
C o m p u . & G r u p h i L t Y o l . 1 4 . N o . l . p p . .] l I - . 1 1 1 . l 9 () 0

Printed in Great Britain.

I. INTRODUC'I]ON
Previous work in the Graphics and Video Laboratory
of the Department of Computer Science at the Naval
Postgraduate School included the production ofa real-

time simulator for the Fiber Optically Guided Missile
(FOG-M) [] . The FOG-M simulator displayed a real-
time, three-dimensional. missile's eye view of terrain
and vehicles driving over that terrain. The FOG-I\4
simulator used digital terrain elevation data from the
Defense Mapping Agency and a Silicon Graphics, lnc.
IRIS-3 120 graphics workstat ion.

The moving vehicle simulator (VEH) is a contin-
uation of the FOG-M research[2]. The goal of the
follow-on study is twofold. The first objective is to pro-

vide a stand-alone vehicle motion simulator. The sec-
ond objective is to provide more realistic targets that.
through networking, can be used by the FOG-M srm-
ulator. One noteworthy aspect of the simulator is that
the operator can display the out-the-windshield view
of any vehicle during program execution. The moving
vehicle simulator has been incorporated into a Mobility
Expert System (MES) and could easily be adapted for

use by other simulators modeling off-road vehicle mo-
tion. It is the intent ofthis study to present the results

of the design, development, and implernentation of
the moving vehicle simulator and the networking ca-
pabilities incorporated into the system.

2. BACKGROUND
The moving vehicle simulator models the motion

of remotely piloted vehicles, such as jeeps, tanks, or
trucks, one of which is designated the driven vehicle.
The driven vehicle models a vehicle with an on-board
video camera capable of transmitting live pictures ol
the battlefield to a distant operator's console. The
moving vehicle simulator displays a real-time, three-
dimensional, driver's view perspective of the terrain,
and other vehicles. When networking is enabled, the
FOG-M missile is also visible. An interactive user in-
terface and a two-dimensional contour map display
allow the operator to establish the desired simulator
configuration (stand-alone or networked with the
FOG-M simulator) and to define each vehicle to be
used in the simulation. The vehicle locations. courses.

()()97.8,191/9() $3.00 + .00
l()()O l'crganron ltress plc

Icchnical Scct ion

speeds, and the selection ofa driven vehicle are deter-
mined using a two-dimensional conlour map display.

Once the simulation begins, a three-dimensional
view of the terrain is displayed. J'he operator can in-

teractively control the motion ofthe vehicle designated
as the driven vehicle. The operator controls the driven
vehicle's course, speed, and line-of-sight "look" direc-
tion by the knobs on a dial box. The viewing volume

of the driven vehicle can be controlled by the mouse.

3. TERRAIN DATABASE
Both the moving vehicle simulator and the FOG-

M simulator use a digital terrain elevation database
provided by the Defense Mapping Agency (DMA) to
draw the three-dimensional scene. This data is stored
as an array of 16 bit data points that represent the
terrain elevations of Fort Hunter-Liggett, California.

The l0 kilometer by l0 kilometer area of missile
flight is sectioned into 100 meter squares, with each
square consisting of.two triangles (Fig. 1). The triangles
are used to construct a colored. three-dimensional ter-
rain display. Values for the triangles'coordinates are
determined prior to missile flight.

4. GRAPTIICS HARDWARE
The moving vehicle simulator is implemented using

a Sil icon Graphics, Inc. IRIS 3120 high-performance
color graphics workstation. The workstation contains
a Motorola 68020 microprocessor. The workstation

also uses custom VLSI chips to provide hardware clip-
ping and matrix transformations. The high-speed,
pipeline architecture allows the performance o[view-

ing, modeling, projection, and display device transfor-
mations at a much greater rate than would be possible

in software. The graphics hardware can be conceptually
depicted as three pipelined components: the applica"

tions/graphics processor. the geometry pipeline, and

the raster subsystem. T'he geometry pipeline and the
raster subsystem are controlled by the applications/
graphics processor[3]. The lRlS provides a double
buffer display system with a resolution of 1024 by 768
pixels.

321

A REAL-TIME, THREE-DIMENSIONAL MOVING
PLATFORM VISUALIZATION TOO[,

MTCHAEL J. Zvoe, RosEnr B. McGHEE, ConntNe M. M(C()NKl. l , ,

ANDREW H. NELSON and RON S. ROSS
Naval Postgraduale School, Code 52, Dept. ofComputer Sciencc, Montcrey, CA 93943

Abstract-lnexpensive, three-dimensional vehicle simulators are important visualizalion tools that can en-
hance training and serve as low-cost platforms for testing mobility expert system algorithms. The moving
vehicle simulator is an interactive. real-time system that displays a dynamic, three-dimensional, out-the-
window view of the terrain from any vehicle. The simulator has two modes of operalion: stand-alone or
networked. The networked mode facilitates a missile/target war gaming environment. The simulator can

be easily adapted for use with a variety ofcomputation resources on the network.

322 MICHAEL J. Zvor et al

Fig. l. Terrain polygons

5. HIDDEN SURFACE ELIMINAI'ION
Hidden surface elimination is accomplished by a

real-time implementation of the painter's algorithm.
The painter's algorithm simply draws objects in the
scene in depth sorted (furthest to nearest) order[4, p.

2661. For the terrain, the correct polygon drawing order
for hidden surface elimination is an easily computalle
function of the line-of-sight of the vehicle currently
being operated (Fig. 2). Individual terrain grid squares

are drawn as polygons based on the line-of-sight or-
dering. Vehicles located in the center ofa grid square

are drawn immediately after the grid square that they
occupy is drawn. Vehicles crossing grid square bound-
aries are drawn only once. The grid square that they
are drawn in is determined by using the line-of-sight
ordering information. A vehicle is drawn in an adjacent
grid square only if it is near certain edges. The edges
are determined by the painter's algorithm. In Fig. 3,
the line-of-sight from the driven vehicle A is as shown.
With this line-of-sight, vehicles near a southern or
eastern grid square edge are drawn after the adjacent
grid square in that direction rather than in the grid

Nmbaing indicrt* vdtcx

Fig. 2. Dlawing order example.

w SOUTII c EAST cdge

I
minI 5 = ovaLp

.,

"b = SOUTTI

6

linc-of-sight

ir qudfft me

vchiclc is dnm in

rdjrqt grid qw if

Vehicle 'B' is near SOUTH cdge =
draw it afts grid squarc fw

Fig. 3. Drawing in an adjacent grid square.

square the vehicles occupy. Vehicle B in Fig. 3 is located
at the southern edge ofgrid square 3. Since the painter's
algorithm draws grid square 3 before grid square 4, the
part ofthe vehicle overlapping grid square 4 would be
"painted over" $y grid square 4 ifthe vehicle was drawn
in grid square 3. To draw the vehicle correctly and
both grid squares it overlaps, the vehicle must be drawn
after grid square 4.

6. YEHICLES
In the moving vehicle simulator, the vehicles are

created as graphical objects. Each polygon ofeach ve-
hicle is drawn by defining its vertices and colors, and
then drawing the polygon using a call to a polygon fill
function. All objects are created using backface polygon

removal and the painter's algorithm to display an un-
distorted view of a three-dimensional, light shaded ob-
ject from any viewing angle above the ground plane.

Target vehicle objects (jeeps, trucks, tanks) are built
during program initialization. After the objects are
constructed, they are animated and oriented to the ter-
rain. A vehicle's course and speed are used to calculate
its new position based on the distance it would have
traveled in the time required to refresh the screen. Each
vehicle defined is associated with an element of one of
three global two-dimensional arrays. There is one array
for each ofthe three types ofvehicles. The values stored
in the arrays are the integer names of the graphical
objects to be drawn in each terrain grid square. All
vehicles present in one grid square are associated with
the same element of the array. All commands required
to draw each type ofvehicle are collected into the same
graphical object. Vehicles are displayed by drawing the
terrain grid square and then accessing the appropriate
two-dimensional array to draw the vehicles that are
present in that grid square.

7. VEHICLE DATA STRUCTURES
The moving vehicle simulator uses two data struc-

tures to manage the vehicle display. A linked list of
vehicle definition data is created before the display loop

3D Moving plat tbrm visual izal ion lool 323

begins and is updated with each pass through the loop.
Each structure in the linked list contains all the data
required to transform and orient a vehicle object to
the correcl posit ion on the terrain.

The second data structure manages vehicle hidden
surface removal. A single two-dimensional array
maintains the connection between the grid squares,
and the order that the vehicles present in the grid square
must be drawn. Each element in the array contains a
list of pointers to records in the vehicle delinition list
for the vehicles that should be drawn immediately after
drawing the terrain grid squares. The lists are main-
tained in depth sorted order (furthest to closest) from
the driven vehicle.

'fhe grid square that a vehicle should
be drawn in is determined by the vehicle's proximity

to a grid square edge and the direction ofthe line-of-
sight. As a result, a vehicle is drawn only once, regard-
less of its position on the terrain. As a vehicle overlaps
a grid square, its position in the two-dimensional array
changes. Fig. 4 shows how the array changes while
maintaining the linked list depth sorted order. All the
functions used to draw the vehicles and terrain are
performed in the display loop. Each pass through the
loop represents one frame of animation. By optimizing
the functions. a lrame rate that simulates a real-time
display is achieved.

8. SOF'I'WARE IMPLEMENTATION
The moving vehicle simulator can be divided into

two operational modes: stand-alone mode and net-
worked mode. The stand-alone mode provides an en-
vironment where the operator can simulate driving ve-
hicles over the selected terrain. In the networked mode,
the moving vehicle simulator provides realistic targets
for the FOG-M simulator.

8.1. Stand-alone mode
There are two fundamental sections of the stand-

alone mode: the initialization phase and the vehicle
driving simulation phase. The initialization phase pro-

vides an environment for vehicle definition and inter-
active input of vehicle course, speed, and position on
the terrain. Additionally, the operator determines the
desired mode (stand-alone or networking) in this phase.

The driving phase provides as environment that dy-
namically updates the terrain displays in real time based
on operator-controlled changes to the driven vehicle's
speed, course, and viewing volume. The operator also
designates the driven vehicle.

8.1.1. Initialization phase. The initialization phase

is the interactive input component of the moving ve-
hicle simulator program. The display screen is parti-

tioned as shown in Fig. 5. The large area on the left
part ofthe screen represents the two-dimensional con-
tour map of the area over which the vehicles will op-
erate. The contours are created from the elevation data
in the DMA digital terrain elevation database. The map
is color coded based on elevation points.

During this phase, the operator can define vehicles
by moving the cursor on the contour map using the
mouse. When the desired vehicle location on the map

/ "'t[,

{,

p n

1l" t M f (n ^ r , t J . ZyDA c t d l

overlap = 0x0

ovalaP = 0x8 (WEST)

o)
Fig. 4 t ipdatc vchic lc gr id.

\
grid squrc Z)(

(a)

is selected. the coordinates arc' lockeci in b1' prcssing

the r ight mouse butlon. An icon inragc of thc vehicle
appears on the map at the specified location.

8.1 .2. l 'chiclc clr i t ing sitntt lut iott .1'he driving sim-
ulation phase provides successive real-time terrain dis-
plays to the operator as thc vehicle rnoves over the
terrain. The simulat ion begins w' i th the designation ol
a driven vehicle selected lrorn the oreviouslv defined

vehiclcs" The driven vehicle is selected by moving the
cursor over the vehicle's icon image on the map and
then depressing the r ight mouse button. Selection ofa
vehicie stafts the display loop of the simulation. In
networked mode, the vehicle simulator waits until the
missile launch occurs before entering the display loop.

The driving display is part i t ioned as shown in Fig.
6. The large area to the left represents the out-the-win-

Iiney' .".'
srght

{,
) s

i ' ig . 5. Contour rnap fbr vehic le p lacement

1D Movrng plat lbrnr v isual izal ion tool

Fig. 6. Tanks in l ine format ion

325

dow view as seen from the driven vehicle. A popup
menu is accessible that al lows the operator to change
vehicles or terminate the program. A contour map witl-r
the posit ion of the driven vehicle and i ts viewing vol-
ume is displayed on the right, center section of the
screen. The driven vehicle's speed, view dircct ion, and
available operator controls are shovrn in the lower right
section ofthe screen.

8.2. Netv'orkcd mode
The moving vehicle simulator is the hrst attempt at

the Naval Postgraduate School 1o produce a network
of real-t ime, interactive moving plat lbrm simulators.
The network communication protocol selected is nor-
mal (b lock ing) socket I /O[51 . B lock ing I /O a l lows
synchronous operation of the FOG-M and moving ve-
hicle simulators. A pair of sockets is used to transfer
and guarantee delivery of the socket stream data be-
tween the two simulators. The moving vehicle sir-r-ru-
lator acts as the server to the cl ienl FOG-M simulator.

Operating the moving vehicle simulator in con-
junction with the FOG-M simulator requires estab-
l ishing network dala paths. This is accomplished
through the creation ofdedicated sockets for read and
write paths for both control and data. Failure to es-
tablish the communications paths causes the simulators
to default to the stand-alone mode of operation.

Prior to missile launch. the missile operator's console
is provided with relevant vehicle information, l .c, the
number and types of vehicles defined. Handshaking
takes place after initial data transler and before entering
the display loop to al low either console to abort the
simulat ion. I f ei thcr simulat ion is aborted. the other
can continue in stand-alone mode. After conrpletron
of the init ial set-up, thc FOG-M simulat ior.r console
waits for the vehicle del inir ion data lrorn the moving
vehicle simulator belore al lowins. missi le launch. The

moving vehiclc simulat ion waits for the launch event
bcforc entcring the display loop to insure simulator

synchronization. Regardlcss of the number of vehicles

in the missi le f l ight area, only the driven vehicle's in-
lormation is sent to the missi le console. The posit ion

ofthe other vehicles is predicted based on their ini t ial
posit ion, course, and speed.

Thc missi le simulator transfers a status f lag to the

nroving vehiclc simulator indicating i f the missi le is

st i l l in f l ight. I f the missi le is st i l l f ly ing. i t sends missi le
posit ion and course data. I f i t is no longer f lying, i t

sends thc identi ty ofthe vehicle destroyed.

9. SYSIl ' lNI l"l l ,\ lURllS AND LIMITATIONS

Currently. the s1'stem al lows only one console of

each simulator lype in a dedicated l ink arrangement

to be networked together. To insure synchronization,

a console cannot proceed pasl a socket read until the

infbrmation is obtained. T'his lock-step execution pre-

vents the vel-ricle console operator from changing the

driven vehicle w'hi le the missi le is in f l ight.

System perlbrmance for the networked mode, stand-

alone mode, and the mobil i ty expert system (MES) is

shown in Table 1. Slalrt refers to the type of vehicle

Table L Display Lrpdate rates.

Simulator modc Number of vehic les Frames oer second

Nclworkocl

Sland-Alo;re

M h S

I (sta l rc)
I 0 (s latrc)

I (d1"namtc)
10 (dynam ic)

I (s latrc)
I 0 (s lat ic)

| (d1'narnic)
10 (d_vnamic)

| (d1"namic)
10 (dvnam ic)

2.6
1 . 9
t . 4
1 . 2
5 . 7
4.0
5 . 3
4 .3
3 .1
3 . 3

:116 Mr(-HAr i r . J

olr jccts drawn in the original FOG-M simulator ' . /) . t ' -

Irrrrrri<'refers to vchicle objects that morc closcly rcllcct

normal vehicle dynamics over natural tcrrain. l 'hc vc-

hicle dynamics modeled in the MES arc morc cot.t l -
plicated than the dynamics modeled in the other sim-

ulators, resulting in a slower lrame update rate.

IO. VEH AS A VISUALIZATION 'IOOI, FOR A
MOBILITY EXPERT SYSI'EM

Above, we describe the moving vehicle simulator as

either stand-alone or as a networked player to the FOG-

M simulator. It is actually an important visualization

tool. Research is ongoing to develop new applications

around the moving vehicle simulator. An enhanced

version of the moving vehicle simulator is being used

in conjunction with a Mobility Expert System (MES)

currently under development at the Naval Postgraduate

School.

10. l . , t lES gtult and tt l t i t ' t l i t ' t ' t
The development of expert system-based coordi-

nation algori thms for groups of autonomous vchicles

is the major objective of the MES projcct. Thc second

objective is to develop the sofiware neccssary to create

motion simulat ion of the syslem using rcal ist ic vehicle

dynamics over a computer generated terraitr model.

For purposes of this study, the prototype system de-

veloped closely follows the model of the FMC auto-

pi lot[6]. The program hierarchy is shown in Fig. 7.

ZYDA ct at.

The MES is a systcm using four dif ferent computer

architccturcs. t l rrcc programming languages, four net-

working packagcs, thrcc opcrating systems, and an ex-

pcrt systcm shcll.
'l'hc

lour computer architectures used

arc: thc Syn.rhol ics 3600 l irrc of Lisp Machines, the
'fexas

Inslrumcnt l :xpkrrcr Lisp Machine, the Si l icon

Graphics, lnc. IRIS-3 120 (iraphics Workstat ion' and

the Digital Equipmcnt ('orporation VAX I l /785. The

operating systems utilizcd in the project are the Unix

operating system (4.3BSD and ATT System V.3) ' the

Symbolics Genera systcm, and the Texas Instruments

Explorer system. The languagcs implementing the sys-

tem are Prolog, C, and l-isp with flavor extensrons.

The expert system shell used is the KEE expert system.

A high-level Command and Control Subsystem
(CCS) is simulated on a Lisp Machine and a VAX.

fhe CCS provides centralized aulonomous command

and control functions to the individual tanks and acts

as a single interface to the autonomous vchicles in the

unit. This allows an isolation of observablc phenomena

for lhe tactical assessment function as well as central-

izing the focus of one problem in the research area'

Simulated tanks with the characterislics of the ex-

isting FMC Autonomous Land Vehicle are modeled

as in [6]. The model is conceptual ly organized into

two distinct parts: (I) the graphics instantiation, with

vehicle control ler functions on the IRIS, and (2) the

rule-based, expert system behavior, implemented on

the Lisp Machines. The tanks operate autonomously

kolog

kogram

f"" '-".l
I Cmand I
I and Cmtro[
I uoaue I

vAx Trnss

Fig. 7. Program hierarchy

jD Moving plalforrn visualization tool

t-oop

Check for commands from the Cqnmand and Control Subsystem.

If change in formation, acquire rules and facts necessary from disk storage and implement.

Perform a visual scan ofthe environment.

For each object identified:

Establish its positicn in rcfennce to the tank's body coordinate system'

Approximate its future location at beginning of next iteraticn of the algorithm.

Produce low level observations about the object as input to the task generator.

EndFor

Generate tasks in the task generator using the low level observations and knowledge and rules necessary

to complete currently assigned goals'

Display diagnostic information and explanations for each usk generated'

Execute communications tasks to Ccrnmand and Conrrol subsystem'

Execute tasks generarcd by cunmunicating sequences of vehide stcer end rdet€nce velocity commands

to the vehicle controller r€siding on the IRIS.

Endl-oop.

Fig. 8. Autonomous tank control algorithm

327

in much the same way as the FMC vehicle[6]. Spe-

cifically, each tank possesses a simulated vision capa-

bility, an autopilot, and the ability to send vehicle

steering and reference velocity commands to a vehicle

controller.

10.2. Autonomot$ lank nrles
Individual tanks perlorm according to the algorithm

presented in Fig. 8. The autopilot possesses capabilities

in addition to those being developed at FMC [7] . These

extra capabilities allow the vehicle to act as an integral
part o[a tactical autonomous unit. A tank's designated
place in a tactical formation is based on the commands

sent to it from the lead tank. The tank maintains its

station in the formation until it receives new com-

mands. Currently the tanks use three sets of simple

rules that allow the vehicles to assume a line, column,

or file formation[8]. For each formation, each tank
possesses knowledge about who it is, the type of for-

mation, its guide vehicle, and the vehicles that should

be to its flanks, front, and rear. Rules lor each formation

are divided into four functional categories: collision

avoidance, speed determination, direction determi-

nation, and stationing. These rules are presented in

Figs. 9 through 12.
An autonomous tank is comprised of a set of func-

tions that reside on a Lisp machine. The autonomous

tank's controller and graphics object reside on the IRIS.

Each Lisp machine controls a graphically rendered tank

CAG 14:2-H

on the IRIS battlefield during a simulation run. The

Lisp functions perform the algorithms presented in

Figs. 8 through 12. Each Lisp machine generates task

commands that are sent to the individual tank that it

controls. The Lisp machines also determine the ap-

proximate time interval required for the tank to re-

spond to the task command.
The tanks perform a simulated visual scan of the

environment in the IRIS and produce high-level ob-

servations about the battlefield. These observations are

used to perform tactical assessments and create tasks

to accomplish goals using rule-based inference engines.

A rule-based inlerence engine is a program that pro-

cesses if<circumstances>then<do-task> type expres-

sions. These expressions are constructed through the

interrogation of an expert. Typical tasks, such as those

generated for formation keeping, are vehicle referent

velocities and directions. These tasks are transmitted

to the vehicle controller residing on the IRIS. The ve-

hicle controller then executes the tasks and commu-

nicates teedback information to the requesting Lisp

Machine.

10.3. A single iteration of start-the-battle

Fig. I 3 presents a single iteration of the tank algo-

rithm for tank I operating in conjunction with two

other vehicles. tank 2 and tank 3. The information in

Fig. I 3 is taken from the display of the Lisp Machine

designated as tank l. Fig. 13a shows both tank I and

328

tank 2's grid coordinates, course, speed, and infor-
mation about tank 2's position, course, and speed rel-
ative to tank 1. Fig. l3b shows the same information
for tank 3. Fig. l3c shows the rules needed to move a
tank to the rieht. Fig. l3d shows the rules used for a
line formation for maintaining a separation interval

I

I

right of the vehicle, !
I

between two tanks. Fig. l3e shows the rules used when
tank 2 is the guide tank and tank 1 is too far ahead of
the guide tank. As a result, tank I is ordered to stop.
Once the guide tank catches up, another s€t of rules
(not shown) is used to order tank I to increase speed.

The tanks reason about the IRIS battlefield world

MTCHAEL J. Zvoe et al.

Avoid Collision To The Right:
If

the vehicle is or will be too close to an object, and the object is to the
Then

move to the lefL

Avoid Collision To The Left:
If

the vehicle is or will be to close to an object, and the object is ro the left of the vehicle,
Then

move to the right.

Avoid Collision Ahead:

If
the vehicle is or will be too close to an object, and the object is ahead of the vehicle,

Then
If

not errough rime to meneuver,
Then

Stop.
Elself

able to maneuver.
Then

maneuver around object in flank with greatest maneuvering room,

Avoid Collision From Behind:

If
the vehicle is or will be too close to an object, and the object is behind the vehicle and closing,

Then
match the obiect's speed.

Fig. 9. Collision avoidance rules.

Ctange Speed:
If

vehicle is on course with its guide vehicle, and vehicle is behind or eheed of itr station,
Then

change speed to move vehicle to positim by next iteratisr of tank algqithm.

Match Speed:
If

vdricle is on course with its guide vehicle, and vehicle is dr srsdqt with its guide vehicle,
Then
match speed ofrhe guide vehicle.

stop:
If
guide vehicle is stop,ped, and vehicle on station with guide vehicle,

Then
srap velricle a station.

I

Fig. 10. Speed determination rules.

I

3D Moving platform visualization tool

Tum lcft:
If

vehicle is off course from its guide vehicle and rclative right to the direction of guide vehicle's coune,
Then

tum left fte angular differene to cqne abouL

Tum Right:
If

vehicle is off course from its guide vehicle and rclative left to the direction of guide vehicle's course,
Then

tum right the angular difference to come aboul

Fie. I l. Direction determination rules.

329

relative to their orvn individual body coordinate sys-
tems. The lanks reason about time by approximating
pr'rsitions, dispositions. and possible intentions of ob-
jects in vieu'dr.rring possible future event time frames.
Tanks also continuously reevalute their individual cir-
cumstances as well as their vehicle controller's response
time to a direction or velocity command. This allows
a tank to predict and address future events. Fig. 14
provides an example.

In Fig. l 4, we show the coordinates oftank 3 relative
to tank I at time t. Also shown are the coordinates of
tank 3 relative to tank I's predicted future location at
time t'. Tank I will be too close to tank 3 because the
horizontal interval distance will exceed the value ofa
constant measure, called proper interval, as tank I ap-
proaches tank 3 liom behind. The proper interval is
the required distance between two tanks in the for-
mation. This distance varies depending on the type of
formation being executed. When the distance between
the two tanks is less than the proper interval, a task is
generated by tank l to increase the distance between
the two tanks.

10.4. A typical te.st mission
Figs. 15 through 18 illustrate a typical test mission.

Fig. l5 depicts the movement from an assembly area.
The initialization phase for the IRIS has been con-
ducted, the tactical assessment carried out, and the
Lisp machines have been initialized to drive all but
one ofthe tanks in the unit. The guide vehicle for the
unit, driven by a human operator on the IRIS, has
been given an initial direction and speed. The jeep was
then selected to view the formation as it turned to its
left to assume a column formation. The picture was
taken from the jeep.

Fig. 16 depicts the column after crossing the line of
departure and conducting movement to contact (going

out and engaging the enemy). The guide vehicle is the
lead tank in the column. To obtain the picture, the
jeep was driven to a known destination of the lead
tank. The jeep then was positioned to get a view as the
column approached.

Fig. l7 depicts the actions at the final coordination
line. The unit deployed into a line formation and is
about to move through the objective. This deployment

Close tught With Guide:
If

vehicle is too far from guide, and vehicle is left of guide, and guide vehicle is normally vehicle's right vehicle,
Then

move to the right.

Close Left With Guide
If

vehicle is too far frqn guide, and vehicle is right of guide, and guide vehicle is normally vehicle's left vehicle,
Then

move to the left.

Assume Corrcct Posirion in Relation to Guide:
If

vehicle is on course with guide, and vetricle is left/right of guide, but vehicle should be right/left of guide,
Then

drop behind guide,
tum 90 degrees right/Ieft,
proceed until past guide,
tum 90 degrees left/right.

Fig. 12. Stationing rules.

330 MlcHAEr. J.Zvot et a l .

> (gettanks "lineformation")

T
> (start-the-battle I 3)

Tsnk #l now conscious.

Tank#1's locarion = (53OO, 1743).

Tank #l's speed = 0.0

Tank #l's course = 302 degrecs.

Tank #l's course rclative to compass no65 = -58 degrees.

Comparisor tank is tank #2.

Tank #2's locariqr = (54W,l72l).

Tank #2's speed = 1.0

Tank *2's coune = 3(B degrees.
Tank #2's course rclative to tank #l's course = I degree.

Tank #2's transformed position relative to tank #l = (39, -104).

Predicred rclarive transformed position of tank #2 when tank #l again becomes consciotrs = (39, -84).

Relative distance berween tank #l and tank #2 when tank #l again becomes conscious = 19.

(l3a)
:

Tank #l's location = (5300, 1743).

Tank #l's speed = 0.0

Tank #l's coune = 3@ degrees.

Tank #l's course rclative to compass north = -58 degrces.

Comparisan tank is tank #3.

Tank #3's locatiqr = (5432, I 809).
Tank.#3's speed = 1.0

Tank #3's course = 3fi1 degrees.

Tank #3's course rclative to tank #l's course = 0 degrces.

Tank #3's transformed position rclative to tank #l = (l?6, -16).

Predicted relative transformed position of tank #3 when tank #l again becomes conscious = (126, -57).

Relative distance betweeei tank #l and tank #3 when tank #l again becomes conscious = 19.
(r3b)

(RULE CLOSE-RIGHT SAYS TASK MOVE.TO-RIGHT I)
(RULE STOP SAYS TASK STOP l)
(l3c)

CTASKMOVE-TO-RIGHT 1 BECAUSE) CTASK STOP I BECAUSE)
(RIGHT VEHICLE IS 2) (I WILL BE AHEAD OF 2)
(I IS LEFT OF 2) (GUIDE VEHICLE IS 2)
(1 WILL BE LEFr OF 2) (VEHICLE IS l)
(I WILL BE TOO FAR FROM 2) (FORMATION IS LINE)
(GUIDE VEI{ICLE IS 2) (l3e)
(vEHrcLE IS r)
(FORMATION IS LINE)
(l3d)

Fig. 13. Single iteration of Start-the-battle.

was effected with the help of manual intervention. The objective. The line is sweeping past the stationary jeep

guide tank was stopped at the final coordination line from which the picture was taken.
by a human operator. This forced the column to halt
by initiating certain station keeping rules. The function 10.5. MES implementation
application of Start-the-battle was allowed to expire The MES system is distributed across the various

upon each Lisp machine. A new formation was then specialized architectures in accordance with hardware
acquired by each Lisp machine. The function Start- capabilities. Thus. it was possible to create an entirely

the-battle was then reapplied upon each Lisp machine. satisfactory real-time system at low cost. The current
The human operator assumed control of the guide ve- suite of equipment allows up to five individual tanks
hicle while the autonomous. Lisp machine-driven tanks to operate on the battlefield represented on the IRIS.

then assumed their positions in the line formation after Perlormance bottlenecks occur during communi-
about 30 seconds ofmaneuvering. cation processing on the IRIS. This is because each

Fig. l8 depicts the line of tanks as they assault an tank spawns a send and receive process to communi-

I

3D Moving platform visualization tool

Tank #l now conscious
Tank #l's lcrcatdLql= (M74,2412).
Tank #l's speed = 1.46
Tank #l's course = 302 degrees.
Tank #l's coune relative to cornpass north = -5E degrees.
Compariscr tank is tank #3.
Tank #3's locatim = (4453,2428).
Tank #3's specd = 1.0
Tank #3's course = 3@ degrees.
Tank #3's course rclative to tank #l's course = 0 degrees.
Tenk #3's transformed posirion rclative to tank #l = Q,27).
Prcdicted relative transformed poaition of tank #3 when rank #l again becomes cqrsciotrs = (3, 7).

Relative distsrce between trnk #l and tank #3 when tank #l again becomes conscious = 19.

(l4a)

(RULE AVOIDCOLUSION-TO-RIGHT SAYS TASK MOVE.TO.LEFI I)

(14b)

(tAsK MOVE-TO-LEFI I BECAUSE)
(l wIlI BE LEFI OF 3)
(l wtr-LBETOOCIOSETO3)
(VEHICLE IS l)
(FORMATION IS LINE)
(14")

Fig. 14. Reasoning about luture events

331

I
l

cate to a Lisp machinc. T'he perftrrntal lce bott lenccks

on the Lisp machine side are in relat ion to the se-
quential nature of the command and control s-vstenl 's

execution. The problem is that the vision and infbrence

operations are not concurrenl or continuous. The Lisp

machine must ask the IRIS for vision information and

then wait unti l the IRIS col lects and returns the visron

information. Once i t has the information. i t uses the

information to make inferences about the tank i t is

controlling relative to the other lanks on the battlefield.

I I . CONCI,USION
We have described how one extends the capabilities

ol inexpensive three-dimensional visual simulators on

individual workstations to the networked workstatron

environment. Individual graphics workstations are

t" t

Fig. 15. Moving to thc l ine o{ 'departure

I

MrcHAEr- J. ZYDA et a l

Fig- I 6. Crossing the line of departure

easily grown out of as our applications become more

sophisticated. We grow out onto a network of work-

stations to allow for other players or to partition our

system into processes computed by separate machines.

For the system described above, the partitioning across

machine boundaries has been expensive due to the lack

of readily available networked graphics and computing

software facilities. We expect this to change as high-

performance graphics workstation manufacturers rec-

ognize the importance of distriLruted graphics and

computational functionality. Ideas such as location-

independent computing and location-independent
graphical objects are a step in the right direction-

We have also shown how the notion of inexpensive

three-dimensional visual simulators as visual izat ion

tools can lead to better understanding for typically
graphics-less areas such as expert systems. Three-di-

mensional simulators thal can be readily "plugged-

into" diverse computational cnvironments present a

viable alternative for the futurc.
-l'o

accomplish this

goal, we need to make our three-dirnensional visual

simulators inexpensive and adaptable.

Fig. 17. Deploying at the Iinal coordination line

!

At'knowledgemenls-We wish to acknowledge the students
involved in this effort, especially Michael R. Oliver, David J.
Stahl, Jr., Dale G. Streyle. and Douglas B. Smith.

This work was supported by the U-S. Army Engineer To-
pographic Laboratories, Fort Belvoir, the U.S. Army Test and
Experimenlation Command, Fort Ord. the Naval Ocean S1's-
tems Center, San Diego, and the Naval Postgraduate School's
Direct Funding Program.

REF-ERENCI'S
I . M. J. Zyda, R. B. McGhee. R. S. Ross. D. B. Snr i th, and

D. G. Streyle. Flight simulators for under $ 100,000. 1ltl-It
Compttar Graphit's und.'lppl icullorr.r 8(I), l9-27 (January
I 9 8 8) .

2. M. R. Oliver and D. J. Stahl. Jr.. Intcrudit'(, Nrlutrkcd.
Moving Platlorm Sirttrlators. M.S. Thesis. Naval Post-
graduate School, Montere-v. CA. Decemtrer 19B7.

1 [) Mov ing ph (l i r r r n v i sua l i za t i o r t l t x t l

Fig. 18. Assaulting the objective

1 .

Silicon Graphics System Documentation, Produt:l Spec-
ilitat ions,Silicon Graphics lncorporated, Mountain View,
c A (1 9 8 5) .
M. Baker and D. Hearn, ('ontputcr Graphics, Prentice
Hal l , Englewood Cl i f i i . NJ (1986).
T. Barrow, Distrihttatl ('ornputt'r (\tmmunications in
StrJtport tl lTeal-T'intc l'i.vuul Simulatir.rn.i. M.S. Thesis,
U.S. Naval Postgraduatc School . Monterey, CA, June
l q88 .

.1. Nitao and A. Parodi. A real-time reflexive pilot for an
autonomous land vehicle. IIil:F) ('ontntl Slt.stems Mag-
u: ina 6(. I) , I 4-23 (February I 986) .
J. Mitchell, An autonomous vehicle navigation algorithm.
Proc. SPIE. Applicution.s ol .lrti.fitial Intclligence, 485,
1 5 3 - 1 5 8 (r 9 8 . 1) .
A. H. Nelson. and C. M. McConkle, A Pnstotvpe Simu-
latitn Systcttt litr ('rnnlnt L'alticlc (ixtrdination dnd Mo-
tion I'i.tuuli:urol. M.S. Thesrs. Naval Postgraduate
School . Monterev. CA. Junc 1988.

333

l

