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Abstract

The Naval Postgraduate School (NPS) has actively ex-
plored the design and implementation of real-time three-di-
mensional simulators on low-cost, readily accessible graph-
ics workstations. Many of the simulator platforms have had
tremendous success due to the fact that a common object
format was used. Prototyping time is dramatically reduced
when the tedious and often repetitious task of object design
is replaced with the simpler task of modifying an existing
object description file. The current level of support that the
NPS Object File Format (NPSOFF) provides is descriptions
for lights, lighting, material characteristics, the expected
graphics drawing primitives (lines, polygons, surfaces,...),
and provisions for texturing and special lighting effects
(spotlights, decaling,...). The objectives of this work are the
enhancement of the basic NPSOFF structure with informa-
tion necessary for accurate physically-based rendering in
real-time; to construct a library of functions specifying an
object’s physical properties and the internal/external forces
controlling the object and to develop a tool to rapidly design
and test an object’s dynamic characteristics.

The Basic Object File Format

In the past, the various areas of real-time, three-dimen-
sional (3D) visual simulator research at NPS have had spe-
cific scope and purpose for a unique vehicle platform (Zyda
1991c). The visual simulators developed in the Graphics and
Video Laboratory include the FOG-M missile simulator, the
VEH vehicle simulator, the Airborne Remotely Operated
Device (AROD), the Moving Platform Simulator series
(MPS-1, MPS-2 and MPS-3), and the High Resolution Dig-
ital Terrain Model (HRDTM) system. Simulation design
and implementation techniques optimized the technology of
workstations in use. Advances in workstation hardware and
software have always lead to more accurate simulations with
each successive generation. An area of concern was to pre-
vent an iconoclastic attitude between existing simulation
projects and to facilitate the rapid prototyping of new simu-
lator platforms. It soon became evident that future simulator
development would demand a more unified protocol for ob-
ject/scene description, rendering, and manipulation.

Advances in hardware capabilities such as lighting and
texturing were painfully absent from these early simula-
tions. There was no ability to quickly modify and port vari-
ous objects between platforms; object renderings and con-

trol modifications were tedious for the platform’s author let
alone a follow-on design team. The NPSOFF initial research
was designed to solve these problems by introducing an ed-
itable ASCII file with the information necessary to render an
object along with various support routines to show, manipu-
late and save NPSOFF objects (Zyda 1991a, Zyda 1991b).

The version 1.0 NPSOFF consisted of lights, light mod-
el, material (color) and drawing subprimitive (lines, poly-
gons, surfaces) definition tokens along with some adminis-
trative tokens for file maintenance and readability. The ren-
dering of an object was accomplished in 3 steps: 1) pre-
render parsing of the ASCII file into a dynamically allocated
structure of object definition opcodes, 2) pre-render defini-
tion of lights and light models, 3) traversing the opcode list,
drawing only the graphic primitives and selecting the “cur-
rently active” light, light model or material definition. Step
3 is the only one required each time through the display
loop.

Additions To The Basic Object File Format

Further enhancements to NPSOFF included tokens to se-
lect textures, decaling, 2-sided lighting, spotlights and other
rendering attributes. While current NPSOFF objectslooked
just like the real world objects that they were simulating, un-
fortunately, many of the NPSOFF object simulations did not
behave realistically. As each NPSOFF object was nothing
more than a description of its “skin”, it was usually animated
by implicitly specifying changes in linear position/velocity
and orientation. NPSOFF objects could quite literally be-
come “...faster than a speeding bullet, more powerful than a
locomotive...” and defy many more laws of physics that we
implicitly, if not explicitly, understand.

Incorporating Physical Realism

More recent research at NPS, specifically the Autono-
mous Underwater Vehicle (AUV), has taken a current NP-
SOFF submarine object and animated it under the con-
straints of accurate hydrodynamic laws of motion (Jurewicz
1989). The result is an amazingly realistic, both visually and
physically, simulation of one specific NPSOFF object. A
small drawback of the AUV simulation is that the physical-
ly-based modeling (PBM) representation of the dynamics is
hardcoded. Adding/adjusting the AUV’s dynamics is not a
simple task, and the integration of a physically different sub-
marine model would require software maintenance by a
knowledgeable AUV programmer.
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Related Work

bolio

bolio is an integrated graphical simulation platform
developed by David Zeltzer et al at MIT’s Media Lab (Brett
1987, Sturman 1989, Zeltzer 1989). The project’s goal has
been to provide an environment that animates objects
governed by a network of constraints (dynamic and
kinematic). The bolio file format is similar in nature to
NPSOFF in that the top level file contains ASCII keyword/
value pairs specifying object characteristics. While bolio
identifies additional binary data structure files, NPSOFF
remains completely ASCII. The product development at
NPS is almost exclusively experimental research and it was
felt that a 100% human readable file format was needed
during platform prototyping. When the final project design
has been accepted, each NPSOFF file can be converted into
binary to reduce I/O.

 While bolio has demonstrated exceptional realism with
the constraint-based movement of afew articulated bodies,
the NPSOFF and the NPS simulation network (NPSNET)
programs have been more concerned with the real-time ani-
mation of alegion of 3D icons (Zyda 1991c). Only with re-
cent advances in workstation hardware has there been a ca-
pability to render a multitude of minimally articulated vehi-
cles, in real-time. The vehicular nature of most NPSNET
objects has lead toward a more interactive form of object-
control, rather than bolio’s use of kinematically specified
task-level manipulations. Also, the constraints in NPSOFF
are used more as a specification of an object’sphysical ca-
pabilities, rather than a notation for an object’sdesired be-
havior.

Virya

Virya is a graphical editor for specifying an articulated
object’s motion-control characteristics, designed by Jane
Wilhelm’s group at UCSC (Wilhelms 1986, Wilhelms
1987). A user can assign to each body’s degree of freedom
(DOF), one or more controlling functions (forces or torques
vs. time or positions vs. time). These functions can exist in
one of many control states such as position or dynamics con-
trol, frozen or relaxed. The control functions are cubic spline
curves delineated by control points maintained in an ASCII
file format.

Notion

Additional motion control work by Jane Wilhelm’s
group describes a technique that allows a user to depict an
object’s behavior based on internal sensors (provocation de-
tectors), effectors (propulsion mechanisms) and mappings
(connections and nodes) between them (Wilhelms 1990).
Connections provide data transfer/modification from sen-
sors to effectors, while nodes permit multiple connections
from many sources of input/output. This technique has been
demonstrated with an interactive, workstation-based system

called Notion which allows a user to specify and view an ob-
ject’s behavior-derived motion.

Dynamic Constraints

Barzel and Barr present an approach to controlling rigid
bodies with dynamic constraints (Barr 1987, Barzel 1988a,
Barzel 1988b). These constraints are instanced and then sus-
tained throughout the animation using inverse dynamics.
The resultant “constraint” forces determine the object’s mo-
tion. Rather than construct “constraining” forces, we are
more interested in specifying “controlling” forces, similar to
Barzel/Barr’s use of external forces to guide objects prior to
constraint initiation.

This paper describes an approach for enhancements to
NPSOFF which bestows an object with physical character-
istics and provides mechanisms to govern the object’s mo-
tion given a list of known internal and external forces acting
on the object. We have developed a rudimentary algorithm
for the automatic maintenance of multiple objects’ current
placement and orientation in real time. Using a tool devel-
oped at NPS called the NPSOFF Mover Tool, a designer can
view NPSOFF objects from all perspectives, including those
from an object’s point of view. After a set of forces is added
and adjusted in location/affect, the designer is then able to
“test-drive” an object to verify its force characteristics. Con-
straints on the force actuators and object movement are eas-
ily added or changed. The modified NPSOFF object is saved
back to a file and is ready for integration into any simulation
utilizing the NPSOFF library of object and force functions.

The following sections describe: basic dynamics theory
for object animation, the use of a layered approach to the
creation and application of force definitions, force control
and action control in NPSOFF, the capabilities and perfor-
mance of the NPSOFF Mover Tool development and testing
simulator. The final section concludes with a description of
future work to increase the accuracy and realism of the
physically-based modeling while lowering the final com-
plexity of user-specified object movement.

The Dynamics Of Object Animation

The use of dynamics in rigid-body simulations requires
a delicate understanding and balancing of geometric and al-
gorithmic complexities. If we are interested in modeling the
precise physical interactions of simple objects, we can af-
ford the computational expense of dynamics simulation. In-
creasing an object’s structural complexity and having it in-
teract with a greater number of peer objects, strains many
dynamics algorithms to the point where they are unusable
for real-time simulation. It is clear that the use of dynamics
to simulate Newtonian mechanics is essential for most
forms of motion (ballistic, robotic, ambulatory and piloted).
The following sections attempt to provide broad insight into
simplifying the task of dynamics integration. Additional
amplification is available in two exceptional references,
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Jane Wilhelm’s dynamics tutorial (Wilhelms 1988) and
Goldstein’s mechanics theory text (Goldstein 1980).

Non-deforming Forces

Initial Conditions

The object’s current position and orientation are calcu-
lated based on a set of current initial conditions:

(position)

(orientation)

(linear velocity)

(angular velocity)

and initial time t0.

Often, the initial velocity values are not needed as most
objects begin life motionless. Nevertheless, the ability to
create an object, such as an airplane, in all phases of its
movement description requires a provision for non-zero ini-
tial velocities.

Newton’s Laws

or simply “A given force acting on a given mass will ac-
celerate it.”

More specifically,

where
Fxyz = the net force directed at the object’s

    center of mass
Txyz = the net torque directed at the object’s

    center of mass
m = object mass

δ2/δt2(pxyz)= linear acceleration component

δ2/δt2(θxyz)= angular acceleration component

Local Frame of Reference

Each non-deforming force vector is converted into two
collision coordinate system vectors; one that affects a torque
(tangential) and one that affects a translation (radial) in each
of the XY, YZ and XZ planes respectively (Figure 1). Since
each component of the movement force 6-vector (three tan-
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gential forces and three radial forces) is mutually exclusive,
they are summed to generate acumulative object frame
movement force 6-vector.

The movement force 6-vector specifies an object-frame
acceleration 6-vector (the three tangential force components
create three rotation acceleration components as the remain-
ing three radial force components create three translational
accelerations). For example, in the XZ plane, only the X and
Z components create linear motion and torque about the Y
axis. Each force adds its effects to the object’s six object
frame of reference accelerations along and around each of
the three object’s axes. An object-frame velocity 6-vector is
calculated using constant acceleration over the integration
time interval δt. Both 6-vectors are then mapped into their
world frame counterpart 6-vectors. These world frame ac-
celerations and velocity 6-vectors are then used in a modi-
fied Euler integration (Spiegal 1988).

These two equations calculate final linear/angular veloc-
ities, given current velocities and accelerations over a time
intervalδt.

These two equations calculate final linear/angular posi-
tions, given current positions/velocities and predicted veloc-
ity averages at sample time.
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where
δ/δt(Fpxyz) = final linear velocity component
δ/δt(Fθxyz) = final angular velocity component
Fpxyz = final position component
Ipxyz = initial position component
Fθxyz = final orientation component
Iθxyz = initial orientation component
δt = time interval since last integration

The modified Euler method was selected for its simplic-
ity and iterative speed. Each object’s force list is updated
once per rendering loop, therefore nullifying the additional
precision provided by second order and higher methods of
integration. Obviously, Euler’s method will lose accuracy as
each object is subjected to rapidly changing forces. A future
implementation will sample the force updates in parallel,
track the relative changes in linear/angular accelerations and
switch to a higher order integration method, such as Runge-
Kutta, under a rapidly moving scenario.

Each global force (such as gravity) affects the object at
its center of mass causing only linear acceleration. Since the
movement does not involve rotations, it can be added after
the net effect of all local forces is determined.

Deforming Forces

A deforming force affects the object in one of three
ways. Each polygon in the object has an associatedbreak

andbend threshold token specified in newtons/meter2. Us-
ing the relationship that a force dissipates its kinetic energy
inversely over the square of the distance from the force ori-
gin to the polygon, a dissipated force per unit polygon sur-
face area value is calculated. If the force is strong enough to
break the polygon, the original polygon token is removed
from the object token list and replaced with a list of smaller
triangular polygonal shard tokens (Figure 2). Triangles are
used to guarantee planar polygons.

The shards are initially determined by “snipping” off the
corners of a multi-sided convex polygon, thus spiraling in-
ward until the remaining quadrangle is divided in two. The
rationale is to 1) prevent identical “pizza slice” shards as ex-
plosions are rarely symmetrical and 2) generate (n-2) versus
n fragments from ann-sided polygon. Any remaining shards
are broken along their hypotenuse, as needed.

1

2
3
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5

Figure 2 Breaking Force

Snips Slices

If the force is only strong enough to bend the polygon,
the polygon token is removed from the object token list and
replaced with a new bendable polygon that tracks a moving
point of bending force impact (Figure 3). The bending force
is modeled using Hooke’s Law and a spherical spring that
seeks to return the moving vertex back to the polygon’s ac-
tual point of impact.

where
Pi = initial point of bending force impact
Pc = current point of bending force impact
Fxyz = linear bending component
ks = spring constant
kd = damping constant
∆pxyz = difference between the position

   components of the initial and current
   points of impact

∆vxyz = difference between the velocity
   components of the initial and current
   points of impact

If the force is neither strong enough to break or bend a
polygon, then it may only push a polygonal shard.

A Layered Approach

The initial objective of our work was to provide a struc-
tured mechanism for object behavior control that would al-
low varying degrees ofuser anddesigner involvement with
the simulation. The end user is concerned with realism: vi-
sual accuracy and similarity of interface (i.elook andfeel).
The simulated object’s appearance and movement must
closely resemble its real world counterpart. Objects that in-
stantly accelerate to highly unnatural velocities provide a
temporary sensation of giddiness, bordering upon the comi-
cal. A lack of expected visual clues from the objects’ New-
tonian interactions, such as the lack of gravity effects, reduc-
es the allure of the virtual reality. A similar degradation in
simulator immersion is also evident when the user is expect-
ed to identify and interface with an inordinate number of
forces, which are manipulating several objects.
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Front viewTop view
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o

Figure 3 Bending Force
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Method

The desired implementation would allow the art
design team to create a specific object hierarchy with
realistic shape, colorings and positioning data. The
engineering section would then add the subobject
physical attributes (mass, center of mass and object
elasticity) and affecting force descriptions (force
position, or point of affect in the object’s frame of
reference, along with the force direction unit vector,
magnitude and type of force). Reasonable defaults for
omitted physical attributes are assumed and/or calculated
from other specifications. The analysis team would then
specify mappings between subobject movement and the
forces affected by such movement. The end user is then
able to control a given object in a realistic manner with
realistic results by manipulating a set ofcontrol
subobjects linked to local forces. The result is an
adjustable “focus” in specifying high-level object motion
in a range of control modes: directly, indirectly through
local force control, and even more indirectly with
subobject control.

The final objective was to design a suite of tools, so
that a single user, with even a limited background in
Newtonian mechanics, could rapidly design and test an
object’s physical characteristics.

Descriptions Of Each Layer

Similar to Barr’s view of Teleological Modeling
(Barr 1988), the approach is for each layer to provide a
control description to the layer below. The lowest layer
consists of rendering descriptions (drawing primitives,
materials and lighting controls to color their skins). The
second layer consists of the object’s physical character-
istics and a set of force descriptions (a list of forces and
their influence upon specific objects). The third layer
consists of action descriptions (a mapping of an object’s
movements to changes in a set of force descriptions)
(Figure 4).

Control object physical

Control action mapping

Manual object positioning.
Acceptable for Keyframing

characteristics and force
 placement/effect.

characteristics and
manipulator placement/effect.

Realistic physically-based
animation. Interface overtasking
likely for complex models.

Visual accuracy and
ease of use.

Control size, shape and color.

Figure 4 Layered Approach to Control Modeling
Level 1

Level 2

Level 3

Primitive Additions

As described, the version 1.0 NPSOFF file supported
only drawing subprimitives such as lines, polygons, and
meshed surfaces. Other common generalized surface
primitives (cones, cylinders, spheres and parallelepi-
peds) were usually calculated off-line, with their polyg-
onal data stored into an NPSOFF file. The major disad-
vantage to this approach was that these NPSOFF files
were extremely large and difficult to edit. As scenarios
requiring different colors on a primitive were rare at best,
the inclusion of a set of parametrized primitive descrip-
tions was required. For example, a cylinder token is
specified by a height, radius, and quality factor that indi-
cates the maximum number of polygons or mesh points
to use in the rendering. The advantages were automatic
minimal polygonal computation based on ranging data
from a specified viewpoint, a simple mechanism for mul-
tiple object resolution creation and known mass/center of
mass values, to name a few.

Objects And Force Control

The models in the various NPS simulators have quite
an eclectic background. Some came from non-organic
sites such as NASA and MIT, requiring conversion from
other file formats. Many others were designed in-house
and more often than not, the various models were rarely
scale compatible. The first set of extensions to the
NPSOFF language, (Table 1), included tokens to specify
and convert between the various units of measure (Level
1).

TABLE 1: UNITS OF MEASURE

Token Function Argument Type(s)

units of dimension char

units of force char

units of mass char
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Object Modeling Requirements

The next set of extensions, (Table 2), included tokens to
specify the capabilities and constraints of a force acting
upon an object (Level 2).

The next set of extensions, (Table 3), included tokens to
specify the physique, initial conditions, and motion
boundary conditions of an object (Level 2). A default
bounding volume is calculated as the object is read into
memory. Provisions for specifying a smaller (or larger)
bounding description (spherical, rectangular or ellipsoid)
were added to facilitate parallel research efforts in collision
detection. As much of the research at NPS involves the
simulation of piloted vehicles, the inclusion of a vehicle
viewpoint was a requirement.)

TABLE 2: FORCE CHARACTERISTICS

Token Function Argument Type(s)

name char

type char

origin float, float, float

origin constraints (low) float, float, float

origin constraints (high) float, float, float

direction float, float, float

magnitude float

magnitude constraints float, float

asleep yes or no

The concept of a “sleeping” or suspended force is to
leave the force attached to the object but remove its effect.
The rationale for this was for simplification during the force
definition and analysis phase. A given force can be isolated
by leaving it the sole “awake” or active force. The unaccept-
able alternative is to nullify the other forces by restricting
their magnitudes and/or directions.

Objects And Action Control

What we have now is a “marionette” object that is ma-
nipulated by pulling and pushing “force” strings and rods.
For objects with a simple description of force effectors, this
is quite acceptable as each force can be visualized as a con-
trolling “object” rather than a force. Realistically, most ob-
jects’ movements aredescribed by a complex network of
forces, yetcontrolled from a small number of input sources.
Level 3’s objective will be to identify a small set ofcontrol
objects and provide a mapping from their movement (trans-

TABLE 3: OBJECT CHARACTERISTICS

Token Function Argument Type(s)

initial position float, float, float

position constraints (low) float, float, float

position constraints (high) float, float, float

initial rotation float, float, float

rotation constraints (low) float, float, float

rotation constraints (high) float, float, float

initial linear velocity float, float, float

linear velocity constraints (low) float, float, float

linear velocity constraints (high) float, float, float

initial rotation velocity float, float, float

angular velocity constraints (low) float, float, float

angular velocity constraints (high) float, float, float

mass float

center of mass float, float, float

elasticity float

bounding volume radius float

bounding volume length float

bounding volume width float

bounding volume height float

viewpoint from object float, float, float
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lations/rotations) changes to a set of force description
(origin/direction/magnitude) changes.

We will want to specify a set ofdynamic controlling
forces and then provide an abstraction for altering their
effect based on user input changes. As early key-frame
animation control systems identified key object positions
and then interpolated the in-between positions as a func-
tion of time, so should we specify key controlling force
effects and then interpolate the in-between effect compo-
nents as functions of a user input position/orientation.
This approach will provide for a natural migration from
simulated input sources toactual hardware/sensor input
sources.

For example, a jet object has three forces that
describe the effects of two ailerons and one stabilizer.
The action induced by their movement is controlled by
one input source, the pilot’s stick. The user will describe
simple mappings for the stick’s lateral rotation (affecting
the aileron forces) and longitudinal rotation (affecting
the stabilizer force). Adding additional mappings for
throttle/rudder pedal positions and we will have an
airplane that is fully controllable with changes in the
input device’s position and rotation (Figure 5).

 As the construction of Layer 3 is part of continuing
research, the following is aspecification for a possible
NPSOFF file mapping from subobject movement (trans-
lations/rotations) changes to a set of force description
(origin/direction/magnitude) changes:

defmapping sample_map_name
 sample_object name
 sample_force name
 rot_to_force_origin matrix
 rot_to_force_vector matrix
 trans_to_force_origin matrix
 trans_to_force_vector matrix
defend

Each object and force has an initial (neutral) state
specified in their respective descriptions. Each respec-
tive 3x3 matrix would transform a 3-vector (controlling
object rotation and translation changes) into another 3-
vector (force origin and vector incremental updates). Ad-
ditional mappings would require velocity information as
well.

The NPSOFF Mover Tool

The objective of the NPSOFF Mover Tool is to pro-
vide an environment to design and test the dynamics of
NPSOFF objects. An NPSOFF object without physical
characteristics is read into memory from disk and the ob-
ject is measured for future calculations. A default mass,
mass center, elasticity and object viewpoint are calculat-
ed. The user is then able to “fine tune” any of these ap-
proximations based on known data. The user then speci-
fies the initial values for object position, orientation and
velocity. At the lowest layer of the tool’s control, the user
is able to continually update the object’s movement by
indicating the linear/angular direction and speed. This
would be acceptable for specifying instances for a key-
framing sequencer, but we are more interested in provid-
ing mechanisms to accelerate the object just like its real
world counterpart. The mechanism of choice is a force
description.

Application

The user controls a set of forces that are in turn, con-
trolling the object’s movement. A force is positioned
around an object and its range of effect is specified. For
example, our jet fighter object is re-read into the Mover
Tool and the engine forces are added via a force interface
(Figure 6). A separate force vector is positioned in the
center of each exhaust nozzle, initially directed forward
(direction of thereactive force) and parallel to the tur-
bine housing, with a zero newton magnitude. The force’s
magnitude is constrained by a non-negative range of
thrust values. The point of effect is also given a small
range of values along the axis parallel to the direction of
thrust to account for the change in thrust position when
the engine is operated in afterburner and additional fuel
is combusted behind the main combustion chamber.
Similar forces are added to the wings for lift and drag
forces created by the various control surfaces (flaps, ai-
lerons, spoilers,...).

Aileron

Stabilizer

Rudder
Force

Force

Forces

Pitch Pitch

Roll Roll
Left Right

DownUp

Yaw
Left

Yaw
Right

Figure 5 Linking Subobject Movement to Forces
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Additional pseudo forces, such as parasitic drag can be
added to tune the realism. The result is a vehicle that will
maneuver with amazing realism. The object can be “test
flown” in isolation or with other testbed objects to verify the
object’s force parameters. The object is saved to a file when
the desired physical model is accepted. The NPSOFF file
force descriptions are always editable with any ASCII text
editor.

The following is a sample NPSOFF file force description
for the plane’s left engine:

defforce left_jet_engine
 force_type non-deforming
 force_origin -4.0 0.5 -0.8
 force_origin_low 0.0 0.0 0.0
 force_origin_high -4.5 0.5 -0.8
 force_direction -1.0 0.0 0.0
 force_magnitude 8000.0
 force_magnitude_constraints 0.0 10000
 asleep no
defend

Postdesign

The same functions that are used to animate objects in
the NPSOFF Mover Tool are embedded in the NPSOFF
function library. In addition to the functions that read in an
object file, ready it for display, and display it each time
through the display loop, are a host of new functions that:
add/delete objects and forces from the animation environ-
ment, navigate the object/force lists, alter the object/force
parameters, and start/stop the animation process.

Figure 6 Force Panel

Off File Sample

The following is a fragment of an NPSOFF file descrip-
tion of an SU-25 Frogfoot Soviet ground attack aircraft.

/* These are ALL of the required units of measure. */
defunits
/* All lengths are in meters. Other length choices are

available. */
dimension meters
/* All force magnitudes are in newtons. Other force

choices are available. */
force newtons
/* All mass amounts are in kilograms. Other mass choic-

es are available. */
mass kilos
defend

/* These are ALL of the required object characteristics.*/
defphysics
/* This object’s initial position is (X,Y,Z) in meters rel-

ative from the environments’s center. Unless otherwise
specified, all triples are X,Y,Z respective. */

location 0.00 0.00 0.00

/* The object’s position is constrained to a one meter lev-
el square, relative from the object’s initial position. */

location_lower -1.00 -0.00 -1.00
location_upper 1.00 0.00 1.00

/* This object’s initial orientation (Roll, Yaw, Pitch) in
degrees. */

orientation 0.00 0.00 0.00

/* The object’s orientation is unconstrained. */
orientation_lower 0.00 0.00 0.00
orientation_upper 360.00 360.00 360.00

/* The object’s initial linear velocity in meters/second. */
linear 0.00 0.00 0.00

/* The object’s linear velocity is constrained to: 0.00 to
1000.0 longitudinal,

 +/- 1000.0 vertical and +/- 500.0 latitudinal. */
linear_lower 0.00 -1000.00 -500.00
linear_upper 1000.00 1000.00 500.00

/* The object’s initial angular velocity in degrees per
second. */

angular 0.00 0.00 0.00

/* The object’s angular velocity is constrained to: +/-
10.00 longitudinal, vertical and latitudinal. */
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angular_lower -10.00 -10.00 -10.00
angular_upper 10.00 10.00 10.00

/* The object’s center of mass and amount in kilos. */
mass_amount 25000.00
mass_center 0.00 0.00 0.00

/* The object’s ability to absorb local forces. (0.0 is
perfectly inelastic) */

elasticity 0.80

/* The dimensions of the object’s bounding volume
(e.g. for collision detection).

The volume dimensions are calculated if this data is
omitted. */

bv_radius 30.00
bv_latitude 15.00
bv_longitude 20.00
bv_vertical 8.0

/* The location of the object’s local viewpoint.
setviewpoint 0.00 38.241650 0.00
defend

/* These are ALL of the required force characteristics
for this force.

defforce left_jet_engine
 force_type non-deforming
 force_origin -4.0 0.5 -0.8
 force_origin_low 0.0 0.0 0.0
 force_origin_high -4.5 0.5 -0.8
 force_direction -1.0 0.0 0.0
 force_magnitude 8000.0
 force_magnitude_constraints 0.0 10000
asleep no
defend

/* Additional forces (right_engine, left_aileron,...)
would follow here. */

/* The next two definitions specify a polygon light-
ing/shading characteristic.

defmaterial su25mat0
emission 0.00 0.00 0.00
ambient 0.047059 0.086275 0.047059
diffuse 0.235294 0.431373 0.235294
specular 0.00 0.00 0.00
shininess 0.00
alpha 1.00
defend

defmaterial su25mat1
emission 0.00 0.00 0.00

ambient 0.047059 0.094118 0.047059
diffuse 0.235294 0.470588 0.235294
specular 0.00 0.00 0.00
shininess 0.00
alpha 1.00
defend

/* The remaining defmaterials go here. */

/* A particular lighting/shading characteristic is acti-
vated. */

setmaterial su25mat0

/* The next definition specifies a triangular polygon.
defpoly
/* Normal, number of vertices and vertex coordi-

nates. */
0.875439 -0.483329 0.00
3
40.142231 6.476233 1.029732
39.087486 4.565808 -1.076130
40.142231 6.476233 -1.029732

/* The remaining primitive definitions go here. */
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Off File Integration Sample

The following C-code fragments demonstrate the vari-
ous phases of NPSOFF file integration with the force/
object functions.

/* Initializing the environment. */
initialize_environment();

/* Let’s add gravity. */
add_global_force();
strcpy(current_global_forceptr->name,”gravity”);
modify_force_origin(current_global_forceptr,0.0,1.0,0.

0);
modify_force_direction(current_global_forceptr,0.0,-

1.0,0.0);

/* Adding and modifying an object. */
objectptr = read_object(“sample_filename”);
ready_object_for_display(objectptr);
add_object_to_environment(objectptr);

/* Any characteristics (specified or not in the NPSOFF
file) can be modified. We can check if a particular ob-
ject characteristic has changed (e.g. by polling an input
device), add adjust it prior to calculating the objects’
motion. */

modify_object_position(objectptr,px,py,pz);
modify_object_position_lower(objectptr,lx,ly,lz);
modify_object_position_upper(objectptr,ux,uy,uz);
modify_object_rotation(objectptr,rx.ry,rz);
modify_object_rotation_lower(objectptr,lx,ly,lz);
modify_object_rotation_upper(objectptr,ux,uy,uz);
modify_object_linear_velocity(objectptr,vx,vy,vz);
modify_object_linear_velocity_lower(objectptr,lx,ly,lz)

;
modify_object_linear_velocity_upper(objectptr,ux,uy,u

z);
modify_object_angular_velocity(objectptr,vx,vy,vz);
modify_object_angular_velocity_lower(objectptr,lx,ly,l

z);
modify_object_angular_velocity_upper(objectptr,ux,uy

,uz);
modify_object_mass(objectptr,mass,mx,my,mz);
modify_object_bounds(objectptr,radius,latitude,longitu

de,vertical);

/* If the object needs to be removed, we delete it. */
delete_object_from_environment(objectptr);

/* If we want to suspend all forces on an object, */
suspend_object(objectptr);

/* or to allow all active forces to influence an object. */
wakeup_object(objectptr);

/* Adding and modifying a force. */
add_local_force(objectptr);
/* or */
add_global_force();

/* Any characteristics (specified or not in the NPSOFF
file) can be modified. We can check if a particular
force characteristic has changed (e.g. by polling an in-
put device), add adjust it prior to calculating the ob-
jects’ motion. */

modify_force_origin(forceptr,ox,oy,oz);
modify_force_origin_lower(forceptr,lx,ly,lz);
modify_force_origin_upper(forceptr,ux,uy,uz);
modify_force_direction(forceptr,ox,oy,oz);
modify_force_magnitude(forceptr,magnitude);
modify_force_magnitude_constraints(forceptr,lower,up

per);
modify_force_type(forceptr,type);

/* If the force needs to be removed, */
delete_local_force(objectptr,forceptr);
/* or */
delete_global_force(forceptr);

/* If we want to suspend a force, */
suspend_force(forceptr);
/* or to re-allow this force to influence the object. */
wakeup_force(forceptr);

/* Functions are provided to update all or individual ob-
jects’ physics in the environment. The update process
applys applicable forces, modifies velocities and up-
dates location and orientation information.*/

update_environment();
update_only_this_object(objectptr);

/* An object can be displayed by the environment or in-
dividually by the user. Also a transformation matrix for
the object can be requested.

display_environment()
display_only_this_object(objectptr);
objmatrixptr = object_matrix(objectptr);
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Performance

The following tables are used to illustrate the cost asso-
ciated with this physically-based modeling technique. All
tests were performed on a Silicon Graphics 4D/240VGX
workstation (single-thread). Test case group A involves a
small, average and large polygon count object with small,
average and large non-deforming force lists (Table 4). Test
case group B involves small, average and large sets of an av-
erage polygon count object with small, average and large
non-deforming force lists (Table 5). Test case group C in-
volves a small, average and large polygon count object with
a small deforming force list, during the explosion phase (Ta-
ble 6). All numbers are in frames per second.

TABLE 4: OBJECT SIZE VERSUS NUMBER OF
FORCES (Frames/second)

Small
Polygon
Count

(6)
 Object

Average
Polygon
Count
(165)
Object

Large
Polygon
Count
(960)
Object

Single
Non-deforming
Force

17.117 16.547 11.174

SmallSet of
Non-deforming
Forces (5)

20.083 18.166 11.864

MediumSet of
Non-deforming
Forces (10)

19.923 18.063 11.519

LargeSet of
Non-deforming
Forces (20)

19.525 17.876 10.765 A note of interest in case A - the frame rate actually in-
creases from one force to five forces and then decreases
from then on. We are reclaiming idle CPU time and improv-
ing graphics-CPU overlap.

In the case of non-deforming forces, the frame rate de-
creases linearly with thetotal number of non-deforming
forces attached to all objects, (Figures 7 and 8). In the case
of deforming forces, the frame rate decreases linearly with
the number of initial polygons in the pre-destroyed object
(Figure 9).

TABLE 5: NUMBER OF OBJECTS VERSUS
NUMBER OF FORCES (Frames/second)

Average
Number

of
Objects

(5)

Large
Number

of
Objects

(10)

SmallSet of
Non-deforming
Forces (5)

11.861 8.441

AverageSet of
Non-deforming
Forces (10)

11.525 8.179

LargeSet of
Non-deforming
Forces (20)

10.935 8.025

TABLE 6: OBJECT SIZE VERSUS A DEFORMING
FORCE (Frames/second)

Small
Polygon
Count (6)

Object

Average
Polygon
Count
(165)
Object

Large
Polygon
Count
(960)
Object

SmallSet of
Deforming
Forces

16.535 15.493 10.454
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Figure 7 Object Size and Non-deforming Forces

Figure 8 Number of Objects and Non-deforming Forces

Figure 9 Object Size and Deforming Forces

Conclusions And Future Work

The use of physically-based modeling is still in its infan-
cy at NPS. Previous simulations were able to “fake” or
“downplay” the expected visual clues from an object’s
physical interactions. As hardware and software technology
afford us with greatercapability in animation realism, we
are obligated to strive for more accurate physical modeling,
but not at the expense of increaseduser workload to specify
and control the animation process. The extensions to NP-
SOFF present a simplified mechanism for building models
with physical characteristics and adding controlling func-
tions that are as complex as necessary given the current
hardware support.

Future work includes the implementation of the Action
Control layer using the Layer 3 specification. Generation of
the mapping function matrices could be achieved quite eas-
ily by selecting the object/force pair and then taking “snap-
shots” of a series of object motion/force description cou-
plings. Each coupling would then be displayed in a 2D graph
(object component vs. force component) for any desired
function smoothing/modification. Addition, deletion, and
modification mechanisms would function similarly to iden-
tical object functions in key-framing systems.

Further refinements to the integration process would in-
clude parallelization of the force sampling process and the
addition of an adaptive algorithm for more accurate posi-
tioning of objects with rapidly fluctuating forces.
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