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We present a study of a highly decomposable algorithm useful for the parallel generation of a contour 
surface display. The core component of this algorithm is a two-dimensional contouring algorithm 
that operates on a single 2 X 2 subgrid of a larger grid. An intuitive procedure for the operations used 
to generate the contour lines for a subgrid is developed. A data structure, the contouring tree, is 
introduced as the basis of a new algorithm for generating the contour lines for the subgrid. The 
construction of the contouring tree is detailed. Space requirements for the contouring tree algorithm 
are described for particular implementations. 
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1. INTRODUCTION 

Contour surface display generation from three-dimensional grid data is one of 
the most frequently and widely used graphics application algorithms [l-4, 6, 7, 
9-13, 161. The core component of contour surface display generation is the 
two-dimensional contouring of successive two-dimensional slices of the three- 
dimensional grid (see Figure 1). The best review of the historical development 
of two-dimensional contouring algorithms and their properties is found in [12]. 
The most striking thing about contouring literature is that the algorithms 
described are never complete, clean solutions to the two-dimensional contouring 
problem. The tendency in the literature is to rely on ad hoc treatment of special 
cases, with no attempt made to fit the special cases into a general algorithmic 
framework. An additional problem with the algorithms in the literature is that 
they are computationally slow. This slowness prevents the algorithms’ use in 
real-time situations on hosts other than supercomputers. This paper attempts to 
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Fig. 1. Two-dimensional slice of a 3-D grid. 

provide solutions for both the completeness and speed problems. The complete- 
ness problem is dealt with by presenting an algorithm for two-dimensional 
contouring based on a unifying data structure called the contouring tree. The 
speed problem is lessened by presenting that same data structure as a means for 
structuring subgrids of the two-dimensional grid into a constant form useful for 
rapidly computing successive contour levels. As an additional part of lessening 
the speed problem, the algorithm is shown to be eminently decomposable, that 
is, amenable to large-scale parallel computation. 

2. DEFINITIONS 

A contour surface is a visual display that represents all points in a particular 
region of three-space (x, y, z) that satisfy the relation f ((x, y, z)) = k, where k 
is a constant known as th.e contour level. The function f represents a physical 
quantity that is defined over the three-dimensional volume of interest. The visual 
display created by this algorithm is the collection of lines belonging to the 
intersection of both the set of points satisfying the relation f ((x, y, z)) = iz, and 
a set of regularly spaced parallel planes passing through the region of three-space 
for which the relation is defined. 

For this study, the function f is approximated by a discrete, three-dimensional 
grid created by sampling that function over the volume of interest. The three- 
dimensional grid contains a value at each of its defined points that corresponds 
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Fig. 2. Example contour grid with contours 
drawn for level 50. 

to the physical quantity obtained from the function; that is, the value associated 
with point (x0, yo, zO) is uo, where f(xO, yo, zo) = uo. To minimize confusion, we 
specify the value at a particular grid point (x, y, z) by a(x, y, z) and the value at 
a particular point (x, y, z) of the function by f(x, y, z). 

The visual display of the contour surface is created from this three-dimensional 
grid by taking two-dimensional slices of the grid, and constructing the two- 
dimensional planar contours for each slice at the designated contour level (see 
Figure 1). A slice of a three-dimensional grid is a planar, two-dimensional grid 
assigned a constant coordinate in three-space; that is, an x-y slice of a((~, y, z)) 
corresponds notationally to a((~, y)) for a particular z coordinate. The two- 
dimensional contours created are the lines that satisfy the relation a( (x, y, z)) = 
k for a particular coordinate, either X, y, or z, where again k is the constant 
contour level. If we contour all x-y slices of the three-dimensional grid at contour 
level k, we have a stack of parallel contours approximating the contour surface, 
each set of contours corresponding to a particular .z coordinate. We can execute 
a similar contouring operation on all the X-Z and y-z slices. The assemblage of 
the three sets of parallel contours, that is, the simultaneous display of all the 
contours created for the x-y, x-z, and y-z slices of the three-dimensional grid, 
produces a “chicken-wire-like” contour surface display. 

3. FOCUS ON TWO-DIMENSIONAL CONTOURING 

Given that the contour surface display generation algorithm works on the two- 
dimensional slice of the three-dimensional grid, it is best that we start our study 
with an understanding of the operations performed on that slice. Figure 2 shows 
a two-dimensional grid, with the contours drawn corresponding to contour level 
50. Figure 3 shows that same two-dimensional grid, with the contours drawn 
corresponding to contour level 100. The goal of the two-dimensional contouring 
operation for such a grid is the determination of where lines are drawn on that 
grid given a fixed contour level k. To develop an intuitive feel for that determi- 
nation mechanism, we restrict our focus to a small portion of the complete two- 
dimensional grid, the 2 x 2 subgrid. The 2 x 2 subgrid is defined to be that 
portion of the two-dimensional grid bounded by four adjacent grid points. In the 
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Fig. 3. Example contour grid with contours 
drawn for level 100. 
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two-dimensional grid of Figures 2 and 3, the lower left-hand 2 X 2 subgrid is 
bounded by points (0, 0), (1, 0), (1, l), and (0, 1). The upper right-hand 2 X 2 
subgrid of the same example is bounded by points (1, l), (2, l), (2, 2), and (1, 2). 

4. AN INTUITIVE PROCEIDURE FOR CONTOURING THE SUBGRID 

The procedure used to gerrerate the contours for a subgrid is the core part of two- 
dimensional contouring. If we compute the contours corresponding to contour 
level k for all subgrids of a two-dimensional grid, then we have determined the 
complete set of contours for that grid. To provide an intuitive feel for contour 
generation on the subgrid., we summarize that procedure to highlight potential 
problems. 

The first step in the procedure is to determine whether any contours should 
be generated for the subgrid. That determination is based on whether any of the 
subgrid’s edges contain the desired contour level k. An edge contains contour 
level k if the contour level is within the range of values defined by the grid points’ 
edge. 

The next part of the procedure is the computation of the contour edge 
intersections for any subgrid edges shown to contain the contour level. The point 
of intersection is computed through linear interpolation, using the grid values 
assigned to the endpoints of the edge and their corresponding coordinates. The 
point of intersection represents the location on the subgrid edge corresponding 
to the contour level k. 

The determination of the connectivity necessary to form the appropriate 
contours from the list of edge intersections is the next part of the contour 
generation procedure. Before attempting to describe the procedure that assigns 
those connectivities, we first examine the subgrid’s contour crossing possibilities. 
We accomplish that by looking at Figure 4, which shows the 12 possible ways for 
contours to cross or intersect a subgrid. (Note that rotations of cases 1-12 are 
considered as equivalent.) 

Each of the cases of Figure 4 belongs to one of three subgrid crossing categories: 
(1) single edge crossings, (!2) double edge crossings, and (3) constant edge borders 
ACM Transactions on Graphics, Vol. 7, No. 2, April 1988. 
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at the contour level. The 12 cases are drawn according to the following small set 
of rules for contour crossings: 

(1) Contours are directed by the values associated with the edges and are directed 
toward their subgrid edge intersection points. 

(2) For nonequivalued edges, if contours are indicated for a particular subgrid- 
that is, if there are edges in the subgrid that contain the contour level-there 
is only one point of intersection for each edge of the subgrid. 

(3) Contours are continuous; that is, if a contour enters a subgrid, it must also 
leave that subgrid. 

(4) Equivalued subgrid edges at the contour level are special cases and are drawn 
in their entirety. The only exception to this rule is that constant-valued 
subgrids are not drawn. This is by convention. 

The first rule means that one determines the placement of contours, and hence, 
the connectivity of the edge intersections, by using both the values assigned to 
the endpoints of each edge of the subgrid and the computed intersections of the 
subgrid. The importance of this rule is twofold: First, it means that no outside 
forces or parameters direct contour placement. Second, it means that computed 
intersections are not the sole basis for determining the connectivity of the 
contours. 

The second rule means that, for an edge intersected by a contour, there are no 
other points along that edge with contour value k. Since the range of values 
assigned to that edge is continuous and monotonic, the origin of this rule is clear. 
Note that this rule does not apply to equivalued edges. 

The third rule, that of contours being continuous, means that if a contour 
enters a subgrid it must also leave that subgrid; that is, the contour does not end 
inexplicably in the middle of the subgrid. A corollary of this rule, in combination 
with the first and second rules, states that contours entering a subgrid through 
an edge must leave via a different edge. Again, note that this corollary does not 
apply to cases with equivalued edges. This corollary holds though for contours 
tangent to grid points of the subgrid if we assign one edge to that grid point as 
the entering edge and assign the other edge as the leaving edge. 

The last rule, that of equivalued subgrid edges at the contour level being special 
cases and being drawn in their entirety, is a rule based on visual expectations for 
the contour for such a subgrid edge. The only exception to this rule, that of not 
drawing constant-valued subgrids, is adopted by general convention. 

Once we have an idea of the types of contour crossings possible for a subgrid, 
and once we have an outline of the rules used in composing those possibilities, 
we can then address the problem of forming a procedure for assigning connectiv- 
ities or drawing commands to the computed edge intersections. Starting with the 
simplest cases of Figure 4, the equivalued edge cases, we clearly see that the 
connectivity generation procedure for subgrids containing such edges at the 
contour level is simple once those equivalued edges have been detected. If we 
find that we have a “constant subgrid,” we do not need to issue any coordinates 
or drawing commands because by convention we have decided not to draw that 
case. Two of the other three possibilities, the “contour along one edge” and 
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Equivslued Edges at the Contour Level 
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Fig. 4. All possible contour crossings of a subgrid. 

“contours along two edges” cases, are equally simple. The only operation neces- 
sary once such cases have been detected is to issue coordinates and drawing 
commands corresponding to the detected edges. The “contour along one edge 
with central point at level” case is a bit more difficult. In this case we note that 
the region b-c-d is an isovalued region. From our rules above, we know that we 
must have an additional edge leading to the isovalued region (contours do not 
just end inexplicably in the middle of a subgrid). We also know that we have left 
only one edge that can be intersected (the other three edges have intersections). 
Hence, we have the line a-b in case 12. 

At first glance, given the edge intersections for a subgrid, the connectivity 
generation procedure for the single-contour cases of Figure 4 seems easy. It 
appears as if the only operation to be done is the issuing of coordinates and 
drawing commands corresponding to the straight line between the two points of 
edge intersection. Such a procedure works well if we know that we have a single 
contour crossing the subgrid. The only single-contour crossing case for which 
this does not work is the “contour tangent to the subgrid” case, which is an even 
simpler case for connectivity generation. 

It is not until we consider the two contours crossing the subgrid cases of Figure 
4 that we realize the potential for problems with the single-contour crossing 
procedure. A procedure based only on connecting edge intersections cannot 
differentiate between such cases as the “two contours tangent to the subgrid” 
and the “contour across the diagonal.” There are other similar connectivity 
generation problems evident for the two-contours crossing cases. The “two 
contours through adjacent edges” case has four edge intersections. For that case 
we need to know which of these possible intersection pairs should be connected. 

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988. 



136 l Michael J. Zyda 

Now that we have established a background for the connectivity problem for 
contour crossings of the subgrid, we can describe the procedure used to contour 
the subgrid. This procedure uses as a data structure the contouring tree, which 
provides a coherent framework for subgrid contouring. 

5. THE CONTOURING TREE 

A contouring tree is a data structure that maintains the edges and associated grid 
values of a subgrid in a form that permits the rapid generation of the contour 
display for any contour level contained within the subgrid (see Figure 5). The 
formulation of the contouring tree is based on the observation that for any two- 
dimensional grid a continuous series of contour displays can be created for 
contour levels within the range of the minimum and maximum grid values [15]. 
By continuous, we mean that for any picture at “level” there is a picture at “level 
plus delta,” where delta is small, as long as “level plus delta” is within the 
minimum and maximum grid values. 

The use of the contouring tree is outlined best with an example of a small two- 
dimensional grid. Figures :2 and 3 depict the contours generated for contour levels 
50 and 100. Figures 5 and 6 present the contouring trees created for two subgrids 
of the larger grid, subgrids A and B. The edges of the contouring trees correspond 
to the directed downhill edges inscribed on the subgrids of the figures. There are 
eight directed edges on each subgrid, four for the boundary edges and four for 
the edges to the subgrid’s center point. The value used for the center point is the 
average of the four values comprising the corners of the subgrid. (For a reference 
on the usefulness of the ce:nter point average value in generating smooth contours, 
see [12].) The edges of the contouring trees are ordered, maintaining the same 
counterclockwise ordering as in the original subgrids. An “M” under a node 
means that a moveto display command should be generated for any coordinate 
that is created along an edge that has that drawing command on its lower valued 
node. A “D” means a drawto display command should be issued, and a “P” 
means a drawpoint. 

Display generation from a contouring tree is performed by a preorder traversal 
of the contouring tree, producing a coordinate and drawing instruction whenever 
the desired contour level is found to be within the range of an edge of the 
contouring tree. A preorder traversal visits the root, the left subtree, the middle 
subtree, and then the right subtree. An edge’s range is defined to be the set of 
values between those associated with the nodes on either end of the edge. More 
precisely, we say a contour level is within an edge if the following condition 
holds: 

lower-node’s_value 5 contour-level < higher-node’s-value. 

For example, in Figure 5 at contour level 100, we issue coordinates and drawing 
instructions for the edges, 1-2, 1-5, and l-4. (Note that edges are specified by 
subgrid node numbers.) The drawing command issued for each of these edges is 
the one associated with the lower valued node of the edge. The coordinate for 
each of these edges is generated by a linear interpolation of the edge’s endpoint 
coordinates according to the decrease in contour level along the edge. 
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Fig. 5. Contouring tree for subgrid A. 

5.1 Traversing the Contouring Tree 

There are some subtleties not evident from the above that are best detailed using 
a pseudocode description of the traversal algorithm. Figure 7 shows the traversal 
procedure for the contouring tree assuming a particular data organization. 
The pointers to the descendant nodes of NODE are LEFT(NODE), MID- 
DLE(NODE), and RIGHT(NODE). For each node of the contouring tree, there 
are three pieces of information: the value associated with the node, 
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Fig. 6. Contouring trees for subgrid B. 

VALUE(NODE); the coordinate associated with the node, XYZ(NODE); and 
the connectivity associated with the node, CONN(NODE). 

The generation of coordinates and drawing commands from a contouring tree 
begins with routine CONTOUR-SUBGRID of Figure 7. That routine receives a 
pointer to the root node of the contouring tree. It then starts the traversal by 
calling routine VISIT with that root node. Routine VISIT checks to see whether 
the edge defined by the passed-in node and that node’s ancestor, NODE and 
ANCESTOR, contains the contour level. If the edge does contain the contour 
level, the edge intersection coordinate is computed using linear interpolation and 
issued to the display along with the drawing command associated with that node, 
CONN(NODE). If we issue a coordinate and drawing command for a node, we 
need to check the subtree under that node for equivalued edges. If an equivalued 
edge at the contour level is found, a coordinate and drawing command are issued 
for that equivalued edge (routine VISIT-SUBTREE). Once a coordinate and 
drawing command have been issued for an edge, and once the subtree beneath 
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that edge has been investigated for equivalued edges, further traversal of the 
subtree is terminated. If an edge is found not to contain the contour level, the 
traversal continues as depicted at the bottom of routine VISIT. 

The preorder traversal procedure described above generates the coordinates 
and drawing commands for the represented subgrid. To generate the coordinates 
for a larger two-dimensional grid, we generate the contouring trees for each 
subgrid of the grid and then apply the traversal procedure to those trees. We 
note here that no ordering is required in the generation of coordinates for the 
subgrids. The coordinate and drawing commands generated for each subgrid are 
complete and independent of the picture generated for any neighboring subgrid. 

5.2 Contouring Tree Limitations 

Having presented the use of the contouring tree, we must look back and discuss 
its capabilities and limitations. The contouring tree provides a uniform frame- 
work for generating the coordinates and drawing commands appropriate to the 
subgrid. The algorithm takes care of the single-contour crossing cases readily, as 
well as the two-contours crossing case for the subgrid. The algorithm correctly 
handles subgrids containing equivalued lines at the contour level and subgrids 
containing a single grid point at the contour level. 

The core problems with this algorithm all concern issues of picture efficiency. 
Since the display generated for each subgrid is generated independently of any 
neighboring subgrids, equivalued lines at the contour level on the border of a 
subgrid are duplicated. A similar problem occurs for subgrid corner values that 
equal the contour level. If we display either of the above cases on a calligraphic 
display device, we see a bright line for the equivalued edge and a bright point for 
the grid value equal to the contour level. Another problem, also caused by the 
independent computation of each subgrid, is that no ordering is provided for 
coordinates that come out of this algorithm. For calligraphic displays this is a 
problem because for such devices electron beam movement is expensive. A 
contour display that causes the maximum movement of the electron beam every 
other subgrid greatly decreases the vector drawing capacity of the calligraphic 
display device. 

There are three possible solutions to the problem of duplicate vectors. The 
easiest solution is to choose an output display device for which such picture 
inefficiencies do not matter, that is, a raster display. Vector ordering is also 
eliminated as a problem with this solution. The second solution is to set aside at 
the contour level points and lines that correspond to subgrid boundaries. A final 
pass at the end of the computation for a complete two-dimensional plane could 
readily cull the duplicates. This second solution does nothing for the vector 
ordering problem. If this solution to the vector duplicates problem is used, one 
either does not worry about the vector ordering, or one performs a sort on the 
vectors. The third solution, and the most expensive of the three, is to merge the 
set of trees generated for the two-dimensional grid such that duplicate edges in 
separate trees are eliminated. This solution has the added benefit that the 
resultant contours are generated in an order that solves the beam movement 
problem. This solution is not described in detail here, and the reader is referred 
to [14] for further detail. For this study, the first and simplest solution is assumed, 
and consequently, the expected output display device is the raster display. 
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Contouring Tree Structure 

Pointers to Descendent Nodes: 

LEPTOJODE) 
MIDDLE(NODE) 
RIGHT(NODE) 

Values Associated with Each Node: 

VALUE(NODE) : grid value. 
XYZ(NODE) : coordinate. of that grid value. 
CONN(NODE) : drawing command (The M, D and P commands.). 

Prucedure CONTOUR2XJRGRID(ROOT) 

VISlT(ROOT,ROOT) # begin the traversal of the pointed at contouring tree. 

Procedure VISIT(NODE,ANCESTOR) 

if(NODE = NULL) 
( 

retmll 

if((VALUE(NODE) <= CONTOUR-LEVEL c VALUE(ANCESTOR)) 

(VALUE(NODE) = CONTOURJF3rEL & NODE = ANCESTOR)) 
1 

# Edge contains the contour level. 

Issue a coordinate computed via linear interpolation along the edge. 

Issue CONN(NODE) as the drawing command. 

# Check subtrees of this node for equivalued edges. 
VISIT~SJJWREE(LEFf(NODE),NODE) 
VISIT_SUFTREE@4IDDLE(NODE),NODE) 
VISI’I~SUBTREE(RIGHT(NODE),NODE) 

rehun # no need to examine the subtree further. 

) # endif coordinates were generated for an edge. 

VISIT(LEFf(NGDE),NODE) 
VISIT(MIDDLE(NODE),NODE) 
VISlT(RIGHT(NODE),NODE) 

# visit left subtree. 
# visit middle subtree. 
# visit right subtree. 

retmn 

Fig. 7. Pseudocode of the traversal algorithm for the contouring tree. 
(Continued on next page.) 
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Procedure VISITfdBTREE(SUBNODE,SUBANCRSTOR) 

if(SUEtNODE == NULL) 

return 
1 

if(VALUE(SUBNODE) == CONTOUR-LEVEL) 
( 

Issue coordinates for the equivalued edge. 
Moveto XYZ(SUBANCESTOR). 
Drawto XYZ(SuBNODE). 

end 

Figure 7 continued. 

6. CONTOURING TREE CONSTRUCTION 

Contouring tree construction is best understood if we describe the procedure in 
graph-theoretic terms. We begin by assuming that we have a graph of five nodes, 
each node being one of the subgrid definition nodes or the center node of average 
value. The eight edges on that graph are the subgrid boundary edges, and the 
edges from each subgrid definition point to the center point of average value. We 
can readily assign directions to each edge of this graph using the values assigned 
to each node. Equivalued edges can be assigned an arbitrary direction. (One such 
assignment is to make equivalued edges along the border point in a counterclock- 
wise fashion and equivalued edges from the center point in toward the center.) 
With these assumptions, each subgrid is perceived as a directed graph. The 
question then becomes, how do we obtain the contouring tree, or trees, from this 
directed graph? We can put this question in graph-theoretic terms if we notice 
that a contouring tree is a directed tree. The problem then becomes one of 
obtaining the directed tree, or trees, from the directed graph such that the 
ordering of edge attachment in the tree corresponds to the ordering in the 
directed graph. From graph theory, we have the requirement that a directed tree 
has the indegree of its root node equal to 0, and the indegree of every other node 
equal to 1 [5, p. 351. To examine the indegree of each node of the directed graph, 
we must construct the indegree matrix D for that graph. The indegree matrix D 
of a directed graph G is defined in [5, p. 351 as 

D(i, j) = indegree( if i=j; 

D(i, j) = -k, if i # j, where k is the number of edges in G 
from i to j (i.e., -1 for all our graphs). 

Figures 8 and 9 show the indegree matrices for our example subgrids. 
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Fig. 8. Indegree matrix for the directed graph of subgrid A. 

Fig. 9. Indegree matrices for the directed graphs of sub- 
grid B. 

From the figures, we note that the roots of the contouring trees are recognizable 
from D as D (i, i) = 0. This matches the first part of the directed-tree requirement. 
Further examination of the diagonal of the indegree matrices introduces two 
difficulties in our attempts to convert the directed graphs into directed trees: (1) 
multiple roots (D(i, i) = 0 for more than one node) and (2) D(i, i) > 1 for some 
nodes. (Note: We have assumed that we have the structure represented by the 
directed graph and that we can manipulate it.) 

The first problem, that of multiple roots, is handled by producing multiple sets 
of vertices and multiple indegree matrices such that there is only one root per 
indegree matrix. For our case, the maximum number of roots for a subgrid is two. 
We eliminate this problem by alternately removing each root node from the 
complete set of vertices and all edges attached to that deleted node, and then 
making separate indegree matrices. The second problem in the conversion of the 
directed graph into a directed tree, that of D(i, i) > 1 for some nodes, is resolved 
by node duplication. For each diagonal entry D(i, i) = n, where n > 1, we create 
n - 1 duplicates of the node, for a total of n, taking care to copy the appropriate 
values, coordinates, etc. We then reassign the original edges that went to the 
single node, such that each edge receives its own copy of the duplicated node. 
The edges that are reassigned are those between each node of column i of D that 
has a -1 and each of the n duplicate nodes. When performed for each indegree 
matrix created, this operation forms a new directed graph that is the desired 
directed tree. 
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6.1 Drawing-Command Placement 

The preceding section details the creation of the contouring trees for the subgrid 
using nothing more than basic graph definitions and simple construction proce- 
dures. The only thing remaining for completing this construction is the placement 
of the drawing commands into the contouring trees. 

Drawing commands are placed in the contouring tree to indicate when a line 
enters the region represented by the contouring tree either from a neighboring 
subgrid or from a location off the grid. If we look at the structure of the contouring 
tree, such as that exhibited in Figure 5, and consider that during the traversal 
the edges are examined in a counterclockwise, downward ordering from the root, 
we note that we need to place moveto (M) drawing commands on the lower 
valued node of each edge that presents a new lowest value for the tree. We insert 
these drawing commands by way of a preorder traversal of the directed tree, 
placing a moveto command on each node that is a new lowest value for the tree. 
This drawing-command placement strategy is based on the knowledge that, if we 
have a contour level for which we desire a picture, the first drawing command 
we generate for any contouring tree is a moveto. Although effective, this 
procedure does not provide a complete solution to drawing-command insertion. 
Some neighboring edges in the contouring tree, that is, edges sharing an ancestor 
node, have a “split” between them; that is, the edges are not immediate counter- 
clockwise neighbors in the original grid. For this case we must mark the discon- 
tinuity in the contouring tree. We register the discontinuity on the lower valued 
node of the edge where the discontinuity occurs. For example, in Figure 5 the 
edges 3-2 and 3-4 are neighbors in the contouring tree but are not immediate 
neighbors in the original grid. We mark this split by placing an “M” on the lower 
valued node of edge 3-4. 

To recognize the nodes that require a drawing command marking a split edge 
in the contouring tree, we must first examine where split edges occur in the 
subgrid. These occur wherever the subgrid has edge directions and tree edge 
configurations similar to those in Figure 10, that is, where there are neighboring 
tree edges not directly corresponding to neighboring subgrid edges. There are two 
cases in the figure. 

For Case 1 the split edge is edge b-d. This edge neighbors edge b-c in the 
contouring tree but is not the immediate counterclockwise neighbor edge of b-c. 
The lower valued node of edge b-d, d, receives a moveto (M) drawing command. 
From the figure, we see that node d has a possibility of being a “sink,” that is, a 
node with all incoming edges. This depends on the direction of edge a-d. There 
are two cases to consider: (la) a --, d or (lb) d ---, a. Case (la), a + d, is easy to 
show as possible because it may be seen in Figure 5. Case (lb), d + a, is somewhat 
more difficult, because we must show that it cannot possibly occur within the 
relations specified on Figure 10. We begin by compiling a small set of the given 
relations on the directed graph shown in the figure: 

r z c, 
r 2 a, 
r z d, 
b 1 d, 
a 2 d. 
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Fig. 10. All split-edge possibilities for the subgrid. 

Case (lb) then becomes the question, is it possible to get d 2 a? Assume that 
d z a is possible. Now we have b 2 d, so we can replace d with b. We get b 2 a, 
which is a contradiction of our original given, a 2 b, unless a = b. So we cannot 
have d + a unless a = b. Can we eliminate the possibility of the edge from a to b 
pointing from the center outward in the case in which a = b? We can do this 
when we set up the original directed graph, by biasing the edge selection of 
constant-valued edges so that they always point toward the center. Since the 
direction assigned to a constant edge is arbitrary, we can assume that we never 
see the condition d --, a, given the set of fixed directions assigned to Case 1. 
Hence, for Case 1 of Figure 10, a split-edge node is required during preorder 
traversal of the directed tree whenever we encounter, for the first time, a node 
representing a sink grid point. We now show a similar finding for Case 2. 
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In Case 2 of Figure 10, the split edge is edge b-d. This edge neighbors edge 
b-c in the contouring tree, but is not the immediate counterclockwise neighbor 
edge of b-c. The lower valued node of edge b-d, d, receives a moveto (M) drawing 
command. From the figure, we see that node d is possibly a sink. This depends 
on the direction of edge u-d. There are two cases to consider: (2a) a + d or (2b) 
d + a. Case (2a), a + d, occurs in Figure 6, so we know this case is possible. 
Case (2b), d + a, is more difficult, because we must show that it cannot occur. 
We list a few relations describing the partial directed graph of the figure: 

r 2 c, 
r I b, 
r 2 d, 
b r c, 
a r b, 
b > d. 

The question arises whether it is possible to get d 2 a. Assume d 2 a is possible. 
Now we have b 2 d, so we can replace d with b. This gives b I a, which is a 
contradiction of our original given, a L b, unless a = b. So we cannot have d + a 
unless a = b. Clearly, we already have eliminated the possibility of the edge 
pointing from b to a by our initial configuration and by our biased edge selection 
for constant edges. Hence, for Case 2 of Figure 10, a split-edge node is required 
during preorder traversal of the directed tree whenever we encounter, for the 
first time, a node representing a sink grid point. 

There are no other split-edge configurations possible in the subgrid. If we add 
a procedure that checks not only the new lowest value in the directed tree, but 
also the first encounter with a sink grid node during the same preorder traversal, 
we correctly place the drawing commands in the directed tree, converting it into 
the desired contouring tree. 

7. IMPLEMENTATION NOTES’ 

Once we have an algorithm for contour generation from the subgrid, we then 
need to discuss its implementation. From our discussion, there are some obvious 
concerns: the time and memory costs incurred for building and using contouring 
trees. The answer to the contouring tree construction concern is that we can 
build all possible contouring trees ahead of time. From our prior discussion, we 
note that there are only 128 different subgrid possibilities or 128 possible 
contouring tree sets. (Note that there are really 256 possibilities for the eight 
edges of the subgrid. From our algorithm, we know that the center point of 
average value does not occur as the root of a contouring tree. Hence, we only 
have 128 subgrid possibilities or 128 contouring tree sets.) The only problem with 
building the contouring trees ahead of time is that it takes some memory space. 
The entire set of contouring trees can be constructed with 1104 nodes of the 
format shown in Figure 7. This requires about 10 kbytes of storage for the 
complete set of trees, given 2 bytes for the grid value, 3 bytes for the pointers to 

1 The interested reader is referred to a recent publication by Lorensen and Cline [8], which has a 
3-D surface construction algorithm whose implementation has similarities to the one proposed in 
this paper. 
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Bit Number Eldge Represented 

1-2 
Z-W3 
3-4 
4-1 
1-5 
2-5 
3+5 
4-5 

(1) (2) 

Fig. 11. Index number edge assignments for the subgrid. A “1” in the bit 
position means the edge exists. A “0” in the bit position means the edge of 
opposite direction exists. 

the descendant nodes, 3 bytes for the grid coordinates, and 1 byte for the drawing 
command. On a graphics workstation with virtual memory, this is not a large 
concern. 

Once we have the complete set of all possible contouring trees, we then need 
to consider how those trees are used, that is, how we go from a subgrid to a 
particular contouring tree set, and then how we generate coordinates from the 
contouring tree set. The first part, that of selecting a contouring tree set from an 
input subgrid, is simple. We can build an a-bit index, corresponding to the 
adjacency matrix for the directed graph of the subgrid, by evaluating the edge 
directions (see Figure 11). This index can be used to select the corresponding 
contouring tree set from our precomputed contouring trees. The only computation 
involved in this operation is the computation of the edge directions, and the 
formation of the index. 

The final step necessary, the generation of coordinates and drawing commands 
from the selected contouring tree set, is also simple. On each of the possible trees 
of the set (there may be more than one), we execute the preorder traversal 
algorithm of Figure 7. Figures for the number of memory references required for 
the complete algorithm are reported in [16]. In 1161 the pretraversal part of the 
algorithm is shown to require 602 32-bit memory references to (1) determine 
whether the subgrid contains the current contour level (177 references), 
(2) compute the center point of average value (263 references), and (3) compute 
the index number (162 references). The maximum references for any subgrid’s 
traversal is 2048 32-bit references. The maximum memory references then for 
the computation of the coordinates and drawing commands for any subgrid is 
2650. In [16] we see that for a typical problem, a 30 X 30 X 30 grid containing 
75,690 subgrids, only 9900 of those subgrids generate any coordinates and drawing 
commands. If we multiply this out, we find that the 30 X 30 X 30 grid computation 
requires some 38 million memory references. If we assume 50 nanoseconds per 
reference, this is about 1.9 seconds. At 250 nanoseconds per reference, this is 9.5 
seconds. For the complete model used to derive these figures, see [16]. 
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8. SPACE AND TIME COMPLEXITY 

If we propose a new algorithm for contouring, we must somehow compare that 
algorithm to other algorithms in terms of space and time complexity. Unfortu- 
nately, this is hard without specific implementations of both sets of algorithms. 
There are, however, some generalities we can discuss. 

With respect to the contouring tree algorithm and space-time complexity, 
there are two views, one for a software and the other for a hardware implemen- 
tation. For a software implementation, we have a requirement for an additional 
10 kbytes of space for the precomputed contouring trees. This space is not 
required in traditional contouring algorithms. In software, for each subgrid, we 
can precompute the contouring tree indices as already discussed and thereby add 
a byte of information to each subgrid. For a 30 X 30 X 30 array, we have 75,690 
subgrids, or a requirement for an additional 76 kbytes of information not required 
by a traditional contouring algorithm. Clearly, we buy time with this space, but 
in what way? The traversal of the contouring tree is at least as fast if not faster 
than traditional contouring algorithms. We can say this, because the three edge 
comparisons found in traditional algorithms are complete in the contouring tree 
algorithm once we have the tree’s index. Computing the tree index requires eight 
edge comparisons. This means that using contouring trees is a good strategy for 
situations in which we compute the contours for a set of subgrids several times 
for different contour levels, computing and saving the tree indices only once per 
subgrid. 

For a hardware implementation, we can do away with precomputing the 
contouring tree indices. The contouring tree index can be computed in the time 
it takes for one comparison if we have eight comparators working in parallel. We 
can have the precomputed contouring trees in ROM and can have multiple units 
performing tree traversals in parallel. The hardware solutions are many. Such 
solutions are more readily visible with the contouring tree algorithm than with 
traditional formulations. For a discussion of one particular VLSI implementation, 
the reader is referred to [17]. 

9. CONCLUSIONS 

At the start of this paper, we expressed two motives for our work: (1) a desire for 
a complete algorithm for contour surface display generation, and (2) a desire for 
an algorithm that can increase the speed at which the contouring operation is 
performed. With respect to the first motive, we have shown that a subgrid 
contouring algorithm can be built around a unifying data structure-the con- 
touring tree. The contouring tree moves the subgrid contouring operation beyond 
the ad hoc methods previously found in the literature. From our discussion, we 
know that the application of the subgrid contouring algorithm on each subgrid 
of all the two-dimensional slices (x-y, y-z, and X-Z) of a three-dimensional grid 
generates the desired contour surface display. 

Our second motive, a desire for an increase in speed for the contouring 
operation, is potentially solved by our algorithm. By showing that the computa- 
tions on the subgrid are independent of those required for any other subgrid, we 
have shown that our surface display generation algorithm is highly decomposable. 
The importance of this decomposability is striking if we look at our typical 30 x 
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30 X 30 grid that contains 75,690 subgrids. For such a case, there is a potential 
for 75,690 concurrent operations. Given a technology that allows such parallelism, 
and if we can both load and unload the data from that system, it appears as if 
this algorithm has the potential for speeding up one of the most frequently 
performed graphics computations. 
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