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Abstract
In this paper, we seek to review the broad landscape of research in computational emotions and
cognition. We begin by classifying and organizing an enumeration of recent models and systems
and then discuss some of the landmark models from the literature, such as EMA and WASABI. We
then discuss open problems with the current state of research. These issues are standardizing criteria
for evaluation of models, the complexity and breadth of the domain, and the need to implement a
working system which addresses integration with more of the rich history of AI research. We
also provide suggestions for future research, particularly standardization to facilitate community
collaboration.

1. Introduction and Background

Emotion and cognition have long been thought to have important interaction, from Plato’s chariot
allegory, characterizing reason and emotion as horses pulling a chariot and the charioteer having to
direct each horse to move together in order to reach enlightenment. More recently, arguments have
been made that thought is essential for emotion (Lazarus, 1982), and emotion is essential for thought
(Damasio, 1994). Overall, a large amount of research within the last few decades has yielded ideas
and data about the nature of this relationship. For instance, appraisal theories form a framework for
emotion generation, (Ortony, Clore, & Collins, 1988; Schorr, 2001), and mood-congruent recall and
decision theories (Bower, 1983) capture some of the cognitive effects of emotion. However, there
are still open questions and difficulties, providing fertile ground for further computational models
for experimentation and detailed understanding.

There is much confusion regarding emotion terminology, and this is in part due to emotion being
a common part of everyday life leading to intuitive meanings for terms which typically vary from
technical definitions. Furthermore, there is no consensus on the technical definitions themselves,
leading to definition sections as seen here. For this paper, we will define six terms as follows:

Affect Any information (emotion, feeling, mood) used to inform one or more cognitive processes

Appraisal The process of making judgments (appraisals) about the relationship between perceived
events and one’s beliefs, desires, and intentions (Lazarus, 1991)
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Cognition Mental processes that have to do with the acquisition, alteration, and comprehension of
knowledge; such as recall, inference, learning, and planning

Emotion Cognitive data arising from events (internal and external) used to inform responses, and
attributed to concepts and states

Feeling The subjective experience of an emotion or set of emotions

Mood An overall state of emotion which is sustained over longer periods of time and is less change-
able than emotions themselves

Computational models of emotion and cognition which we address are those that try to explain
emotion in the context of its intimate relationship with cognition. These models are distinguished
from those in psychology and cognitive science by having a level of detail about the processes and
data involved to be implemented on a modern computer.

In the 19th century, the psychologist William James and others theorized that emotions were
brought on by physiological reactions to situations. James’s theory was a precursor to appraisal
theory (Scherer, 1999), whose proponents also view emotions as effects of reactions to situations,
though with less of a focus on physiological reactions. Appraisal theory tends to dominate among
computational models of emotion due to its emphasis on emotions as computable artifacts. It also
is the center of modern theories of emotion as it frames emotions arising from cognition and thus
explaining the intimate relationship between the two. There are still many major holes regarding
the interplay between emotion and cognition, however, which computational models of emotion can
help to elucidate.

Appraisal theory is dominant in the community of computational emotional modeling, although
other schools of thought have also made an impact in that arena. The theory was developed as
a means to predict individual human emotions given particular situations (Arnold, 1960; Lazarus,
1966; Scherer, 1999). The basis of the theory is that a person can appraise (i.e., evaluate) an en-
tity, concept, event, or situation with respect to the appraiser’s beliefs, desires, and intentions. The
dimensions along which these appraisals are made are called appraisal variables and a certain com-
bination of appraisal variable values predictably gives rise to a distinct emotion. The mapping from
appraisal variables to emotion has been termed “affect derivation” (often coupled with or subsum-
ing a derivation of emotional intensity). For instance, a shark encounter might be appraised by a
swimmer as likely to result in serious physical harm, and this appraisal would generate an intense
emotion of fear in the person.

One way in which appraisal theories differ from one another is in the number, breakdown, and
definition of appraisal variables accounted for by each theory, and the ways in which the variables
combine to predictably generate labeled emotions. However, most appraisal theories share some
fundamental concepts: valence (positive/negative rating of event, object, or situation) is present or
inferable among many theories’ appraisal variables (Ortony, Clore, & Collins, 1988; Blascovich &
Mendes, 2000; Scherer, 1999) and arousal (intensity of feeling) is measured as an appraisal variable
in several theories or else assumed to be a factor in generating emotional response upon appraisal
of a situation relevant to the agent and its goals (Marsella, Gratch, & Petta, 2010).
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The concept of coping potential (ability to deal with a situation either by action or cognition)
is also common though in various forms. Coping itself may include taking direct action regarding
the situation, or cognitive redefinition of one’s beliefs, desires, or intentions; for example, the “sour
grapes” approach of reappraising a negative situation as a positive. Lazarus (1966) developed the
similar concept of “primary” vs. “secondary” appraisals: primary appraisal takes in a situation’s sig-
nificance, and secondary appraisal (coping potential) assesses the ability to deal with the situation.
Frijda (1987) relates emotions to “action tendencies,” with emotional cues providing constraints on
the next set of decisions or actions made by an agent. For instance, fear may limit action tendencies
to adversive behavior.

The Ortony, Clore, and Collins (1988) appraisal theory, often referred to as OCC theory, cate-
gorizes emotions based on appraisal of pleasure / displeasure (valence) and intensity (arousal). To
more specifically predict emotion generation, it breaks down valence appraisal into three categories
based on what is being appraised: desirability (of an event), praiseworthiness (of an action), and
like/dislike (of an entity). Also, actions and events may be further differentiated by an “attribution”
variable: for instance, was an action taken by (or did an event affect) oneself, or another? Appraisal
across these variables defines different specific emotions; for instance, a positive-valenced appraisal
of an action attributable to oneself might create an emotion of pride in the appraiser, whereas the
swimmer’s appraisal of the shark encounter as above would be as a negative event attributable to the
shark, with prospective negative consequences for the swimmer, thus producing fear of the shark.

Several researchers have devised high-variable-count appraisal theories that map specific config-
urations and values of appraisal variables to a range of generated emotions. One such map (Scherer,
2001) is summarized in Table 1.

Table 1. Appraisal dimensions from Scherer’s appraisal theory.

Sequence Joy Fear Anger Sadness Disgust Shame Guilt
Expectedness 1 Open Low Open Open Open Open Open
Unpleasantness 1 Low High Open Open V.High Open Open
Goal Hindrance 1 V.Low High High High Open Open Low
External Causation 2 Open Ext. Ext. Open Ext. Int. Int.
Coping Potential 3 Medium V.Low High Low Open Open Open
Immorality 4 Open Open High Open Open Open V.High
Self-Consistency 4 Open Open Low Open Open V.Low V.Low

Other theories outline a distinction between non-cognitive and cognitive appraisal. One dif-
ference is that cognitive appraisal processes (like inferring the cause of a situation) are generally
slower than appraisals based on direct sensory feedback (like physical pain). Bechara et al. (2000)
expresses these different appraisal levels as somatic (primary) and recalled (secondary) “emotion
inducers”. Some researchers (Becker-Asano & Wachsmuth, 2009) use this distinction to define cer-
tain emotions as “secondary” – only able to arise following some cognitive processing. For instance,
anger at a person most likely stems from cognitively attributing an action or event (previously ap-
praised as unpleasant) to that person, such as a “shark attack” revealed to be another swimmer
playing a practical joke.
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Part of the difference between theories that postulate two levels of appraisal and theories which
only identify one (fast) appraisal level is semantic in nature: the two-level theories include delib-
erative cognitive processing (e.g., inference or recall) as part of “secondary appraisal,” whereas the
one-level theories limit appraisal to quick situational evaluation of sensed situations and cognized
situations alike. The one-level theories view the cognitive processing of events as coping, instead of
as appraisal (Gratch & Marsella, 2004). Also, according to Leventhal and Scherer (1987), there is
not a clear line between calling a given appraisal process cognitive or non-cognitive. The line can be
further blurred in that routine appraisals of a particular situation can enable future appraisals (recog-
nition response) of that situation to be quicker and more reflexive than an initial, purely cognitively
based appraisal (Lehrer, 2009).

Dimensional theories of emotion generation are similar to appraisal theories in that both map
emotion-evoking events to emotional states. The main difference is that while appraisal theories
relate discrete appraisal elements to discrete emotional states, dimensional theories posit a non-
relational “core affect” (or mood) state tracked as a single uniquely determined point along a number
of continuous, orthogonal dimensions (Marsella & Gratch, 2009). The two-dimensional circumflex
theory (Russell, 1980) places various emotional states around the axes of pleasure and arousal. The
PAD dimensional theory (Mehrabian & Russell, 1974) is named for its three dimensions of Pleasure
(valence), Arousal, and Dominance (defined as the degree to which a person feels powerful or in
control of the situation, analogous to coping potential in appraisal theory). PAD is analogous to a 3-
dimensional expansion of the circumflex. For instance, in PAD theory both anger and anxiety arise
from similar low-Pleasure and high-Arousal events. However, anger and anxiety are on opposite
sides of the Dominance dimension: an anxious person feels less in control of their situation than
does an angry person. Like Challenge and Threat theory, but unlike the concept of primary vs.
secondary appraisals, PAD posits both Pleasure and assessment of coping potential (dominance) at
the same level.

Cognition has been an area of intense study in the artificial intelligence community for a rela-
tively long time now. Important work in cognitive architecture (Langley, Laird, & Rogers, 2009;
Laird, 2008; Anderson et al., 2004) has studied cognition in the integrated context of an intelli-
gent system. Emotion is believed to have developed in the reptilian brain before higher levels of
cognition (Lazarus, 1982), and has a natural place informing the “higher" levels of the architecture.

2. Representative Models and their Properties

The impact of recent emotion-related human psychological and cognitive studies has contributed to
an increase in computational modeling of emotion and cognition, allowing subcategories of AI
systems to form. Affect-antecedent systems, for example, how thinking of a plan changes af-
fective state (Gratch, 1996), or focus on basic expressions to register the presence of emotions.
Affect-consequent systems–computational models of the effects of emotion on cognition (Gratch,
Marsella, & Petta, 2009)–may be categorized along several criteria. One clear demarcation is be-
tween “behavior-consequent” and “cognitive-consequent” models, although many systems include
both of these functions. A behavior-consequent model maps an agent’s emotional state to embodied
physical actions or other direct outward or social expression, for instance smiling when happy or
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turning on a light if afraid of the dark. Behavioral-consequent models are often used to synthe-
size human-like emotional or social behavior in embodied robots like Kismet (Breazeal, 2003) or
in virtual agents such as Greta (Bevacqua, Mancini, & Pelachaud, 2004). However, many modern
systems (see table below) incorporate both emotion generation and emotional effects, as the two
aspects form a loop – either standalone or within cycles of perception and action/expression.

Table 2. Some notable computational models of emotion and cognition, their fundamental theoretical tradi-
tions, and effects modeled.

Model Base Cognitive
Theory

Emotion Theory Effects Modeled

ACRES/WILL
(Moffat, Frijda, &
Phaf, 1993)

BDI, Planning,
Decision Theory,
Agents

Appraisal: Frijda Coping: goal shift, attention shift

ActAffAct (Rank,
2009)

Agents, BDI,
Unified
Cognition

Appraisal: Frijda, Scherer Coping: choice of Relational
Action Tendency

ACT-R ext.
(Cochran, Lee, &
Chown, 2006)

ACT Arousal, valence, clarity:
Chown, Damasio.
Kleinsmith & Kaplan 1963

Base activation of any memory
decays over time if encoded with
low arousal, grows with high
arousal

ACT-R ext. (Fum
& Stocco, 2004)

ACT Arousal, valence; Damasio
1994, Bechara 2000

Memories associated with risk have
higher activation strength for
emotion-enabled agents

ACT-R ext.
(Belavkin, 2001)

ACT Arousal, valence;
Yerkes-Dodson 1908

Negative valence aids problem
solving process, up to a certain
level of arousal

(Ahn, 2010) BDI Motivation,
urges, arousal,
valence;
Loewenstein &
Lerner 2003

Reinforcement learning
biases (anticipatory
reward)

ALEC (Gadanho
& Custodio,
2003)

CLARION Appraisal: Sloman,
Damasio 1994

Decision rules learned based on
past experience

EM (Reilly &
Bates, 1992)

Oz architecture Appraisal: OCC; Reilly
and Bates 1992

Plan change

EMA (Marsella
& Gratch, 2009)

BDI, Agents,
Decision Theory,
Planning
(Newell/Soar)

Appraisal: Smith &
Lazarus, Scherer; Simon
1967, Lazarus 1990

Coping: attention shift, plan
changes, BDI changes, action
tendency changes

Émile (Gratch,
2000)

Strips Planning Appraisal: OCC; Sloman
1992 et al.

Plan change, plan selection criteria
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Table 3. Some other notable computational models of emotion and cognition, their fundamental theoretical
traditions, and effects modeled.

Model Base Cognitive
Theory

Emotion Theory Effects Modeled

EM-ONE (Singh,
2005)

Minsky-Sloman Appraisal; Minsky 2006,
Sloman 2001

Modification of “narratives”: plans,
desires, or beliefs. Modification of
“critic” processes

FAtiMA (Dias,
Mascarenhas, &
Paiva, 2011)

BDI Appraisal: OCC; Sloman
1992; Lazarus 1991

Coping: plan and goal changes

FLAME
(El-Nasr, Yen, &
Ioerger, 2000)

Planning,
decision theory,
Q-Learning

Appraisal: OCC,
Roseman; Bolles and
Fanslow 1980, LeDoux
1996

Choice and inhibititon of plans,
emotion-based learning and
conditioning

(Gmytrasiewicz
& Lisetti, 2002)

Decision Theory,
Agents

Appraisal: OCC, Frijda,
Scherer; Simon 1967

Alotted planning time changes,
state utility shifts, state evocation
probability shifts

H-CogAff
(Sloman, 2001)

BDI, Cognition
and Affect
(Sloman)

Appraisal: Sloman, OCC;
Simon 1967, Sloman 1996

Attention shift (alarms), decision
biases, precognitive reactions

MAMID
(Hudlicka, 2007)

Belief Net,
Decision Theory

Appraisal: Scherer, Smith
& Kirby, Sloman; Ortony
et al. 2005

Biases mental constructs (data)
based on emotional state; Working
memory capacity, speed; attention
shift, inference speed and biases

(Meyer, 2006) KARO Appraisal (OCC); LEA
(Logic of Emotional
Agents); Meyer 2006

Plan/agenda changes; Fear causes
cautious planning

(Malfaz &
Salichs, 2006)

BDI, Q-learning Motivation: Lorentz; Rolls
2003

Reinforcement learning biases
(both encoding and recall)

Soar-Emote
(Marinier, Laird,
& Lewis, 2009)

Soar,
PEACTIDM
(Newell)

Appraisal: Roseman,
Scherer; Gross & John
2003

Attention shift, goal shift,
reinforcement learning biases (both
encoding and recall)

Tabasco (Petta,
2003)

ACT, BDI Appraisal (Leventhal &
Scherer, Lazarus, Smith et
al.)

Plan updates

WASABI
(Becker-Asano &
Wachsmuth,
2009)

BDI PAD; Gratch & Marsella
2001, Oatley &
Johnson-Laird 1987

Plan utility valuation process biased
towards optimism or pessimism,
mapping of emotions as beliefs,
action biases

Although their designs are widely varied, the systems above collectively illustrate several de-
sirable principles for a comprehensive computational model of emotion and cognition. One is a
well-defined base cognitive theory or integrated cognitive process model. For instance, EMA and
Soar-Emote both use the Soar cognitive architecture, and there have been several adaptations of the
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ACT-R cognitive system that incorporate emotional interaction with the ACT model of memory.
Many successful models of emotion and cognition also spring from a strong theoretical emotional
background, allowing fine-grained and consistent emotional evaluation parameters.. Note that only
a few of the systems above, however, use a unified theory of cognition and emotion for both parts
of their model: H-CogAff, EM-ONE, and Meyer’s work; of those systems, only EM-ONE was ever
implemented. The importance of this observation is in a question of primacy and integration of
purpose. Systems built on an integrated cognition, for instance, the Soar and ACT-R based systems,
load emotional cognitive operators and memory mechanisms for the modeling of a very specific
set of emotional effects. On the other hand, other systems have sophisticated emotional theoreti-
cal bases, but are built using BDI or other simple models of cognition. We believe that a system
with a broad, integrated cognitive and emotional base model has the most power for modeling and
explaining the interactions between human emotion and cognition.

The cognitive emotional effects modeled by systems outlined in Tables 2 and 3 can be cate-
gorized as biases or heuristics; similar in scope, but detrimental or useful, respectively, depending
on the agent’s environment and situation. For instance, attention/focus shift is commonly modeled.
Systems that address this include MAMID (Hudlicka, 2007) and H-CogAff (Sloman, 2001). One
of the sequential modules of MAMID is devoted to cognitive attention focus, which biases the sys-
tem toward a subset of incoming data for further processing. H-CogAff (Sloman, 1996), similarly,
has an oversight mechanism for sensing pattern-driven “alarms” from all levels of its cognitive pro-
cessing (reactive, deliberative, and reflective). This mechanism redirects the system to process the
stimulus that invoked the alarm.

Effects are often cast as constraints on goal and action choices (i.e., decisions), though there are
other types of effects as well. The effects represent a form of coping in EMA (Marsella & Gratch,
2009) and Émile (Gratch, 2000), among other systems. Emotion can affect Émile’s planning algo-
rithm so that, for example, the more intensely emotional elements are focused on. In EMA, appraisal
and coping are interdependent in a closed loop, and the strategy for building a plan to cope with a
particular emotional stimulus is subject to change following the next round of appraisal. Meyer’s
(2006) system takes a different approach: emotions cause global effects on search control during
planning; for instance, a sad agent is more likely to look for alternative plans or goals, whereas
a fearful agent will be cautious and perform more checks on its environment during planning and
execution.

Decision biases (for planning or otherwise) are also characterized by Becker-Asano’s (2009)
WASABI and Rank’s ActAffAct (2009). In WASABI, the agent’s overall emotional state (“core
affect” or mood) constrains the set of possible next actions and goals. BehBehBeh and other models
of Frijda’s theory such as ACRES/WILL (Moffat, Frijda, & Phaf, 1993), use the concept of Rela-
tional Action Tendencies (RATs) in a similar manner to constrain decisions; RATs are formed as a
direct result of appraisals and narrow the set of next action choices. ALEC (Gadanho & Custodio,
2003) uses a fast emotional system that operates asynchronously along with its cognitive system to
model the Somatic Marker Hypothesis during decisions.

Emotional biases on learning are typically memory-based, and may be used to reinforce recall
and decision biases. Memories are evaluated as, or become associated with, particular emotional ex-
periences; cognitive effects follow from these evaluations and associations. Recent work by Hyung-
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il Ahn (2010), in addition to modeling decision under emotional influence, also leverages an agent’s
previous emotional experience for predictive purposes using prospect theory. The result is fast,
subjective reinforcement learning, and decision biases result from previous experience. FLAME
(El-Nasr, Yen, & Ioerger, 2000) uses a fuzzy logic method for similar purposes, conditioning an
agent by mapping emotional states to remembered events.

Emotion as a recall heuristic has been handled in different ways by the systems that have mod-
eled it. ACT-R, with its well-tested model of associative memory, has been a natural starting point
for these systems. Fum and Stocco’s ACT-R extension (2004), for example, takes advantage of
ACT-R’s associative memory to reproduce the Iowa Gambling Task’s results (though with a skep-
tical view towards the Somatic Marker Hypothesis). MAMID also models emotional effects on
cognitive recall and inference, particularly changes to the speed and capacity of those processes
based on emotional appraisal.

The columns in Table 4 are based on the intuitively important interactions between emotion and
cognition. Collectively, these pieces combine to form the full loop of emotional and cognitive inter-
action. Cognitive architectures have found much benefit to separating processes from knowledge, so
we follow suit here. The columns for cognitive representation and emotion representation indicate
whether a model contains components that are rich enough to allow both cognitive and emotional
processes to operate over that knowledge. Examples of limitations of each can be found in the dis-
cussion of landmark systems in section 3. The columns “Cognition → Emotion” and “Emotion →
Cognition” represent the full breadth of interaction between cognition and emotion, one for each
direction. For an example, a model that addresses how emotion influences inference, learning, de-
cision making, and all other cognitive processes found in the literature would be rated as complete.
Discussion of this assessment may be lengthy and we could not find a way to include it, so we defer
it to another paper.

A model with complete fidelity consistent with psychological data would receive full rating in
all categories. A four star rating represents competence to meet (theoretically as well as experi-
mentally) a wide variety of requirements but not all, three stars competence in meeting maybe a
focused group of related requirements, two stars competence in meeting maybe one requirement
(e.g., explain one phenomena), one star competence meeting a portion of some requirements, and
no stars meaning it is completely unaddressed.

Assuming more refinement may be needed in this assessment, it still should be capable of sug-
gesting that the role of traditional cognition in the generation of emotions is seemingly most lacking.
We also could not find any system that had demonstrated, even theoretically, full competency in any
area, indicating that considerable research is still needed in this area.

3. Example Models

To understand the state of the art, we review three different computational models in depth that differ
greatly in what we may learn from them. These models were selected based on their prominence
in the literature and because they demonstrate different aspects of the relationship between emotion
and cognition. In each case, we examine the ways in which aspects of cognition contribute to the
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Table 4. Rating of each model’s competency in key components of interaction between cognition and emo-
tion. A system that addresses all needs for a component of interaction would be rated with ? ? ? ? ?.

Model Cognitive
Representation

Cognition →
Emotion

Emotion
Representation

Emotion →
Cognition

ACRES/WILL (Moffat,
Frijda, & Phaf, 1993)

?? ? ? ? ? ? ? ? ? ?

ActAffAct (Rank, 2009) ?? ? ? ?? ?? ? ? ?

ACT-R extension
(Cochran, Lee, & Chown,
2006)

? ? ?? ? ? ? ?? ? ? ??

ACT-R extension (Fum &
Stocco, 2004)

? ? ?? ? ?? ? ? ?

ACT-R extension
(Belavkin, 2001)

? ? ?? ?? ?? ? ? ?

(Ahn, 2010) ?? ? ? ? ? ??

ALEC (Gadanho &
Custodio, 2003)

? ? ?? ? ? ? ?? ? ? ?

EM (Reilly & Bates, 1992) ?? ? ? ? ? ? ? ? ? ?

EMA (Marsella & Gratch,
2009)

? ? ?? ?? ? ? ? ? ? ?

Émile (Gratch, 2000) ?? ? ? ? ? ? ? ? ? ?

EM-ONE (Singh, 2005) ? ? ? ? ? ?? ? ? ? ? ? ??

FearNot!/FAtiMA (Dias,
Mascarenhas, & Paiva,
2011)

?? ? ? ? ?? ? ? ?

FLAME (El-Nasr, Yen, &
Ioerger, 2000)

? ? ? ? ? ?? ? ? ? ? ? ??

(Gmytrasiewicz & Lisetti,
2002)

? ? ? ?? ? ? ? ? ? ??

H-CogAff (Sloman, 2001) ? ? ? ? ? ? ? ? ? ? ? ??

MAMID (Hudlicka, 2007) ? ? ? ? ? ?? ? ? ? ? ? ??

(Meyer, 2006) ? ? ? ? ? ?? ? ? ? ? ? ??

(Salichs & Malfaz) ?? ?? ?? ? ? ?

Soar-Emote (Marinier,
Laird, & Lewis, 2009)

? ? ?? ? ? ? ? ? ? ? ? ?

Tabasco (Petta, 2003) ? ? ?? ? ? ?? ? ? ? ? ? ?
WASABI (Becker-Asano
& Wachsmuth, 2009)

?? ? ? ? ? ? ? ? ? ?

generation of emotions and how these emotions are used in cognition. We seek to discuss some of
the interesting things we may learn from this approach and identify shortcomings.
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3.1 EMA

EMA (Marsella & Gratch, 2009) is a system, implemented on top of the Soar cognitive architec-
ture, as a series of cognitive operators, that is primarily concerned with explaining the dynamics of
emotions through a sequence of events.

The primary mechanism used to display this is the use of appraisals informing planning. Ap-
praisal frames are created and associated with plan steps, leading to emotion derivation (or coping
directly), then coping. They were the first major system to demonstrate the effective use of an
appraisal frame in such a way. The appraisal process is considered a distinct process that is to coor-
dinate with cognitive processes, though most details of how is left unanswered. They also illustrated
their perspective on a long standing debate about emotional processes and their timing issues with
cognition. Marsella and Gratch argued and showed within EMA that the order and temporal patterns
in which appraisal information is provided may just be an artifact of the natural unfolding of the
cognitive or physical process which is called. For an example, inference may be slower than recall
and appraisals which depend on inference will simply be provided after inference is complete.

The mechanism of appraisal over a plan space is a primary contribution of this work. What we
read from it is how classical planning and building of expectations and the violation of confirmation
of those expectations can lead to very specific emotion dynamics. However, effects on the two
primary cognitive activities of planning and inference (both of which exist in the Soar system) have
not been demonstrated in EMA.

Another limitation comes with their use of appraisal frames. Though appraisal frames are by
far the most powerful representation of emotions and allow for the most sophisticated effects to be
modeled, only a few simple configurations of up to three variables have been demonstrated to have
consequence while an appraisal frame in EMA has six variables (argued as minimal). Each variable
has a continuous range of values but can also be null, leaving for arbitrarily many configurations.
Those who seek to study more emotional effects on cognition as observed in the psychological,
cognitive science, and neuroscience literature would need to find on their own how to use these
collections of appraisal frames.

Although Marsella and Gratch argue that the discrete emotion labels derived from the appraisal
frames are merely for convenience, they encode rules that map appraisal configurations to specific
coping behaviors as well as to discrete emotion labels. It is arguable that this is equivalent to
translating an appraisal frame into a discrete emotion and then to a set of coping responses. This
is similar to many other approaches (e.g., WASABI, as discussed below) used which seem to lose
granularity of context when eliciting emotional response.

3.2 Soar-Emote (PEACTIDM)

Soar-Emote (Marinier, Laird, & Lewis, 2009) is another system built on top of the Soar cognitive
architecture, in which emotions result from PEACTIDM, an explicit model of cognitive control
(Newell, 1990) and Scherer’s appraisal theory. This effort included a proposal to integrate an emo-
tional component at the Soar architectural level in the form of an appraisal detector. Emotions are
also represented in appraisal frames, but unlike EMA there is really only one appraisal frame of
significance in the system per cognitive cycle.
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The two seemingly most interesting contributions of this work are how PEACTIDM may inter-
act with emotions and how different appraisals influence the notion of intensity. The PEACTIDM
work demonstrates how appraisals may be integrated in the cognitive cycle. The proposals for us-
ing appraisal information to calculate intensity answers some questions about how to calculate both
arousal and valence in various models. This also suggests a mechanism for appraisal information to
be implicit in a simple valence/arousal value which has been demonstrated to affect many forms of
cognition in other work.

Soar-Emote proposes appraisal activity as being distinct from traditional cognitive processes; a
shortcoming as per EMA. Though Marinier agrees that translating an appraisal frame into a discrete
emotion or a PAD value does not make sense, as every possible appraisal frame should elicit a
different response, there are no proposed details for how this can be done, leaving many open
questions. Its designers have, however, shown great examples for how this model would play in a
maze sample problem as well some suggestions for how emotion may affect learning (Marinier &
Laird, 2008).

3.3 WASABI

WASABI (Becker-Asano & Wachsmuth, 2009) may be one of the most general models of emotion
that has been built to believably simulate affective agents. This was one of the few models built
from the ground up with emotions as first class citizens within the design.

Several interesting lessons may be gleaned from WASABI, particularly from the modeling of
primary emotions and secondary emotions. Many theories try to explain the connection between
emotions that seem to be instantaneous and emotions that are more complex and seem to arise
from reasoning. In contrast to EMA which proposes this as a dynamic development of emotions in
time through a reappraisal process, WASABI suggests grounding of secondary emotions in primary
in-born emotions.

WASABI offers an example of how many other systems (e.g., FAtiMA) approach integration
of emotion and cognition. Though appraisals are made, this information is mostly translated into
either discrete emotions or, in the case of WASABI, a PAD space value to be used in affecting
cognitive processes. As mentioned in the discussion of EMA, this approach is a lossy compression
of information, losing all the context and specifics of the emotion.

4. Open Issues

As computational models of emotion and cognition and their integration are still a relatively new
topic of research, the open issues are broad and numerous. Here we intend to draw attention to what
we believe are the important issues for computational emotions and cognition at large.

The most discernible issue is that of criteria and methods for model evaluation. This has been a
difficult problem to crack in the area of cognitive architecture and, since emotion likely has an inti-
mate relationship with nearly all components of cognitive architecture, this problem among others
has carried over. At the forefront of this issue are Gratch and Marsella, who have proposed several
methods of evaluation: compare the model in its ability to perform like a human in a standard clin-
ical assessment for emotions and coping (Gratch & Marsella, 2005), encode a corpus of emotional
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situations within a model and compare results (Gratch, Marsella, & Mao, 2006), and, most recently,
a component framework for comparing models (Marsella, Gratch, & Petta, 2010). At an abstract
level, we would ideally evaluate a model by comparing its ability to explain all observed human
emotional phenomena. However, the breadth of phenomena associated with emotion research is so
vast that different models tend to focus on very different phenomena, typically demonstrating value
but leaving little common ground for comparison. Encoding a corpus of emotional situations would
provide a powerful way of testing if the details of model are consistent with that of human processes
and data. However, this approach currently suffers from the issues of psychological theory, in that
the emotional situations, their encoding, and associated details are products of inference and inter-
pretation. The component model allows comparisons between systems and highlights theoretical
similarities and differences, but, provides little aid in showing validity.

To address this, we suggest the development of a library of standard scenarios to test models.
This idea is being explored by those tackling the evaluation of cognitive architectures, with some
proposals made by Adams et al. (2012). A similar approach may be used for emotional phenomena.
This differs slightly from the previously mentioned approach by Gratch et al. (2006) in that a
standardized environment would be provided as the starting point, rather than an encoded emotional
situation, which may not provide direct comparability with other models.

The second issue, which has also carried over from cognitive architecture research, is that of
the domain’s complexity and breadth, and the inability to effectively reduce it. The literature that
informs emotion research crosses the domains of computer science, psychology, cognitive science,
behavioral economics, sociology, and others. Minsky (2007) also characterizes the human brain as
an extremely sophisticated system of systems and argues that, to model human intelligence with
fidelity, we cannot shy away from its complexity . Important aspects of emotions come in its broad
integration with various components of cognition. This means that many computational emotion
researchers must deal with many topics for which they cannot possibly hold enough expertise to
develop complete models. To manage the complexity, some researchers have followed the lead of
other artificial intelligence sub-disciplines and studied emotions separately from cognitive architec-
ture. We believe this approach is flawed since it is becoming increasingly clear that emotions are
fundamentally intertwined with all forms of cognition. Research in computational emotion cannot
use the same approaches from most other AI fields and must be studied in full context of cognition.

The previous issue naturally leads into a third, which can be further broken down into smaller
ones of note, that concerns implementing a model in the full context of a cognitive architecture.
This is a notoriously difficult task in a research setting, since a cognitive architecture is typically
a large and complex system that requires many contributors over a long period of time. When
integrating emotions into an architecture, one must leverage the rich history of AI research on
individual topics like learning, planning, and reasoning, but it is nearly impossible for any researcher
to be an expert in emotions and all of these topics. There is also a question of how to coordinate
among all the processes, as there are several theories and incomplete data about timing. This leaves
many details to assume, which can lead to flaws that may be hard to understand, particularly as
validation often focuses on emergent behavior–a product of all processes, data, and design decisions.
Some previous models have tried to jump this hurdle by building accounts of emotions on top of an
existing cognitive architecture, either as a by-product of the overall system or as a small modification
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to one mechanism. However, emotions appear to have developed early in the brain’s evolutionary
journey; they have a clear presence in the reptilian brain, and thus predate all forms of higher
cognition (Panksepp, 2001). As a result, these approaches have given us some insight but have yet
to reveal the fundamental nature of emotions and how cognition operates as their consequent.

The second issue and third issues, taken together, are unavoidably large and complex and re-
quire cross-disciplinary collaboration. In response, we encourage the creation of a collaborative
community based around an open flexible architecture. This endeavor is ambitious but it would
help alleviate the greatest hurdle for such systems–the need for broad expertise, long development
time, and a large code base. Although all architectures require certain theoretical commitments (e.g.,
knowledge representation), modern engineering techniques can help abstract these away, making it
possible for individuals and small research groups to replace them. If we can make a cognitive ar-
chitecture framework that is flexible and reconfigurable, then various labs can experiment with very
different architectures but leverage work done by others, letting them focus on specific problems
within their expertise. This would address the remaining issues regarding complexity, implementa-
tion, and realization of actual architectures, as well as integration with the rich history of AI. Using
modern open source and crowd sourcing approaches, we can also build a library of modules focused
on specific cognitive processes (e.g., learning, metacognition). A similar effort known as OpenCog
(Goertzel et al., 2010) has been underway for some time now, but it is primarily concerned with
applications rather than scientific experimentation and understanding.

5. Challenges to Near-Term Research

Aside from the high level open issues, there are several important challenges to research in emo-
tions and cognition that warrant more immediate attention from researchers. These include moving
towards uniformity in emotional representations and mechanisms, understanding existing use of
emotions in traditional artificial intelligence, exploring innovative uses of emotions, and emotion
engineering. These issues are raised in hopes of steering the current direction of research and we
discuss their implications and their potential to drive forward work on computational emotion.

We have pointed out the intimate interplay between emotion and cognition found in psycho-
logical and neurological literature, but there is a clear deficit in models that explicitly study this
relationship. Several systems are partly competent at modeling some interplay, but they suffer from
either being narrowly focused on one mechanism of interaction (e.g., Ahn, 2010; Fum & Stocco,
2004) or involve a model that engineered the relationship as an afterthought to another goal (e.g., be-
lievable emotional behavior in WASABI). As emotions are intertwined with all forms of cognition,
explicit study and modeling in the general context of a cognitive architecture should be fundamental
to further understanding and using them. To achieve this, future research should be geared towards
uniformity of emotional representations and mechanisms. Analogously, Rosenbloom (2009) has
argued that representational uniformity is the key to integration of a broad and diverse set of capa-
bilities required for general intelligence.

A common question that is raised by researchers in a subfield of artificial intelligence, when pre-
sented with ideas for how emotions can aid in their processes, is: “How is that different from item X
that we already have?” Examples of such topics include heuristics used in plan space search, posi-
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tive/negative feedback for reinforcement learning, and expertise for action selection. From a narrow
perspective, it does not appear that emotions provide any additional benefit to artificial intelligence;
however, from a cognitive systems perspective, if all these things are linked to emotions, then they
can provide uniform data across processes that explain how this information is generated. To date,
there has been no work on what artificial intelligence and can learn from models of emotion, but we
believe that researchers interested in both areas would benefit.

Since research on emotion is relatively new, there is opportunity for it to unlock answers to
difficult problems in artificial intelligence. Exploration of emotions and its various uses has poten-
tial to suggest novel responses to open problems. For example, creativity in the arts (e.g., music,
painting, story writing) often involves emotional expression, understanding, and communication.
Understanding emotions’ role in the creative arts may teach us something that can be generalized to
other forms of creativity.

Finally, it is important for researchers in cognitive systems to be able to produce systems with
specific behaviors. With emotions serving as general cognitive data with broad influence, there is
the challenge of engineering emotional knowledge to these desired behaviors. For example, some
emergent qualities such as personality appear to arise from affect (Arnold, 1960; Asensio et al.,
2008). Traditional knowledge engineering principals, methods, and tools involving representation,
human driven knowledge authoring, understanding and maintenance should be developed to support
computational research on emotion.

6. Conclusion

In this paper, we reviewed the landscape of research on computational models of emotion and
cognition. We analyzed their levels of emotional-cognitive integration to help understand how each
system compares and contrasts with others. We also identified several key properties of the models,
and we suggested that researcher strove for total competency in each area in order to fully model
emotions. We described and analyzed three models–EMA, Soar-Emote, and WASABI–in depth to
provide a broad sample of the state of the art, and we identified the most significant contributions
and limitations of each system.

In addition, we identified the significant open issues that warrant most attention from researchers.
These included standardizing criteria for evaluation of models, the complexity and breadth of the
domain, and the need to implement working systems that address integration with the rich history
of AI research. We then presented and discussed possible responses to this challenge. The com-
munity should provide standard scenarios with known behavioral results to contextualize models,
and it should leverage collaborative approaches to software engineering to let experts in each field
contribute and experiment.

For the near term, we posed four challenges that could steer research in computational emotion,
including a focus on uniform representations and mechanisms, understanding the role of emotions
in subfields of artificial intelligence, exploring innovative uses of emotions, and engineering knowl-
edge bases.
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