
R&D for Defense,” IEEE CG&A, January/February 2003,
pp.28-36.

6. [Zyda,2003b] Michael Zyda, Alex Mayberry, Casey
Wardynski, Russell Shilling, and Margaret Davis “The
MOVES Institute’s America’s Army Operations Game ,”
Proceedings of the ACM SIGGRAPH 2003 Symposium
on Interactive 3D Graphics, 28-30 April 2003, pp.217-218,
color plate pp.252.

7. [Zyda/Sheehan,1997] Zyda, Michael and Sheehan,
Jerry (eds.), Modeling and Simulation: Linking
Entertainment & Defense, National Academy Press,
September 1997, ISBN 0-309-05842-2, 181 pages.

