
January 25, 1994 1

Abstract

Many virtual world applications today repre-
sent the cutting edge in real-time 3D interactive
graphics. These applications must model many
complex, often changing, graphical objects. These
graphical objects must be modeled both visually
and behaviorly. An application independent meth-
od for describing graphical objects is essential for
rapid prototyping and development. This paper
presents a simple, flexible and extensible graphics
description language, NPSGDL, used in virtual
world development at the Naval Postgraduate
School.

Keywords: Virtual Worlds, Object-Oriented,
Graphics, Description Language

Introduction

The graphical objects used in today’s virtual
world applications are usually complex. The typi-
cal object may consist of several hundred poly-
gons, several lighting materials and textures. Also
objects may be associated together into more com-
plex objects which support articulated and/or ani-
mated features. The need for an application inde-
pendent way to describe, manipulate and manage
any variety of graphical objects was recognized
during research on early systems in the Graphics
and Video Laboratory of the Department of Com-
puter Science at the Naval Postgraduate School
[1,2]. NPSGDL is the latest system developed to
address this need.

NPSGDL provides two levels of application
support to the developer. At the highest level,
NPSGDL is a language system that can be used to
describe and manage complete graphical objects

as individual entities. At the lower level, NPS-
GDL is a collection of classes representing graph-
ics primitives. These classes can be used directly
by the developer independent of the language sys-
tem. Since NPSGDL is designed and implement-
ed in the object oriented paradigm, each of the
classes that define the language system can be ex-
tended using inheritance to provide more specific
application support.

NPSGDL is implemented in C++ for use on
Silicon Graphics Inc. IRIS workstations. This pa-
per describes the design, implementation and use
of NPSGDL.

Previous Work

Graphics developers and users naturally think
of graphics entities asobjects. Thus, the object
oriented paradigm is natural for designing and im-
plementing graphics applications. Wisskirchen
[3,4] has examined applying the object-oriented
paradigm to existing graphics standards with suc-
cess. Egbert, et al [5] has developed a system that
supports graphics applications at several levels.
Their system abstracts the graphics primitives and
rendering process to a level that is more portable
and accessible to the applications developer. Oth-
er systems provide more specific support for such
things as graphics animation and physical model-
ing [6].

Previous systems developed at the Naval Post-
graduate School have concentrated on graphical
object storage and retrieval [2]. These began as bi-
nary and ASCII file formats and evolved into
more complex systems.

NPSGDL incorporates many of the concepts
and capabilities of the above systems. In particu-
lar, NPSGDL provides graphics primitives and

NPSGDL: An Object Oriented Graphics Description
Language for Virtual World Application Support

Kalin P. Wilson, Michael J. Zyda* and David R. Pratt
Naval Postgraduate School

Department of Computer Science
Monterey, California 93943-5100 USA

*contact author. Email: zyda@cs.nps.navy.mil

In The Proceedings of the Third Eurographics Workshop on Object-Oriented Graphics,
Champery, Switzerland, 28-30 October 1992..

January 25, 1994 2

higher level application support (in the form of
simple animation and viewpoint control). In con-
trast to some of the systems mentioned above,
NPSGDL is more tightly coupled to the rendering
software and hardware used in the Graphics and
Video Laboratory. This helps facilitate the effi-
ciency needed in our virtual world applications. In
addition, NPSGDL incorporates a language sys-
tem that provides many advantages:

- Off-line object definition and modification.
- Object storage and retrieval.
- Object sharing between applications.
- Application independence of objects.

NPSGDL gives application developers a high
level of abstraction that supports rapid prototyp-
ing and development of complex graphics sys-
tems. Application developers can concentrate on
how objects behave and are used rather than the
rendering of the object. The object-oriented nature
of the system provides for easy extension and
modification. The language system facilitates the
creation and maintenance of collections of graph-
ical objects that can be used and shared by many
researchers. It also serves to standardize the repre-
sentation of graphical objects across applications.

Design

The design of NPSGDL seeks to satisfy many
diverse goals:

1. Backward compatibility with previous NPSOFF [2]
definition files.

2. Easy extension and addition of language elements.
3. Simple maintaintance.
4. Simple, easy-to-understand user interface.
5. High efficiency with respect to graphics intensive ap-

plications.

These design goals were addressed using the
object-oriented paradigm and C++. The object
oriented paradigm was the ideal choice for many
reasons. Foremost is the paradigm‘s support for a
naturally expressive design and the close corre-
spondence between the design and implementa-
tion. The abstraction, encapsulation and inherit-
ance facilities inherent in the object oriented para-

digm directly supported goals 2 and 3.
The C++ language was chosen for:

1. Its compatibility with existing C libraries.
2. Its efficiency (related to C compatibility).
3. The degree of control and flexibility afforded the de-

signer/implementor over object and non-object orient-
ed construct usage.

4. The availability of implementations on Silicon Graph-
ics Inc. workstations.

The design of NPSGDL was primarily respon-
sibility driven [7] and atomically oriented. Be-
cause NPSGDL is a library of classes available to
the application developer, each leaf class is basi-
cally stand-alone in functionality. We did not use
function specific classes (e.g. a displayer) because
we wanted to approach the ideal of adding a new
class to the main hierarchy without affecting any
other class modules.

The NPSGDL language is divided into atomic
units calledTokens. Each Token is responsible
for:

1. Reading itself from an ASCII stream.
2. Writing itself to an ASCII stream.
3. Defining itself if applicable (explained below).
4. Displaying itself if applicable.

In addition, a Token can be copied and compared
for equality and order.

The set of Tokens is divided into five major
subsets: Deftokens, Settokens, Drawtokens,
Xformtokens and Othertokens. Each of these is
described in the following section.

The Token hierarchy provides the major func-
tionality for the NPSGDL language system. In or-
der to support this functionality, several underly-
ing systems had to be built. These systems are a
run-time type identification system, an object per-
sistence system and a simple garbage collection
system. Most of these systems are provided by
other language environments. However these sys-
tems and the functionality they support are an in-
herent part of the design. Language support for
systems such as these is an important consider-
ation and can affect design decisions.

The other hierarchy in NPSGDL is theNPSob-
ject hierarchy. An NPSobject is the user’s normal

January 25, 1994 3

interface to the language system. An NPSobject’s
basic responsibilities are:

1. Read/ initialize from an Ascii stream.
2. Write to an Ascii stream.
3. Define itself.
4. Display itself

At the high level, an NPSobject represents a
graphical object used in an application. These can
be as simple as a single polygon or sphere or as
complex as an aircraft or ground vehicle. Also
NPSobjects can be used to represent objects that
do not display such as an object that contains all
of the lighting material definitions for an applica-
tion. At the low level, an NPSobject is a collection
of tokens that represents the properties and depic-
tion of the NPSobject. In normal usage, an NP-
Sobject is semantically and logically associated
with an Ascii file containing token definitions.
This file represents the definition of the NPSob-
ject. Although this is the normal usage of the NPS-
GDL system, the user is not limited to this mode.
The individual Token subclasses can be used di-
rectly and initialized at run-time. Likewise, NP-
Sobjects can be created and modified at run-time
independent of a definition file. This provides a
flexible framework for both application develop-
ers using NPSGDL and tool developers manipu-
lating NPSobjects and Tokens.

Animation and Multi-Resolution Display

Two of the important capabilities that NPS-
GDL supports are simple animation and multi-
resolution display. Animation is supported
through user defined variables that are automati-
cally updated by the NPSGDL system. These vari-
ables are similar to the animated basic types de-
scribed in [9]. The user can place simple con-
straints on the variable or specify a user defined
rule that the variable uses to update itself. An ani-
mated variable can be used by a variety of tokens
in place of fixed values. The animated variable
(Defvariable) acts as the server and other tokens
as clients. The client token sets up an association
with the variable and informs the variable to up-
date itself prior to each display cycle. This scheme

supports a wide range of simple, continuous ani-
mations. For example, if a developer wanted to
model a lighthouse with a rotating beacon, the ro-
tation could be controlled by an animated variable
using constraints defined by the developer. The
beacon rotation would then be updated entirely by
NPSGDL leaving the developer to concentrate on
higher level details. If more complex behavior is
needed by the variable, the developer can specify
a rule (function) for updating the variable. The
name of the rule is given and the variable associ-
ates to the rule at run time from a table initialized
by the user. This rule is then used to update the
variable while the variable maintains the user con-
straints. Animated variables are discussed in more
detail below. See Figure 1 below for an example
using animated variables.

Multi-resolution display is important to com-
plex virtual world applications. Our experience
has been that most of our applications are graphics
bound. Much of our effort goes to reducing the
number of polygons sent to the renderer. NPS-
GDL supports three drawing resolutions for each
of its Drawtokens: high, medium and low. NPS-
GDL supports both a simple and a hierarchical
resolution scheme. An NPSobject can be dis-
played at any of the three resolutions under user
control. The Drawtokens are displayed in either a
hierarchical or single level mode. Single level
mode displays only the tokens having a particular
resolution. In hierarchical display mode, high res-
olution displays all Drawtokens, medium resolu-
tion displays medium and low resolution Drawto-
kens and low resolution displays only low resolu-
tion tokens. Thus an object designer can designate
which polygons, subobjects etc. are visible at each
resolution. The application developer can then
display NPSobjects at varying resolutions; based
on distance from the viewer for instance. This
multi-resolution model supports two methods of
object design. The designer can specify three dis-
tinct representations of an object or the designer
can design using one set of surfaces but designate
which are visible at various resolutions. The latter
is much more difficult but results in smaller object
sizes. Using this multi-resolution scheme, we
have seen substantial performance improvements,

January 25, 1994 4

as is expected. The primary cost is development
time of the object models.

Language Description

The NPSGDL language contains approximate-
ly forty-one tokens. Each token belongs to one of
five groups: Deftokens, Settokens, Drawtokens,
Xformtokens and Othertokens. Each token is rep-
resented by a separate class with the token groups
serving as super-classes. The NPSGDL language
is context-sensitive with the parsing responsibility
distributed across the token hierarchy. Each lan-
guage token consists of an identifier followed by
a known or limited number of subcomponents
representing properties of the token and associat-
ed values. Token identifiers and subcomponent
identifiers are case insensitive and the order of
subcomponents is generally not important. This
provides a simple flexible syntax that is easy to re-
member. The user need only remember property
names and valid values, not neccesarily the order
that properties must be listed. The identifier for
each token in the language is known to the root of
the hierarchy and accessible by a class method
that reads a stream, recognizes identifiers and cre-
ates specific token instances, which initialize
themselves with the subcomponents. When a to-
ken instance has initialized itself, the stream is po-
sitioned at the next identifier and the process con-
tinues.

The following sections describe the specific to-
ken groups. Simple examples are given for each of
the tokens illustrating their formats. All values are
floating point. Color values are given in the range
0.0 - 1.0. For the sake of brevity, color values are
denoted by “r g b” and optionally “a” for alpha
values. Also the term “vertex” is used to represent
three component coordinate values. It is important
to note that many of the components of a token of-
fer reasonable defaults and are not required.

Deftokens

Deftokens represent graphical entities that are
stored for later access and use. Some Deftokens
correspond to system settings that must be defined
prior to use. Others simply store information to be

used later. A good example of a Deftoken is a
lighting material definition which must be system
defined before it can be used for rendering. Each
Deftoken sub-class provides a random access ta-
ble which stores copies of each instance created.
These tables are available to complimentary Set-
tokens and the user. Thus each Deftoken facili-
tates pools of instances that can be accessed as
needed. Each Deftoken has a string name that
uniquely identifies it. The Deftoken class is re-
sponsible for reading and writing this name. Indi-
vidual Deftoken sub-classes are responsible for
any subcomponents after the name. All Deftoken
formats begin with the token identifier and end
with “defend”. This allows the property identifiers
and values to be given in any order as discussed
above. The current Deftoken sub-classes are:

Defmaterial: This token represents a lighting
material definition. Material definitions specify
how light interacts with a surface. These defini-
tions are made known to the graphics system and
are available to the rendering process as needed.
The Defmaterial token has the following format:

defmaterial name
 ambient r g b
 diffuse r g b
 emission r g b
 specular r g b
 shininess f
 alpha f
defend

Deflight: This token represents a light defini-
tion. Light definitions are used during rendering to
color and shade visible surfaces. Each light is pre-
defined to the graphics system for quick access
during rendering. Deflights support local and infi-
nite light sources, colored lights and spotlights as
specified in [8]. The deflight format is:

deflight name
 ambient r g b
 lcolor r g b
 position x y z w // w=0 infinite
 // w=1 local
 spotlight exp spreadangle
 spotdirection x y z
defend

January 25, 1994 5

Deflmodel: This token represents a lighting
model definition. The lighting model controls
how lights and materials are used and the calcula-
tions employed. Example properties of a Deflm-
odel are: ambient light color, whether the viewer
is local, attenuation factors and whether two-sided
material lighting is enabled.

deflmodel name
 ambient r g b
 localviewer yes|no
 attenuation K 0 K 1 K 2

 twoside yes|no
defend

Defcolor: This token represents a simple rgb
color used for rendering when lighting is not de-
sired.

defcolor name
 r g b

Deftexture: This token represents a texture
mapping definition. It associates an image file
name with the texture mapping options available
from the Silicon Graphics Graphics Library. The
Deftexture has the following format:

deftexture name
 imagefile filename
 components num
 minfilter point|biliner|
 mipmap_point|mipmap_linear|
 mipmap_bilinear
 magfilter point|biliner
 wrap repeat|clamp
 wrap_s repeat|clamp
 wrap_t repeat|clamp
 tile f f f f
// wrap, wrap_S & wrap_t, and tile
// are mutually exclusive
defend

Deftexenv: This token represents environmen-
tal settings for texture mapping. It supports texture
decaling, modulation and blending as specified in
[8].

deftexenv name
 blend|decal|modulate
 color r g b a
defend

Deftexgenalg: This token allows the user to

specify parameters for the automatic generation of
texture coordinates for polygons. It uses the coor-
dinate generation capabilities available through
the Silicon Graphics GL library [8].

deftexgenalg name
 sdir linear|contour|spheremap a b c d
 tdir linear|contour|spheremap a b c d
// a b c d specify plane eq.
// coefficients
defend

Defobject: This token allows the user to group
any set of tokens into a named object that is stored
for use by any other object in the system. Defob-
jects are normally subobjects used by NPSobjects
or other Defobjects. An example would be the
wheel of a vehicle. One Defobject would repre-
sent the wheel. Any object needing the wheel
could reference it using the Callobject token dis-
cussed below.

defobject wheel
 setmaterial wheelcolor
 defpoly high
 0.0 0.0 1.0
 8
 0.0 0.0 0.0
 :
 :
 -0.1 0.1 0.0
defend

Readobject:This token gives the user the abil-
ity to access other NPSGDL object files from an
object file. The name of a Readobject token is in-
terpreted as a filename. The file is opened and
read as an NPSobject. It is assumed that the file
contains Defobject definitions which are in turn
stored in the Defobject table for later use.

readobject wheel.gdl

Defvariable: This token represents a user de-
fined constrained floating point variable that is
updated and maintained by NPSGDL. As ex-
plained in the animation section above, Defvari-
ables can be used in place of values in certain to-
kens. In this way, Defvariables offer simple ani-
mation support within NPSGDL. The value of a
Defvariable can be updated each display loop or
per unit time (sec). It can oscillate between its min
and max value or wrap around. Also an update

January 25, 1994 6

function (rule) can be named to correspond to a
user provided function. This makes complex be-
haviors possible. The format for the Defvariable
is:

Defvariable name
 min minval
 max maxval
 init initialval
 inc increment // per sec if timed
 timed yes|no
 wrap yes|no
 rulename rname
defend

Defpcamera: This token allows the user to
specify a perspective viewing frustum. The Defp-
camera can then be used in conjunction with a
Defviewpoint to define the view volume used for
rendering. The field of view for a Defpcamera can
be specified by a fixed value or a Defvariable.
Thus the field of view can be animated to support
effects like zooming.

Defpcamera name
 nearplane nz
 farplane fz
 aspect aratio
 fov angle
defend

Defocamera: This token is similar to the Def-
pcamera. It supports orthographic projections.
The user specifies the view volume by setting the
clipping planes in each dimension.

Defocamera name
 xdim xmin xmax
 ydim ymin ymax
 zdim zmin zmax
defend

Defviewpoint: This token is used to specify the
orientation of a camera. The parameters are the lo-
cation of the viewpoint, the location of the refer-
ence point and the twist angle of the view volume.
Each location can be specified using a combina-
tion of fixed values and Defvariable names as well
as a single Defobject name. The twist angle can
also be specified by a Defvariable name for con-
tinuous update. The flexible format for specifying
locations and the animation support through Def-
variables make Defviewpoints interesting and

easy to use.
Defviewpoint name
 from x y z|Defvariable name|
 Defobject name
 to x y z|Defvariable name|
 Defobject name
 twist angle|Defvariable name
defend

Settokens

Settokens represent entities that change the
graphics state. They are normally paired with a
Deftoken and provide for the use of the Defto-
ken’s properties. Thus the Deftoken and Settoken
classes are cooperative with the Deftokens con-
taining a pool of definitions and the Settokens pro-
viding access to the definitions. Most Settokens
have the property that only one (of each type) is
active at any time. Each Settoken has a name. The
Settoken class is responsible for reading and writ-
ing this name. Also a Settoken is usually specified
as on or off. Most Settoken formats use only a sin-
gle line of text so there is no end marker as with
Deftokens. The different Settokens are described
below.

Setmaterial: This token enables the use of a
material definition. It makes the named material
current for use during rendering assuming the
name corresponds to a valid Defmaterial. The for-
mat for a Setmaterial is:

setmaterial name

Setbackmaterial: This token is the same as the
Setmaterial token except it specifies which mate-
rial to use for the backs of polygons when two-sid-
ed lighting is enabled.

 setbackmaterial name

Setlight: This token allows the use of lighting
definitions. A light may be on or off. Up to eight
lights may be on at one time. The format for Set-
light is:

setlight name num on|off

Setlmodel: This token activates a named light-
ing model. Setlmodels can be on or off.

January 25, 1994 7

setlmodel name on|off

Setcolor: This token sets the current drawing
color to a previously named and defined color.

setcolor name

Settexture: This token enables texturing using
a previous texture definition. A Settexture can be
turned on or off to allow texturing of portions of
an object.

settexture name on|off

Settexenv:This token selects a texturing envi-
ronment definition for use.

settexenv name on|off

Settexgenalg: This token selects the algorithm
definition to use for automatic texture coordinate
generation. Also the user can specify whether co-
ordinates should be generated along the s axis or t
axis or both.

settexgenalg name sdir on|off tdir
 on|off

Setpcamera: This token selects a Defpcamera
definition for use. The Setpcamera can be on or
off. This enables interactive control of cameras
and the switching of view volume specifications
between user code and NPSGDL tokens.

setpcamera name on|off

Setocamera: This token is the same as the Set-
pcamera but for orthographic cameras.

setocamera name on|off

Setviewpoint: This token allows the user to se-
lect a previously defined viewpoint for rendering.
The Setviewpoint token is used in conjunction
with the Setpcamera and Setocamera tokens to de-
fine the viewing volume location and orientation.

setviewpoint name on|off

Drawtokens

Drawtokens represent the visible graphical en-
tities. These are the items in a scene that all other
tokens affect. Most of the Drawtokens represent
low-level graphical constructs but several offer
higher level support. All Drawtokens have a reso-
lution value. The Drawtoken class is responsible

for reading and writing the resolution. The resolu-
tion may be high, medium or low. The Drawtoken
resolutions are used to support multi-resolution
objects in applications. A description of the Draw-
tokens in NPSGDL follows. Hereres denotes
high|medium|low resolution choices as discussed
above. Alsovertex denotes an xyz coordinate.

Defpoly: This token represents a basic poly-
gon. The polygon has a single normal and may
have texture coordinates optionally specified. The
format for a Defpoly is:

defpoly res
 nx ny nz // normal
 numvertices
 vertex 1 [s 1 t 1]

 :
 vertex n [s n t n]

A_defpoly: This token is the same as the Def-
poly except that it supports the use of Defvariable
names in place of vertex coordinate values. The
“A_” prefix denotes animated behavior. The abil-
ity to specify polygon vertex coordinates that
change automatically is powerful and fun.

a_defpoly res
 nx ny nz
 numvertices
 vertex 1|defvariable name [s 1 t 1]

 :
 :
 vertex n|defvariable name [s n t n]

Defsurface: This token represents a polygonal
surface with vertex normals. Also texture coordi-
nates can be optionally specified for each vertex.
The format for a Defsurface is:

defsurface res
 numvertices
 vertex 1 normal 1 [s 1 t 1]

 :
 vertex n normal n [s n t n]

Deftmesh: This token represents a polygonal
surface using a triangular mesh. It uses the same
basic format as the Defsurface.

deftmesh res
 numvertices
 vertex 1 normal 1 [s 1 t 1]

January 25, 1994 8

 :
 vertex n normal n [s n t n]

Defqstrip: This token represents a polygonal
surface using quadrilateral strips. It uses the same
basic format as a Defsurface.

defqstrip res
 numvertices
 vertex 1 normal 1 [s 1 t 1]

 :
 vertex n normal n [s n t n]

Callobject: This token allows the user to ac-
cess and display Defobjects. A Callobject is used
to display subobjects that are defined separately.
A Callobject token has two resolutions associated
with it. One for itself pertaining to which resolu-
tions the subobject will be shown and another to
designate the display resolution for the subobject.
The format for a Callobject is:

callobject res objname display-res

Defcircle: This token represents a simple 2D
circle defined in the x-y plane. The properties of a
Defcircle are its center location and radius.

defcircle res
 center x y z
 radius r
defend

Defsphere: This token allows the user to de-
fine a sphere parametrically. In addition to center
and radius, the user can specify the number of
polygons to use to represent the sphere. Its format
is:

defsphere res
 center x y z
 radius r
 panels numpanels
 endsphere

Defcylinder: This token allows the user to
parametrically specify a cylinder for display. Its
format is similar to Defsphere with the addition of
a height property.

defcylinder res
 center x y z

 radius r
 height h
 panels numpanels
defend

Defcone: This token allows the user to para-
metriclly define a cone for display. Its format is
similar to the Defcylinder format.

defcone res
 center x y z
 radius r
 height h
 panels numpanels
defend

Defline: This token allows the user to specify a
multi-point line in three dimensions.

defline res
 numpoints
 vertex 1

 :
 :
 vertex n

Defdecal: This token provides the user with a
facility to define decaled polygons. Decaling is a
technique for properly rendering co-planar poly-
gons while using z-buffered hidden surface elimi-
nation. With the Defdecal token users can specify
the components of the underlay and overlay por-
tions of a decal. The components of the underlay
and overlay can be any displayable token (Draw-
token, Settoken and Xformtoken). In normal use
only Setmaterial and Defpoly tokens are used.

defdecal res
 underlay
 defpoly1 // see format above
 defpoly2
 :
 overlay
 defpoly1
 defpoly2
 :
defend

Xformtokens

Xformtokens represent entities that alter the
normal representation of Drawtokens. The normal
transformations of rotation, translation and scal-
ing are represented. Also there are tokens that re-

January 25, 1994 9

late directly to capabilities of the Silicon Graphics
hardware and rendering process. Following is a
brief description of each of the Xformtokens.

Rotate: This token represents a single axis ro-
tation. The rotation is normally performed in
world space with the rotation specified by a float
representing whole and fractional angles. The for-
mat for a Rotatetok is:

rotate x|y|z angle

A_Rotate: This token is the animated version
of a Rotatetok. It accepts a Defvariable name for
the rotation value. This token is useful for simple
animations like wheels or propellers turning. It al-
lows the developer to specify the animation con-
straints and leave the rest to the NPSGDL system.

a_rotate x|y|z angle|defvariable name

Translate: This token represents a simple
translation in 3-space.The format is:

translate dx dy dz

A_Translate: This token is the animated ver-
sion of the Translatetok. Any of the three transla-
tion values can be linked to a Defvariable for au-
tomatic update.

a_translate dx|name dy|name dz|name

Scale: This token represents a 3D scale.
scale sx sy sz

A_Scale: This token allows the use of Defvari-
ables for animated scaling.

a_scale sx|name sy|name sz|name

Pushmatrix: This token gives the user access
to the pushmatrix function in the SGI GL [8] li-
brary. This function saves the state of the render-
ing transformation matrix.

pushmatrix

Popmatrix: This token gives the user access to
the popmatrix function in the SGI GL [8] library.
The popmatrix function removes the current
transformation matrix from the matrix stack.

popmatrix

Loadmatrix : This token takes a user defined
4x4 matrix and initializes the hardware matrix

stack with it.
loadmatrix
 a b c d
 e f g h
 i j k l
 m n o p

Multmatrix : This token allows the user to
multiply a user-defined 4x4 matrix onto the ma-
trix stack.

multmatrix
 a b c d
 e f g h
 i j k l
 m n o p

Loadunit : This token allows the user to initial-
ize the transformation matrix stack with unit ma-
trix.

loadunit

Othertokens

Othertokens are auxiliary tokens that do not di-
rectly affect the graphical representation of an ob-
ject. They are not related except for this fact. The
current Othertokens are described below:

Name: This token allows the user to name an
NPSobject. When a NPSGDL definition file is
read by an NPSobject the object scans for Name
tokens and saves the last one for user inquiries.
This is mostly for documentation use.

name objname

Origin : This token specifies the origin or refer-
ence point for an NPSobject. Like the Name to-
ken, an NPSobject scans the definition file for Or-
igin tokens. At run time, the user can query an NP-
Sobject for its origin. This information is useful
for transformations and viewing.

origin 0 0 0

Comment and Lcomment: These tokens fa-
cilitate C++ style comments in NPSGDL defini-
tion files. The Comment token is delimited by the
“/*” “*/” pair and can be multi line. The Lcom-
ment is a single line comment and is delimited by
“//”.

January 25, 1994 10

Overall, the NPSGDL language is fairly simple
and easy to remember and understand. Yet it of-
fers a great deal of flexibility and power through

name planets
origin 0 0 0

/* This gdl file represents a earth-like
 planet and a single moon
 The two planets are textured
 and are rotated using animated
 variables.
*/
// define the Sun
deflight sun
 ambient 0 0 0
 lcolor 1 1 0.75
 position -1 0 0.25 0
defend

// define some materials
defmaterial sky_blue
 emission 0.0 0.0 0.0
 ambient 0.105882 0.161569 0.200000
 diffuse 0.529412 0.807843 1.000000
 specular 0.0 0.0 0.0
 shininess 0.0
 alpha 1.0
defend

 defmaterial aquamarine
 emission 0.0 0.0 0.0
 ambient 0.099608 0.200000 0.166275
 diffuse 0.498039 1.000000 0.831373
 specular 0.0 0.0 0.0
 shininess 0.0
 alpha 1.0
defend

defmaterial gray4
 emission 0.0 0.0 0.0
 ambient 0.007843 0.007843 0.007843
 diffuse 0.039216 0.039216 0.039216
 specular 0.0 0.0 0.0
 shininess 0.0
 alpha 1.0
defend
 Figure 1

// define the textures
deftexture earth
 imagefile earthclouds.rgb
 minfilter mipmap_bilinear
 magfilter bilinear
 wrap repeat
endtexture // components default = 4

deftexture moon
 imagefile moon.rgb
 minfilter mipmap_bilinear
 magfilter bilinear
 wrap repeat
endtexture

deftexenv planetenv
 modulate
defend

deftexgenalg earthalg
 sdir linear 0.0 0.1 0.5 20.0 // plane equations
 tdir linear -0.10 0.0 0.1 20.0
defend

deftexgenalg moonalg
 sdir linear 0.0 0.1 0.1 0.0
 tdir linear -0.1 0.0 0.1 0.0
defend

// the animated variables for rotating the planets
defvariable earthrot
 min 0
 max 360
 init 0
 inc .1
 timed yes
 wrap yes
defend

defvariable moonorbit
 min 0
 max 360
 init 0
 inc 0.15
 timed yes
 wrap yes
defend
 Figure 1 (cont.)

January 25, 1994 11

higher level support for graphical abstractions. A
simple example is shown in Figure 1. In it, a sim-
ple model of the earth and moon is described. The
earth and moon are textured spheres and both ro-
tate under NPSGDL control, both about their axis

defvariable moonrot
 min 0
 max 360
 init 0
 inc 0.2
 timed yes
 wrap yes
defend
// this is the displayable portion
setlight sun 2 on
settexenv planetenv on

// save the state of the application transformation
// matrix
pushmatrix

// incline the scene
rotate z 23.5

pushmatrix
// spin the earth continously
a_rotate y earthrot

// color and texture the earth
setmaterial sky_blue
settexgenalg earthalg sdir on tdir on
settexture earth on

// draw the earth, make it low res visible
defsphere low
 center 0 0 0
 radius 15
 panels 200
endsphere
settexture earth off

// draw the axis
setmaterial gray4
defcylinder med
 center 0 -20 0
 radius 0.5
 panels 10
 height 40
endcylinder

popmatrix
 Figure 1 (cont.)

// isolate the moons motion
pushmatrix

// continously rotate the moon about the earth
a_rotate y moonorbit
translate -40 0 0

// isolate the moons spin
pushmatrix

a_rotate y moonrot

// color and texture the moon
setmaterial aquamarine
settexgenalg moonalg sdir on tdir on
settexture moon on

defsphere high
 center 0 0 0
 radius 5
 panels 100
endsphere
settexture moon off

// use a predefined material for an object on the
// moon
setmaterial brass
rotate z -90
defcone medium
 center 0 0 0
 radius 1.5
 height 7
 panels 10
endcone

// recover the state of the transformation matrix
popmatrix
popmatrix
popmatrix

 Figure 1 (cont.)

January 25, 1994 12

and in orbit in the case of the moon.

Implementation

Many issues came up during implementation
related directly to the use of C++ as the implemen-
tation language. Because of the lack of a language
standard, no built-in support for run-time type in-
formation, no garbage collection and the lack of
standard data structure classes, a great deal of time
was spent developing these basic systems and
structures before implementing NPSGDL.

The first effort was to construct a library of
standard data structure abstract data types and
concrete data types. Initially several popular pub-
lic domain libraries were considered including the
National Institutes of Health Class Library (NI-
HCL)[10] and the Texas Instruments, Inc. Library
(COOL)[11]. Although the implementation of
both libraries was very educational, neither of
these libraries was used for several reasons:

1. The NIHCL single root hierarchy was deemed inap-
propriate.

2. Designing classes to be used by the libraries was cum-
bersome.

3. The time investment to become proficient using the li-
braries was too high.

4. Difficulty in getting a completely built version of the
libraries discouraged further use.

There were many good points to both libraries.
These were incorporated into what was to become
the Naval Postgraduate School Class Library (NP-
SCL). NPSCL is a collection of stand-alone class-
es. The classes are either concrete data types such
as string, date and time, generic abstract data types
for containers (lists, tables, trees) or cooperative
classes comprising a support system. At the time
that NPSCL was implemented, most C++ compil-
ers did not support templates as defined in the pro-
posed standard and [12]. In order to implement
generic templated containers, NPSCL uses macro
substitution. This is not the most desirable solu-
tion but does not require special preprocessor sup-
port and is fairly easy to use. As C++ compilers
supporting the C++ template facility become
available, we will port NPSCL to true templates.

Run-Time Type Information

NPSCL provides several support systems that
NPSGDL uses extensively. The first is a simple
run-time typing system. Run-time type informa-
tion (rtti) was not originally a part of C++ due to
the added overhead such a system would impose.
A recent proposal [13] to add rtti has been put
forth by the language’s designer which should
correct a major deficiency. Many C++ applica-
tions do not need run-time typing support relying
instead on virtual methods and dynamic binding
of method calls. This falls apart in systems like
NPSGDL. All tokens behave similarly and re-
spond to the same messages and can thus be man-
aged generically as tokens. There are many occa-
sions when some specific behavior not common to
all tokens is needed from a token. Also there are
occasions when certain tokens must be separated
from the rest. Both of these situations demand a
consistent way to identify the type of object refer-
enced and safely cast pointers down the inherit-
ance hierarchy. This is the purpose of the run-time
type system of NPSCL. The type system is non-
intrusive meaning that not all classes must partic-
ipate, although there is little reason not to include
all classes. The system is based on that described
in [14] and similar to the system described in [13].
Basically each class has a public static data mem-
ber that contains a string identifier for the class
and a list of immediate base classes for the class.
Methods and macro support allow the user to que-
ry the type of a class, determine if a down-cast is
safe, compare for type equality and other helpful
functions. This system is useful and effective. It
imposes little space overhead on client classes and
very little performance overhead by using inline
methods where possible. Also since run-time type
inquiries are the exception rather than the norm,
the system is not a factor in most performance
studies conducted. In addition to the string name
based type system described, NPSCL provides a
simple object identification capability based on
integers. Using this system each class instance is
given a unique integer identity that can be used for
more refined identity testing. These integer iden-
tifiers are used by NPSGDL for various Silicon

January 25, 1994 13

Graphics, Inc. GL functions [8] among other
things.

Reference Counting

Another system extensively used by NPSGDL
is a simple reference counting garbage collection
system. In order to save space and improve effi-
ciency, many token objects are shared between
each other and NPSobjects. For example, consider
two NPSobjects. Each is associated with a de-
scription file that defines a “gold” Defmaterial.
We only want one copy of the Defmaterial but
each NPSobject must contain a copy in the event
that the NPSobject must write itself to a file. In
this case, the first Defmaterial read would allocate
space and insert a pointer in a table. The second
NPSobject would get a pointer to the first instance
rather than a new one. To support this with a min-
imum of developer worry, NPSCL provides a sim-
ple reference counting system using smart pointer
objects. This system is based on the examples in
[15] and are similar to the “letter-envelope idiom”
in [16]. Basically every class in the NPSGDL sys-
tem contains a reference count member and meth-
ods to increment and decrement the count. If an
object’s reference count decrements to zero then
its memory is returned to the memory system. The
management of the reference counts is the respon-
sibility of a friend class that encapsulates a pointer
to the referenced class. This class is generic and
uses templates to provide type safety. The pointer
class, called a Refptr in NPSCL, overloads opera-
tors to behave as a normal pointer with the addi-
tion of adjusting reference counts as pointers are
assigned, copied and destroyed.

There are several advantages and disadvantag-
es to using this system. Many relating to garbage
collection in general:

Advantages
1. System is simple and easy to use.
2. Frees developer from many memory management

chores.
3. System is non-intrusive. It can be used or not used as

desired.
Disadvantages:
1. System imposes overhead on pointer manipulation.
 Little overhead is imposed for pointer use or access.

2. User can break system by mixing real pointers and
Refptrs.

3. System doesn’t detect circular references that might
result in unrecoverable memory.

Despite these disadvantages, this system is
used in NPSGDL to great success. In normal use,
the circular reference problem is not encountered
and the overhead is only noticed at non-critical
times such as object creation/initialization. Other
phases of an object’s use normally involve access-
ing the object pointed at and this operation has lit-
tle to no overhead due to the use of inline meth-
ods. The primary limitation to using this garbage
collection system is placed on the developer. The
developer must ensure that real pointers are not
mixed with the smart pointers across scopes. This
is to prevent the system from deallocating an ob-
ject still referenced by a real pointer. This is not a
problem for the typical user as all object manage-
ment is taken care of within NPSGDL. It is a con-
sideration for developers of tools and those man-
aging custom collections of NPSGDL tokens.

The Persistence Model

A primary requirement for NPSGDL is the
ability to store and retrieve object definitions to
secondary storage. Since C++ does not provide a
standard persistence mechanism, one was de-
signed into NPSGDL. The persistence system was
modeled after several different systems, in partic-
ular the “virtual constructor” methods outlined in
[16]. The primary responsibility for storage and
retrieval is distributed among the NPSGDL token
classes. The most derived class controls most of
the process. Each token implements three meth-
ods, the read_from, store_on and creator methods
as well as a special “reader” constructor called
with an input stream. Each takes as input either an
input or output stream. The read_from method ex-
pects the stream pointer to be located immediately
after the typename of the token and reads all fields
on the stream applicable to itself until either an
ending flag is encountered, as in Deftokens, or a
certain number of lines have been read, as with
Defpolys. The store_on method stores the token
typename and data values in the correct format on

January 25, 1994 14

a specified stream. This method has a parameter
that tells the token whether it should output its
typename with its data. Using this parameter, de-
rived classes can have super classes output their
data without inserting extraneous typenames on
the stream. The creator method is a static method.
This is important because it does not work on a per
object basis. The creator method’s function is to
allocate a new instance of a token and initialize it
from an input stream. The creator then returns a
pointer to the new token to the caller. The creator
method acts as the virtual constructor as explained
below.

Using these methods, each token provides fa-
cilities to read, write and initialize itself from file
streams. Still there must be some object or process
in overall control of all this. All of the typenames
currently valid in the system must be known in or-
der to recognize them on an input stream. Also,
once a typename is recognized, there must be a
way of telling the correct token to initialize itself
from the stream. This responsibility is delegated
to the Token base class. The Token class contains
a static table of Tokeninfo objects called the to-
kentable. A Tokeninfo object associates a token’s
typename and the address of its creator method.
The Token class provides a public static method
called read_token() that will process an input
stream using the following general algorithm:

1. Read a string, assume it’s a token identifier
2. Lookup the identifier in the tokentable.
3. If the identifier is valid then get the tokeninfo object

for that token, else issue an error and return.
4. Call the identified tokens creator method passing the

input stream in.
5. The creator will return a pointer to a valid token ini-

tialized from the stream. Return the token pointer to the
caller.

The read_token method is called repeatedly by the
NPSobject::read_from method until the end of file
is reached.

An important consideration in the design of
NPSGDL was the initialization of the tokentable.
One of the primary design goals was to be able to
add new tokens to the language system with min-
imum effect on other modules. The ideal being

providing a header (.h) and implementation (.C)
file for the new token(s) and adding the object
module to the library archive. This ideal is very
close to being met. The tokentable is initialized
dynamically using a special constructor in each
token and a special instantiation of each token.

The special constructor is one that takes as its
sole argument a Tokeninfo object. Remember the
Tokeninfo object is the object placed into the to-
kentable. The base class Token’s special construc-
tor places the Tokeninfo object into the table. All
derived tokens simple call their base class’s spe-
cial constructor passing the Tokeninfo object
along to the root of the hierarchy.

 In order for this system to work, this construc-
tor must be used. Thus in each tokens implemen-
tation file, a single static object of the particular
token type is instantiated using the special con-
structor. The C++ language guarantees that global
static objects will be constructed before main() is
entered. So all of the static objects used for tokent-
able initialization are constructed prior to main()
ensuring that the tokentable is properly initialized
automatically at run-time. There is no need for
user initialization.

This system for dynamic initialization works
very well. There is one problem though, current
linker technology does not support this model
well. Typical NPSGDL users use only the NPSob-
ject class and don’t directly refer to the token sub-
classes. Since the NPSobject classes deals with to-
kens in the abstract through Token pointers, it
does not refer to derived tokens directly either.
Thus there are normally no references to derived
token modules for the linker to resolve. The result
is that the linker does not include the modules for
derived classes and the tokentable is not initial-
ized properly.

The temporary remedy was to fall back to the
more traditional method of having an object or
module that ensures that each module is linked in.
Instead of having an external class manage the to-
kentable initialization, we have an external object,
called a TokenRegistrar, whose constructor calls a
static method named register_token() provided by
each token class. This method does nothing. It is
used solely to generate an unresolved reference

January 25, 1994 15

for the linker. The TokenRegistrar is instantiated
in the Token module which is always linked in.
The advantage to this approach is that the registra-
tion functionality is easily removed without af-
fecting anything.

The long term remedy is more intelligent linker
technology. Dynamic linking to the degree needed
is not supported on the platforms we use. Shared
libraries don’t address the problem either and are
very difficult to construct for a system such as
NPSGDL. As object oriented programming and
C++ become more popular, linker technology
must improve to support the highly dynamic de-
signs possible like this initialization scheme.

There is another consequence to using the reg-
istration method. NPSobjects only know about the
class Token. The actual derived tokens used are
instantiated at run-time and accessed via dynami-
cally bound calls. Thus there is no way to know
which tokens will be needed by any set of defini-
tion files. Therefore all token modules must be
linked to the application. This results in large ap-
plications with possibly a lot of unused code. The
alternative is to preprocess definition files and
only link the modules needed. However, this is
very limiting and establishes an application de-
pendance. The definition files can’t be modified
without preprocessing again. While this option
may be offered in the future, it is not generally ac-
ceptable.

Using NPSGDL

The normal usage of NPSGDL is very straight
forward and simple. The NPSobject class is the
normal interface to the system. The user simply
instantiates an NPSobject with a definition file
name, defines the NPSobject to ensure that any
Deftokens are defined to the graphics system and
displays the object when desired. This technique
is illustrated in Figure 2. In addition to this object
definition-file based approach, the user may in-
stantiate and use individual tokens. This way the
NPSGDL tokens can be used as individual ab-
stractions of the underlying graphics library. A
simple example of this is shown in Figure 3. The
key point is that normal use of NPSGDL is simple

since management of low level details is hidden
from the user. As mentioned before, NPSGDL
provides a standard method of describing graphi-
cal objects. Since a large number of objects exist
in our laboratory, few developers need to worry
about the details of creating description files.
Many simple use what’s available thereby speed-
ing the prototyping and development process.

Performance Considerations

NPSGDL is used in complex, interactive, real-
time 3D graphics applications. Performance is a
critical issue. Limited analysis has shown that
NPSGDL is very efficient when compared to pre-
vious systems with similar purposes [2]. NPS-
GDL does impose a small amount of overhead
over managing objects manually using traditional

// program display_planets.C
#include "NPSobject.H"
#include "gl.h"
void init()
{
 // open and config a gl window
 winopen("planets");
 RGBmode();
 doublebuffer();
 gconfig();
}

main() {
float backcolor[4] = {0.0, 0.0, 0.0, 0.0};
NPSobject p_obj("planets.off"); // read the file

init();
p_obj.define(); // define any Deftokens

while(1) { // kill from win manager
 c4f(backcolor);
 clear(); // clear the window
 // put up viewing and transformation stuff
 p_obj.display();
 swapbuffers();
 }
}
 Figure 2

January 25, 1994 16

methods. This is primarily due to the tradeoffs be-
tween designing for application use and general
tool use. Many of the data structure classes used
support high level operations that will be helpful
to NPSGDL tool designers. While this does not
imply that the data structures are inefficient, it
does increase the code size. A good example is the
use of a string class that manages memory and
supports substrings and concatenation over typi-
cal C character pointers. But as the objects be-
come complex, the overhead of NPSGDL factors
out. Also the flexibility and utility of the system
compensates for any minor performance degrada-
tions.

NPSGDL performance is based on two main
strategies. First all calculations are preprocessed

prior to display. Second routines that are called of-
ten or are demonstrated bottlenecks are optimized
based on profiler feedback.

The first strategy has the most impact. Where
possible, each token performs any calculations
needed either during initialization or definition.
Also graphics data is cached for fast retrieval rath-
er than calculated during display. This is the clas-
sic trade of space for speed. For example, during
initialization, the Defsphere token calculates the
vertices for a tessellated sphere and stores the re-
sults in an array for easy access. This technique is
not new but important and applicable.

Another performance boost is gained in the
NPSobject class. Each NPSobject contains five
lists of Tokens. The main list contains all tokens
and is the basis for the other lists. The main list is
used for reading and writing. The second list con-
tain only Deftokens, while the other lists are used
for display and contain tokens of the same resolu-
tion. This approach reduces the number of func-
tion calls required at different phases of object
use. Remember that each token responds to a
common set of messages. If the token does not di-
rectly handle a message, for instance a Deftoken
does not implement a display() method, then the
default method is invoked in a base class, typical-
ly Token. This default method is usually empty
but still imposes a function call. These unnecce-
sary calls are prevented by using specific lists at
the expense of space and preprocessing time.

The second strategy involves the normal per-
formance tuning cycle. Profilers were used to
identify those functions that were called the most
and those that used the highest percentage of cpu
time. These were then analyzed for optimization.

The primary method during the first optimiza-
tion phase was the use of inline functions. This
came into play in two ways. The first way is the
normal use of the C++ inline construct. During de-
sign, only the most simple methods were designat-
ed as inline, reserving it’s use for tuning. This was
to prevent code size growing to the point of gen-
erating excess page faults in the virtual memory
system. This proved very prudent as additional in-
lining was not needed very much. Functions that
were called fairly often that were candidates for

// program use_materials.C
#include "NPSobject.H"
#include "Setmaterial.H"

void init()
{
 // open and config a gl window
 winopen("planets");
 RGBmode();
 doublebuffer();
 gconfig();
}
main() {
float backcolor[4] = {0.0, 0.0, 0.0, 0.0};

// read the file containing material definitions
NPSobject m_obj("allmaterials.off");
init();
m_obj.define(); // define all Deftokens (materials)

while(1) { // kill from win manager
 c4f(backcolor);
 clear(); // clear the window
 // put up viewing and transformation stuff
 Setmaterial cur_mat("gold");
 // draw something that is gold
 swapbuffers();
 }
}
 Figure 3

January 25, 1994 17

inlining were made inline. The page fault rate was
monitored for excess increases as a result of the
inlining. The second inlining method used was to
reduce or eliminate member function calls from
within a class. While the function calls make the
code easier to read and more compact, they result
in one or more function calls in order to accom-
plish something with data already accessible to
the first member function. So, where feasible,
each member function manipulates class data ex-
plicitly rather than through other member func-
tions. This is also true in the case where the other
member function is inline. Since the inline direc-
tive can be ignored by the compiler, the inline ex-
pansion was used directly when needed.

After analyzing critical functions, some gener-
al and machine specific optimizations were made
[17]. One of the first was to unroll loops during
display. For example, a Defpoly contains a list of
n vertices. If n is small, less than seven, the tra-
versal loop is unrolled yielding better perfor-
mance. Also pointer arithmetic is used over sub-
scripting when it is safe and convenient to do so.
One of the machine specific techniques used is to
use four element float arrays for vertices rather
than three elements. This is due to the read length
of the cache system in Silicon Graphics Powervi-

siontm series workstations.
NPSGDL drawing performance was compared

to that of NPSOFF [2], a system with similar be-
havior implemented in C. The comparison con-
sisted of displaying the same object 10000 times
and reporting the average user and system time to
display a single frame. The object displayed was a
gouraud shaded, lit cube with two textured sides,
a small line and a simple decal of a triangle on a
square.The texturing was done with both explicit
coordinates and automatically generated texture
coordinates. The object was rendered on a Silicon
Graphics, Inc. Iris 4D/340 VGX using a perspec-
tive projection and z-buffered hidden surface re-
moval. The results of five runs of each timing
program are shown below with user time over sys-
tem time in microseconds:

SYSTEM 1 2 3 4 5 Avg.
NPSOFF 1438 1491 1501 1645 1629 1541

 900 828 923 870 919 888
NPSGDL 1466 1371 1432 1470 1572 1462
 874 932 924 1033 894 931

Avg. Total:
 NPSOFF 2429
 NPSGDL 2393 1.4% difference

These results are encouraging. While the two
systems share common capabilities, NPSGDL
provides many additions and improvements over
NPSOFF. In addition to the benefits gained from
the object-oriented design and implementation,
NPSGDL provides extensive error detection and
recovery, reasonable default behavior, extended
data structure support, name space control and
more high level application support.

Limitations, Future Work and Conclusions

NPSGDL is the most recent effort to provide
application developers with an easy to use, appli-
cation independent method to describe, store,
share and manipulate graphical objects. NPSGDL
does this well. However there are limitations to
the system. The components and focus of NPS-
GDL is still relatively low-level and platform spe-
cific. Many of the NPSGDL tokens correspond
closely to Silicon Graphics GL functions [8]. This
still requires the developer to understand the use
and interactions of many GL functions. A higher
level of abstraction, including more high level
components, would be helpful in many cases.

Another limitation is the size of the NPSGDL
library. As mentioned before, the typical linker
must be forced to link the modules of the derived
token classes. Since it is not known prior to exe-
cution which tokens will be needed, all derived to-
kens and their support modules must be linked to
an application. This results in almost the entire li-
brary being linked to an application even though
many tokens may not be used. This is more of a
linker problem than an NPSGDL problem but is
still a consideration for developers, as the size of
the resulting executable and the placement of to-
ken modules may affect the page fault and cache

January 25, 1994 18

performance of the application.
Future work on NPSGDL will try to address

these issues. The primary focus of future work
will be to add extended functionality. Sound sup-
port is important to development at NPS. Once a
standard, consistent mechanism for sound genera-
tion is in place, NPSGDL will likely support it.
Another important aspect of many objects within
NPS applications is physical characteristics like
mass, center of gravity, etc. Extensions to NPS-
GDL that embody object characteristics for sup-
porting physically based modeling are also being
considered. Other high level graphics support for
things like atmospheric effects, motion blur, and
anti-aliasing are also likely candidates for support
by NPSGDL.

NPSGDL provides high level application sup-
port. It incorporates an application independent
language for describing graphical objects as well
as a medium to high level graphics interface sys-
tem. It is simple to use, easy to extend and main-
tain, and very flexible and capable. NPSGDL
gives application designers the leverage needed to
rapidly prototype and develop applications. The
ability to create and maintain collections of object
models as well as individual components that can
be used in many different systems is critical to vir-
tual world development at NPS.

Acknowledgments

We wish to acknowledge the sponsors of our
efforts, in particular Major David Neyland, USAF
of DARPA/ASTO, George Lukes of the USA To-
pographics Engineer Center, Michael Tedeschi of
the USA Test and Experimentation Command,
John Maynard and Duane Gomez of the Naval
Ocean Systems Center, San Diego, LTC Dennis
Rochette, USA of the Headquarters Department
of Army AI Center, Washington, D.C., Carl
Driskell of PM-TRADE and the Naval Postgradu-
ate School Direct Funding Program.

References
1. Zyda, Michael J.,Pratt, David R., Monahan, James G. and
Wilson, Kalin P., “NPSNET: Constructing a 3D Virtual
World”, Proceedings of the 1992 Symposium on 3D Inter-
active Graphics, March 1992.

2. Wilson, Kalin P., Zyda Michael J., Pratt, David R., and
Monahan, James G. “NPSOFF: An Object Description Lan-
guage for Supporting Virtual World Construction”, in sub-
mission.

3. Wisskirchen, Peter ,Object-Oriented Graphics, Springer-
Verlag, 1990.

4. Wisskirchen, Peter, Obect and Constraint Paradigms for
Graphics, "Object-Oriented and Classical Approaches",
ACM SIGGRAPH 1991 course 22 notes, 1991.

 5. Egbert, Parris K. and Kubitz, William J. “Application
Graphics Support through Object-Orientation, November
14, 1991, draft paper.

6. Zelenik, Raobert C., Conner, D. Brookshire, Wloke,
Mathias M., Aliaga, Daniel G., Huang, Nathan T., Hubbard,
Philip M., Knep, Brian, Kaufman, Henry, Hughes, John F.,
van Dam, Andries, "An Object-Oriented Framework for the
Integration of Interactive Animation Techniques", ACM
Computer Graphics, vol 25 number 4, Siggraph ’91 Pro-
ceedings, pp. 105-111, 1991.

7. Wirfs-Brock, Rebecca, “Responsibility Driven Design”

8.SiliconGraphics Computer Systems, Inc., Graphics Li-
brary Reference Manual, C edition, Iris-4D series, 1990

9. Magnenat-Thalman, Nadia, Thalman, Daniel, Computer
Animation, Theory and Practice, second edition, pp161-
162, Springer-Verlag, 1990.

10. Gorlen, Keith E., Orlow, Sanford M., Plexico, Perry S.,
Data Abstraction and Object-Oriented Programming in
C++, John Wiley & Sons, 1990.

11. The Texas Instruments C++ Object-Oriented Library
Users Manual, Texas Instruments Inc., 1990.

12. Ellis, Margaret A. and Stroustrup, Bjarne, The Annotat-
ed C++ Reference Manual, Addison-Wesley, 1990.

13. Stroustrup, Bjarne and Lenkov, Dmitry, “Runtime Type
Identification for C++, A Proposal for New Features to the
Language.”, The C++ Report, vol. 4 num. 3, pp. 32-42, Mar-
Apr 1992.

14. Stroustrup, Bjarne, The C++ Programming Language,
Second Edition, Addison-Wesley, 1991.

15. Shapiro, Jonathan. A C++ Toolkit, Prentice Hall, 1991.

16. Coplien, James O., Advanced C++, Programming
Styles and Idioms, Addison-Wesley, 1992.

17. Silicon Graphics Computer Systems inc., Graphics Li-
brary Programming Tools and Techniques, pp 2-1 - 2-53,
1991.

