
MOBILE AGENTS AND SMART NETWORKS
FOR DISTRIBUTED SIMULATIONS

Steve Stone
*Mike Zyda

Don Brutzman
John Falby

Computer Science Department, Code CS/Zk
Naval Postgraduate School

Monterey, California 93943-5118
E-Mail: {stonesw, zyda, brutzman, falby} @cs.nps.navy.mil

* contact author

KEYWORDS
Communications Architecture, Communication Network, Multicast, Scalability

 ABSTRACT
As the use of Distributed Interactive Simulations has grown, the need to support a large number of players in the

environment has become apparent. DIS has not been able to support a large number of entities because of its high
network bandwidth requirements and the large computational loads it places on host computers.

A combination of an agent based architecture and smart networks provides a promising solution to these problems
when implementing large-scale distributed simulations. An agent system using the remote programming paradigm,
transporting the necessary parameters and the necessary code for remote execution [WHITE95], could reduce the
network bandwidth requirements and large computational loads associated with a large distributed simulation. This
reduction would occur by eliminating unnecessary PDU traffic through the use of mobile agents that represent the
originating entity. These agents would travel to, and reside on, the host computer of other entities and provide the
necessary state information for stationary entities without using network resources.

Smart Networks could be used to create a flexible area of interest manager, allowing entities to specify their area
of interest and the information that they require from within that area [HARR95a]. This approach allows an entity to
get all of the information it requires to represent its view of the simulated world while eliminating unnecessary
information processing.

 DISTRIBUTED INTERACTIVE SIMULATIONS:

 DIS Protocol:

Development of the DIS protocol began in 1989,
jointly sponsored by the United States Army Simulation,
Training and Instrumentation Command (STRICOM),
ARPA and the Defense Modelling and Simulation Office
(DMSO). DIS was based on SIMNET and designed as a
man in the loop simulation in which participants interact
in a shared environment from geographically dispersed
sites. The initial objective was to develop a standard that
provided guidelines for the interoperability of defense
simulations. DIS provides a basis of interoperability for
large scale virtual environments using a wide variety of
different hardware and software platforms. DIS has been
adopted by the Institute of Electrical and Electronics

Engineers (IEEE) as an International Standard (IEEE Std
1278-1993).

While the DIS standard adopted many aspects of the
earlier SIMNET protocol including its general
principles, terminology and PDU formats, it is intended
to overcome the limitations of SIMNET and includes
packet definitions not found in SIMNET
[DURLACH95]. DIS is also designed to use the Defense
Simulation Internet (DSI), an ARPA project designed to
allow thousands of players to link using real and
simulated forces to create a Synthetic Theater of War
(STOW) [DURLACH95]. Another difference between
SIMNET and DIS is that DIS uses the TCP/IP suite of
protocols and is thus an application level protocol,
allowing it to be used on any network topology that uses
TCP/IP.

Protocol Data Units: The heart of DIS is a set of
protocols that are used to convey messages about entities
and events, via a network, among the simulation nodes
that are responsible for maintaining the status of the
entities in the virtual world [DIS94]. Simulation and
event information is conveyed by the twenty-seven
PDUs defined by the IEEE 1278 DIS standard. Four of
the PDUs are used for sending information about entity
interaction. The other twenty-three are used for
transmitting information on supporting actions,
electronic emanations and simulation control
[MAC95a]. DIS PDUs are independent of the network
media and network protocols being used to transmit them
and can be used on most current network topologies.

The PDUs used to transmit information about entity
interaction are: Entity State PDU (ESPDU), Fire PDU
(FPDU), and Detonation PDU (DPDU). The ESPDU is
used to communicate information about an entity’s
current state, including its position, orientation, velocity
and appearance. The ESPDU is the most commonly used
PDU and, in most instances, it dominates the network
traffic [MAC94]. The format of the ESPDU is shown in
Figure 1. The FPDU contains data on any weapon that is
fired or dropped. The DPDU is sent when a munition
detonates or an entity crashes. The actual structure of
each PDU is very regimented and is explained in full
detail in [IEEE 1278].

 Problems with the DIS Protocol:

Using the current method, a large-scale simulation
would require enormous bandwidth and place a huge
computational load on host computers. It has been
estimated that using DIS, a simulation with 100,000
players would require approximately 375 Mbps of
network bandwidth to each computer participating in the
simulation [MAC95a]. Since this is not within the realm
of possibility in the near future, the implementation of
large-scale virtual environments will require a
communications protocol with a much lower bandwidth
requirement. Computational load is another problem that
must be overcome. In 1994 the U.S. Army attempted to
demonstrate the feasibility of large-scale simulations in
the Synthetic Theater Of War - Europe (STOW-E)
exercise. The goal of the exercise was to simulate 10,000
entities over a wide area network connecting a number of
sites in the United States and Europe. However, only
1,800 entities could be represented because of
computational bottlenecks in both the simulators and
support equipment [MAC95a].

Because DIS is a stateless system and does not
utilize servers, all data must be distributed to all entities
in the system. Thus when the status of one entity
changes, it must send an update, as an ESPDU, to every

other entity in the simulation. As such, ESPDU’s can
account for up to 70% of the network traffic [MAC95a].
For entities that are moving it is necessary to send these
updates as often as needed. Not doing so would corrupt
the coherence of the virtual world. However, there is no
such problem with entities that are stationary. An

Field Size
(bytes)

Entity State PDU Fields

12 PDU Header Protocol Version
Exercise ID
PDU Type

Padding
Time Stamp

Length in Bytes

6 Entity ID Site
Application

Entity

1 Force ID

1 Number of Articula-
tion Parameters

8 Entity Type Entity Kind
Domain
Country

Category
Subcategory

Specific
Extra

8 Alternate Entity Type Same information as
above.

12 Linear Velocity X, Y, & Z
(32 bit components)

24 Location X, Y, & Z
(64 bit components)

12 Orientation Psi, Theta, Phi
(32 bit components)

4 Appearance

40 Dead Reckoning
Parameters

Algorithm
Other Parameters

Linear Acceleration
Angular Velocity

12 Entity Markings

4 Capabilities 32 Boolean Fields

N * 16 Articulation Parame-
ters

Change
ID

Parameter Type
Parameter Value

Figure 1: Entity State PDU. [IEEE93]

analysis of an actual combat scenario at the National
Training Center showed that in ten hours of simulated
combat approximately 33% of 2,191 entities did not
move. As the exercise continued, over half of the
vehicles stopped all movement. [MAC95b] If there were
a method where each entity could have knowledge of
every stationary entity without transmitting an ESPDU
every five seconds there would be a significant reduction
of PDU traffic. This would also remove some of the
computational burden on the host computers by
removing the need to read these PDU’s off of the
network. Mobile agents using the remote programming
paradigm could be a solution to these problems.

 MOBILE AGENTS AND SMART NETWORKS:

 Overview:

Mobile Agents are programs, typically written in a
script language, that are sent from a client computer and
transported to a remote server for execution. A mobile
agent contains both the necessary state information and
the executable code for the agent to complete its mission.
This approach to computer communication is known as
the Remote Programming Paradigm. A Smart Network
is a framework for the execution of mobile agents. This
framework allows numerous heterogeneous servers to
offer a host-independent execution environment for
mobile agent programs and a standard communication
language with which agents and servers can engage in
dialogs [HARR95a].

 Remote Programming:

Current Method: The basis for today’s computer
communications networks is the Remote Procedure Call
(RPC) Paradigm. RPC views computer to computer
communications as enabling one computer to call
procedures on another. The messages that transit the
network either request or acknowledge a remote
procedure’s execution. A request contains the data
necessary for the execution of the procedure. A response
contains the return value of the procedure. The format of
the messages and the effects of each procedure call
constitute a protocol. A client computer with work to
accomplish on a remote server bundles the necessary
parameters and ships them to the remote server for
execution. The server begins execution and responds
with an acknowledgment. This process continues until
the interaction is complete. The DIS protocol can be
viewed as a form of RPC without the acknowledgment.
When an entity detects that its current state exceeds a
threshold from its previous state, or that a certain time
interval has passed, it packs up its current state

information and sends it in a procedure call to every
entity in the simulation. Upon receipt, each entity runs a
procedure to update its view of the world with the new
state information [WHITE95].

New Method: An alternative method is Remote
Programming (RP). RP views computer communication
not only as calling procedures on another computer, but
also providing the procedure to be called. Each message
that the network transports is a procedure that the server
is to execute and the data necessary for execution. Of
note is that the procedure’s execution was begun on the
sending computer but is continued on the receiving
computer. The procedure and its state are called a mobile
agent. The important part of RP is that the sending
computer and the receiving computer can interact
without using the network once the network has
transported the agent between them [WHITE95].

The first advantage of RP is performance. When the
client computer has work to do on a remote server, it can
send the work and supervise locally using an agent,
rather than continually sending instructions over the
network. The network is called on to carry fewer
messages. “The more work to be done the more
messages remote programming avoids [WHITE95].”
This performance advantage is dependent on the
network. The lower the throughput or availability, the
higher the performance gain. The second advantage of
RP is customization. A mobile agent allows the sender to
customize the functionality of the receiver. New
procedures can be sent to the server with little effort.
This turns the network into a platform for which new
applications can be developed, allowing the network’s
behavior to be easily modified.

 Mobile Agent Concepts:

Mobile Agent: The main components of an agent
system, or framework, are mobile agents, an agent
language, agent meeting places and security services.
The primary part of an agent framework is the mobile
agent itself. The agent can be written in various
programming languages and can transport knowledge
expressed in various forms. The agent must be able to
engage in a dialog with the agent meeting place until they
execute or are rejected. An agent can execute until
completion or it can elect to suspend its activity and
move to another meeting place and resume execution
there. In this case, the state of the agent and its execution
environment must be moved to the new meeting place.
An agent’s structure contains a passport, a table of
contents and components. The passport contains the
agent’s identification and the identification of the owner
which together establish the authority of the agent. For

an agent to receive service, the server must be able to
identify the owner of the agent. The passport also
contains the permit of the agent. The permit establishes
what the agent can do. An agent can be limited in the
number of CPU cycles it can use or in the amount of time
it can live. The permit also gives the agent the right to
execute certain instructions. For example, an agent’s
permit can allow it to spawn other agents. An agent that
tries to exceed one of these limits is prevented from
doing so. An agent is aware of its authority and permit,
but cannot increase them. This is critical to the security
of the agent framework. Without these limitations an
agent could run amok causing irreparable damage. The
passport also contains error actions and addresses should
problems arise. The table of contents of the agent
provides a map of its structure. This allows an agent
meeting place to determine which components of the
agent are required for execution. The components of the
agent are the executable code that the agent needs to
accomplish its mission. Ideally, these components are
instances of class libraries of the agent language
[CHESS95].

Agent Language: A mobile agent can be written in
one of a number of programming languages. There are
certain languages that are more useful for implementing
agents than others. An agent programming language
should be a high level language for ease of use, object
oriented, support agent mobility and provide constructs
that support distributed computing. Several languages
have been designed to support agent implementation.
The newest of these are Telescript and Java [WHITE95]
[SUN95]. Other agent frameworks have been written in
Lisp, Scheme, Tcl/SafeTcl, KQML, and KIF
[CHESS95].

Agent Meeting Place: The next important part of an
agent framework is the Agent Meeting Place (AMP). An
AMP offers service to the mobile agents that enter it. An
engine (Figure 2) is a program residing on the server that
implements the agent framework by maintaining and
executing the AMPs it contains, as well as the agents that
occupy those AMPs. In general, the engine is an
interpreter for the language used to implement the
framework. An interpreted approach is used to help
provide security for the system. By interpreting the agent
code, it is easier to prevent the agent from directly
accessing memory and other system resources. The
engine interfaces with the host system through three
application program interfaces (APIs). The APIs are
used to manage storage, transport agents and interface
with external applications. The storage API lets the
engine access the nonvolatile memory it requires to
preserve the places and agents in case of a computer

failure. The transport API lets the engine access the
communications network so that it can transport agents
to and from other engines. The external applications API
lets the agent interact with other applications on the host
computer.

Agent Security: The final component of an agent
framework is its security services. It is critical that an
agent framework maintain the security of the host
computer. Without proper security measures, an agent is
really just a virus. The first and most important security
measure is interpreted rather than executed code. As
discussed above, interpreting the agent’s code allows the
engine to have some control over the agent’s ability to
access the systems resources. The agent’s authority and
permit are also essential in providing security. Without
these controls, an agent could take over a system. These
are the major security methods that an agent framework
makes use of. There are many others required to prevent
agent tampering and ensure data integrity and privacy
[CHESS95].

Agent Execution: When a mobile agent arrives at
an AMP, the Agent Transport API removes the headers
associated with the transport protocol and assembles the
agent. Once assembled, the agent is passed to the
manager process for the AMP. The manager process
authenticates the agent’s passport, conducts a data
integrity check and decrypts the components of the
agent, if necessary. Once the authentication is complete,

AGENTS AND PLACES

API’S

EXTERNAL

APPLICATIONS

STORAGE AGENT TRANSPORT

ENGINE

Figure 2: Agent Engine [WHITE95]

the manager process registers the agent with the engine
and distributes the agents components to the elements of
the engine necessary to support them. After all of this is
completed, the agent begins executing. If it had begun
executing on another host, its execution state is restored.
The engine allocates host resources to the agent within
its permit’s limits and the agent continues to run until it
has exceeded its limits or has completed its work. When
the agent has completed its work, it is packaged and
either sent back to its originator or off to another AMP
that the agent has specified. A much more through
explanation of this process can be found in [CHESS95].

 Smart Networks:

Overview: The fundamental model of networks is
that they provide communications between network
nodes and that the routing and priority of the
communication is independent of the content. A Smart
Network’s focus is on delivering information to users
with the user in control of how, when, where and whether
the information is delivered. The key point of this
statement is that the user is in control of the network’s
behavior. This control is exercised through instruction
provided by the user and through observations of the
user’s interaction with the network.

Components of a Smart Network: For a smart
network to work, it requires several forms of
intelligence. It requires an inferencing system for
collecting information about the user’s interaction with
the network. It requires mobile agents with the
associated framework for processing messages and
routing them through a network of servers. And it
requires gateways to allow access to the network. The
inferencing system usually would consist of an
inferencing engine, a set of rules and a method of
delivering event information to the engine. This system
would reside at the network gateway on a server at the
user’s point of access to the network and would analyze
the user’s interaction with the network and assist in
customizing the network’s behavior for the user.
[HARR95a]

Customizing the Network’s Behavior: The
inferencing system described above works in
conjunction with the user’s expressed instructions in
order to customize the user’s interface with the network.
This is accomplished through mobile agents that control
the flow of information to the user’s host computer.
These agents can screen incoming messages, forward
them to other sites, deliver messages according to a
certain priority or perform other services. Most of the
research in this area has been focused on using smart

networks to aid in personal communications and mobile
computing. While none of these smart networks is fully
implemented, much work is being done in the
commercial arena. Although not specifically intended
for distributed simulations, the concept of a tailorable
network could have a significant impact on the
communications problems plaguing DIS.

 APPLICATION TOWARDS DISTRIBUTED
 SIMULATIONS:

 Overview:

The greatest problem currently facing the progress
of distributed simulations is scalability. The current
methodology cannot scale up beyond approximately
2000 entities because of its tremendous requirements for
network bandwidth and the computational loads it places
on the host systems. The root of this problem is twofold.
First, the current DIS standard requires every entity to
broadcast an ESPDU on the network whenever its state
has changed enough to exceed a specified threshold or
when a certain time limit has been reached. While the
ESPDU that reflects a change in state is critical, the
ESPDU that is sent even though the entity’s state has not
changed can waste a significant amount of network
resources. The second problem is that currently an entity
must process every PDU from every other entity even
though it has no need to know anything about the other
entities. This again results in large amount of
unnecessary network traffic and computation by each
host. Large-scale distributed simulations require that
significantly reduced communications loads be placed
on the system. Mobile agents and smart networks
provide a method for accomplishing this.

 Network Bandwidth Requirements:

DIS’s Problem: The ESPDU accounts for
approximately 70% of the network traffic in a distributed
simulation. A large portion of this load comes from
stationary entities that are broadcasting their ‘heartbeat’
message. DIS uses this heartbeat message so that an
entity joining the simulation late will get an accurate
picture of the state of the simulation within five seconds.
While this method avoids the use of a server to maintain
the current simulation state, it results in a large amount
of network traffic. If somewhere between 33% and 60%
of the entities are stationary then 23% to 42% of the
network traffic is not necessary [MAC95b]. If this PDU
traffic is removed from the network, there is a significant
decrease in the bandwidth requirements. How then, do
stationary entities communicate with other entities in the

simulation? An agent based system using an engine
process on each host is the answer.

An Agent Based Solution: The current DIS
architecture could be modified to support an agent based
system designed to reduce the communications load on
the network. This system would consist of an engine
process running on each host computer that would
support the AMP and agents necessary to reduce the
PDU traffic. The premise of this architecture is that an
entity that does not change state for a specified time
would, instead of transmitting heartbeat PDUs, send a
mobile agent to each of the other entities in the
simulation. The agent’s passport would contain the
entity identification and other information necessary to
identify the agent. This agent would travel to the AMP
on each host and would begin to execute there. The agent
would communicate with the simulation program,
providing all of the state information that was previously
sent in an ESPDU. The simplest method of doing this
would be for the agent to send the necessary data in the
ESPDU format through the engine’s external application
API to the simulation’s network interface. Then the
simulation would read the ESPDU as if it had been
transmitted over the network. While this technique
would be the easiest to implement and would reduce the
network traffic, it increases the computational load on
the host. The simulation’s network interface would still
be required to read and process the ESPDU. Another
method would be to write the agent and the simulation to
allow direct communications between them. For
example, the agent could, through the engine’s APIs,
write all of the necessary state information directly to the
simulation’s entity management table. This would
eliminate the need to read and process an ESPDU.

Eliminating the ESPDUs from stationary entities
creates a problem in updating entities that are late in
joining the simulation. Without the heartbeat PDUs,
newcomers to the simulation will not receive an accurate
representation of the virtual world. An agent is also the
solution to this new problem. An entity that joins the
simulation will receive ESPDUs from every entity that is
currently changing state, but not from stationary entities.
To get the state information about these entities, the new
entity will send out a query agent. This agent would
ideally go to the nearest host computer and query the
AMP about other agents that are located there. Through
interaction with the AMP and other agents, the query
agent would cause the agents representing stationary
entities to spawn a copy and send it to the new entity’s
host. The copies of the agents then travel to the host,
register with the AMP and begin providing state
information. This would take some amount of time but
the new entity would soon have an accurate view of the

virtual world. This delay in time required to get up to
date is an acceptable trade off for the decrease in network
traffic.

Entity Interaction Using Agents: The agent would
continue executing in the AMP until the originating
entity changes state. At that point, the entity would begin
to send ESPDUs as is currently done. Upon receipt of an
ESPDU over the network, the agent representing the
sender would be killed and the state information would
be received from the ESPDUs until another agent is
received. Collision detection and other entity
interactions would continue to be implemented as they
are today. A stationary entity that has sent an agent to
other entities continues to behave normally, except that
it no longer transmits ESPDUs as long as its state is
constant. The entity continues to read PDUs from the
network and respond appropriately to any interaction. A
stationary vehicle entity that reads a Detonation PDU
would check the PDU for a possible interaction. If it
determined that it had been hit, it would calculate the
damage received and send an appropriate ESPDU. As
before, the receipt of this ESPDU would kill the
vehicle’s agent and its state information would be
received over the network. After a specified time interval
had elapsed, the vehicle entity would transmit another
agent representing its damaged state.

Problems With This Approach: The most
significant problem with this approach is the additional
computational load placed on the host computer by the
agent engine. On a multi-processor machine, one
processor might be dedicated to the engine with little
slowdown. However, on a single processor machine, the
CPU cycles needed by the agent engine could outweigh
any processing saved by the reduced network load.
Current research work has not examined an agent based
system incorporated into a distributed simulation and no
quantifiable results exist. Such a system needs to be
implemented and experiments conducted.

The other problem that requires more research is the
performance of agent systems in a real-time environment
such as a distributed simulation. In this architecture, the
agents would be simple and it is possible that it would
meet the latency requirements set forth in the DIS
standard. Again, this is an area that requires thorough
experimentation.

 Computational Loads:

The Problem: The agent based approach above
does little to reduce the computational loads associated
with processing a large number of ESPDUs. In fact, the
agent approach may increase the computational burden

by adding another process to the host computer. The root
of this problem is DIS’s requirement that each entity
know about the state of every other entity in the
simulation. In a large scale simulation, an entity would
have to process thousands of ESPDUs a second and
maintain a record of each entity. In real combat, most
entities have little interest in events outside of their
immediate area. A tank on the ground has no interest in
another tank that is fifty kilometers away. Yet in the
current DIS architecture, it is required to maintain a
record of the distant tank’s state. A solution to this
problem is to partition the virtual world into smaller
‘Areas of Interest’ (AOI) using multi-cast channels
[MAC95a]. Each area of interest would have an
associated multi-cast channel. An entity in that AOI
would transmit its PDUs only on the multi-cast channel
for that area. Entities would subscribe to the multi-cast
channels associated with each AOI it is interested in.
Thus, each entity would receive only the PDUs from
entities within the areas it is interested in. AOIs would be
from one of three classes: Spatial, Functional, and
Temporal. Spatial AOIs would be used to group entities
that are in close physical proximity to each other. Entities
such as a Battalion of dismounted infantry would
normally all be within the same Spatial AOI. Research
has shown that a 4 kilometer hexagon is optimal for
combat simulations [MAC95a]. Functional AOIs would
be used to group entities that need to communicate, but
are not in close physical proximity. The radio
communications of a dispersed unit would be transmitted
using a functional AOI. Temporal AOIs would be used
for entities that have different real-time communications
requirements. A JSTARS Aircraft might need entity
position updates every five minutes instead of every five
seconds. This could be done using a temporal “ALL”
AOI, where every entity would transmit to this multicast
channel once every five minutes. Simulations of this
architecture have shown that there would be a dramatic
drop in the network traffic and computational loads of
the host computers [MAC95a].

Smart Networks for Distributed Simulation:
Another approach would be to use a smart network to
allow individual entities to create their own area of
interest. This way an entity could design an area of
interest so that it receives all of the information it needs
to portray reality but receives no unnecessary
information. An infantryman could set his AOI to be a
1000 meter circle around his position and the JSTARS
could establish an AOI of thousands of square
kilometers. Entities could also tailor the information they
receive. The infantryman could specify that he does not
want to get PDUs from high performance aircraft in the
area and the JSTARS could tell the network that it does

not want to get PDUs from dismounted troops within its
AOI.

The key to implementing such an AOI manager is
the network gateway containing its inferencing engine.
An entity would be able to tailor its AOI by establishing
a set of rules that describe the information (PDUs) that it
wants to receive. These rules could outline the locations
from which the entity wants to receive PDUs, effectively
establishing a spatial class for the entity. For example,
send me PDUs from each entity within ten kilometers. Or
the entity could establish a set of rules so that it would
receive PDUs from all aircraft type entities. These rules
would be encoded into a mobile agent that is sent to the
network gateway’s AMP where its set of rules would be
given to the inferencing agent. The inferencing agent
would then use these rules to tailor the PDUs that are sent
to that entity.

The main advantage of this approach is the
flexibility that it gives to the AOI manager concept. By
changing its set of rules, an entity can change its AOI.
Using the examples from the proceeding paragraph, an
entity could combine the two sets of rules to form a new
AOI that is interested only in all aircraft within ten
kilometers. An entity can make this change rapidly. Once
the new set of rules is created, a mobile agent is
dispatched and the gateway begins to use the new rule
set.

Of course, just as using multi-cast channels to
partition the world requires more work, the idea of a
smart network for distributed simulations is a long term
goal. Smart networks are just now beginning to be
implemented and there are many questions to be
answered. The foremost are about the real-time
performance of such a network. Would a smart network
be able to meet the latency requirements of a distributed
simulation? The design of a smart network is also an area
for future research. Would a smart network’s server
architecture move distributed simulations away from a
stateless system. Would this create reliability problems
that the DIS standard has attempted to avoid? As smart
networks evolve these questions need to be answered.

 CONCLUSIONS:

As the use of Distributed Interactive Simulations has
grown, the need to support a large number of players
(more than 1000) in the environment has become
apparent. The current approach, the Distributed
Interactive Simulations Protocol (DIS), has not been able
to support large numbers of entities because of its
requirement that each entity transmit a heartbeat
message at a certain time interval (usually every five
seconds). For an entity that is stationary, these messages
serve the purpose of saying “I’m still here”. This

requirement has lead to high network bandwidth
requirements and unacceptable computational loads on
the host computers. Several methods of solving this
problem have been suggested. Using multi-cast channels
to partition the Virtual Environment and reducing
redundant information contained in the Protocol Data
Units (PDUs) are the two most common suggestions.
While both of these concepts have merit, they do little to
reduce the total number of PDUs that must be
transmitted.

An agent based architecture and smart networks
provide a promising solution to the problems of
implementing large-scale distributed simulations. An
agent system using the Remote Programming paradigm
could reduce the network bandwidth requirements and
computational loads associated with a large distributed
simulation. This reduction would occur by eliminating
unnecessary PDU traffic through the use of mobile
agents that represent the originating entity. These agents
would travel to and reside on the host computer of other
entities and provide the necessary state information for
stationary entities without using network resources.

Smart networks could be used to create a flexible
area of interest manager that allows entities to specify
their area of interest and the information they require
from within that area. This approach allows an entity to
get all of the information it requires to represent its view
of the simulated world while eliminating all unnecessary
information processing.

Further research must be done to examine the real-
time performance of both agent systems and smart
networks to ensure that they can meet the real-time
requirements of distributed simulations and to measure
the reduction in network traffic and computational loads.

 ACKNOWLEDGEMENTS:

This work would not have been possible without the
support of our research sponsors: the Advanced
Research Projects Agency (ARPA), the US Army
Research Laboratories (ARL), the Defense Modeling
and Simulation Office (DMSO), US Army TRADOC
Analysis Center (TRAC), US Army Topographic
Engineering Center (TEC), the Office of Naval Research
(ONR), USA STRICOM and the Research,
Development, Test, and Engineering Division (NRaD)
of the Naval Command, Control and Ocean Surveillance
Center.

 LIST OF REFERENCES:

BRU95 Brutzman, Donald, Macedonia, Michael and
Zyda, Michael,Internetwork Infrastructure
Requirements for virtual Environments, in the
Proceedings of the First VRML Symposium, 1995.

CANTER95 Canterbury, Michael,An Automated
Approach to Distributed Interactive Simulation (DIS)
Protocol Entity Development, Masters Thesis, Naval
Postgraduate School, Monterey, California, September
1995.

CHESS95 Chess, David, Grosof, Benjamin, Harrison,
Colin, Levine, David, Parris, Colin, and Tsudik, Gene,
Itinerant Agents for Mobile Computing, IBM T.J.
Watson Research Center, Yorktown Heights, New York,
1995.

DIS94 DIS Steering Committee,The DIS Vision - A
Map to the Future of Distributed Simulation, Institute
for Simulation and Training, Orlando, Florida, May
1994.

DURLACH95 Durlach, Nathaniel I. and Mavor, Anne
S.,Virtual Reality: Scientific and Technological
Challenges,National Academy Press, Washington, D.C.
1995.

HARR95a Harrison, Colin G.,Smart Networks and
Intelligent Agents, IBM T.J. Watson Research Center,
Yorktown Heights, New York, 1995.

HARR95b Harrison, Colin G. Chess, David M.,
Kershenbaum, Aaron,Mobile Agents: Are They a Good
Idea?, IBM T.J. Watson Research Center, Yorktown
Heights, New York, 1995.

IEEE1278 Institute of Electrical and Electronics
Engineers, International Standard, ANSI/IEEE Std
1278-1993,Standard for Information Technology,
Protocols for Distributed Interactive Simulation,March
1993.

LING95 Lingnau, Anselm and Drobnik, Oswald,An
Infrastructure for Mobile Agents: Requirements and
Architecture, Proceedings of the 13th DIS Conference,
Orlando, 1995.

MAC94 Macedonia, Michael R., Zyda, Michael J.,
Pratt, David R., Barham, Paul T., Zeswitz, Steven,
NPSNET: A Network Software Architecture for Large
Scale Virtual Environments, Presence, 3, 4, Winter
1994.

MAC95a Macedonia, Michael R.,A Network
Architecture for Large Scale Virtual Environments,
Dissertation, Naval Postgraduate School, Monterey,
California, June 1995.

MAC95b Macedonia, Michael R., Zyda, Michael J.,
Pratt, David R., Barham, Paul T.,Exploiting Reality
with Multicast Groups,IEEE Computer Graphics and
Applications, September 1995.

MEYER95 Meyer, Tom and Conner, D. Brookshire,
Adding Behavior to VRML,Brown Computer Graphics
Group, August 95.

MOR95 Morrison, John, The VR-Link, Networked
Virtual Environment Software Infrastructure, Presence,
4,2, Summer 95.

SAPAT95 Sapaty, P.S., Corbin, M.J., and Borst P.M.,
Mobile WAVE Programming as a Basis for Distributed
Simulation and Control of Dynamic Open Systems,
Proceedings of the 15th International Conference on
Distributed Computing Systems, Vancouver, June 1995.

SUN95 Sun Microsystems, Inc.,The Java(tm)
Language Environment: A White Paper, Sun
Microsystems, Mountain View, California, 1995.

WAY95 Wayner, Peter,Agents Unleashed, A Public
Domain Look At Agent Technology, AP Professional,
Boston, 1995.

WHITE95 White, James E., Telescript Technology:
Mobile Agents, General Magic White Paper, Mountain
View California, 1995.

ZES93 Zeswitz, Steven R.,NPSNET: Integration of
Distributed Interactive Simulation (DIS) Protocol for
Communication Architecture and Information
Interchange,Masters Thesis, Naval Postgraduate
School, Monterey, California, September 1993.

