
A Decomposable Algorithm
for Contour Surface Display
Generation

MICHAEL J. ZYDA

Naval Postgraduate School

We present a study of a highly decomposable algorithm useful for the parallel generation of a contour
surface display. The core component of this algorithm is a two-dimensional contouring algorithm
that operates on a single 2 X 2 subgrid of a larger grid. An intuitive procedure for the operations used
to generate the contour lines for a subgrid is developed. A data structure, the contouring tree, is
introduced as the basis of a new algorithm for generating the contour lines for the subgrid. The
construction of the contouring tree is detailed. Space requirements for the contouring tree algorithm
are described for particular implementations.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation--display
algorithms; 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism-+&i& line/surface algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Contouring, contouring tree, contour surface display generation

1. INTRODUCTION

Contour surface display generation from three-dimensional grid data is one of
the most frequently and widely used graphics application algorithms [l-4, 6, 7,
9-13, 161. The core component of contour surface display generation is the
two-dimensional contouring of successive two-dimensional slices of the three-
dimensional grid (see Figure 1). The best review of the historical development
of two-dimensional contouring algorithms and their properties is found in [12].
The most striking thing about contouring literature is that the algorithms
described are never complete, clean solutions to the two-dimensional contouring
problem. The tendency in the literature is to rely on ad hoc treatment of special
cases, with no attempt made to fit the special cases into a general algorithmic
framework. An additional problem with the algorithms in the literature is that
they are computationally slow. This slowness prevents the algorithms’ use in
real-time situations on hosts other than supercomputers. This paper attempts to

This work has been supported by the Naval Postgraduate School Foundation Research Program, the
U.S. Army Combat Developments Experimentation Center, Fort Ord, California, and by the Naval
Ocean Systems Center, San Diego, California.

Author’s address: Code 52, Department of Computer Science, Naval Postgraduate School, Monterey,
CA 93943.

1988 ACM 0730-0301/88/0400-0129 $00.00

ACM Transactions on Graphics, Vol. 7 No. 2, April 1988, Pages 129-148.

130 - Michael J. Zyda

1

C
Y

t 1
0

G

I

x

1
k

SD Grid

m

1

7
n

0

axa

Subgrid

0 1 . . . k

x-y rlice taken from the

gD Grid for m = 23.

Fig. 1. Two-dimensional slice of a 3-D grid.

provide solutions for both the completeness and speed problems. The complete-
ness problem is dealt with by presenting an algorithm for two-dimensional
contouring based on a unifying data structure called the contouring tree. The
speed problem is lessened by presenting that same data structure as a means for
structuring subgrids of the two-dimensional grid into a constant form useful for
rapidly computing successive contour levels. As an additional part of lessening
the speed problem, the algorithm is shown to be eminently decomposable, that
is, amenable to large-scale parallel computation.

2. DEFINITIONS

A contour surface is a visual display that represents all points in a particular
region of three-space (x, y, z) that satisfy the relation f ((x, y, z)) = k, where k
is a constant known as th.e contour level. The function f represents a physical
quantity that is defined over the three-dimensional volume of interest. The visual
display created by this algorithm is the collection of lines belonging to the
intersection of both the set of points satisfying the relation f ((x, y, z)) = iz, and
a set of regularly spaced parallel planes passing through the region of three-space
for which the relation is defined.

For this study, the function f is approximated by a discrete, three-dimensional
grid created by sampling that function over the volume of interest. The three-
dimensional grid contains a value at each of its defined points that corresponds

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

A Decomposable Algorithm for Contour Surface Display Generation - 131

6(

Fig. 2. Example contour grid with contours
drawn for level 50.

to the physical quantity obtained from the function; that is, the value associated
with point (x0, yo, zO) is uo, where f(xO, yo, zo) = uo. To minimize confusion, we
specify the value at a particular grid point (x, y, z) by a(x, y, z) and the value at
a particular point (x, y, z) of the function by f(x, y, z).

The visual display of the contour surface is created from this three-dimensional
grid by taking two-dimensional slices of the grid, and constructing the two-
dimensional planar contours for each slice at the designated contour level (see
Figure 1). A slice of a three-dimensional grid is a planar, two-dimensional grid
assigned a constant coordinate in three-space; that is, an x-y slice of a((~, y, z))
corresponds notationally to a((~, y)) for a particular z coordinate. The two-
dimensional contours created are the lines that satisfy the relation a((x, y, z)) =
k for a particular coordinate, either X, y, or z, where again k is the constant
contour level. If we contour all x-y slices of the three-dimensional grid at contour
level k, we have a stack of parallel contours approximating the contour surface,
each set of contours corresponding to a particular .z coordinate. We can execute
a similar contouring operation on all the X-Z and y-z slices. The assemblage of
the three sets of parallel contours, that is, the simultaneous display of all the
contours created for the x-y, x-z, and y-z slices of the three-dimensional grid,
produces a “chicken-wire-like” contour surface display.

3. FOCUS ON TWO-DIMENSIONAL CONTOURING

Given that the contour surface display generation algorithm works on the two-
dimensional slice of the three-dimensional grid, it is best that we start our study
with an understanding of the operations performed on that slice. Figure 2 shows
a two-dimensional grid, with the contours drawn corresponding to contour level
50. Figure 3 shows that same two-dimensional grid, with the contours drawn
corresponding to contour level 100. The goal of the two-dimensional contouring
operation for such a grid is the determination of where lines are drawn on that
grid given a fixed contour level k. To develop an intuitive feel for that determi-
nation mechanism, we restrict our focus to a small portion of the complete two-
dimensional grid, the 2 x 2 subgrid. The 2 x 2 subgrid is defined to be that
portion of the two-dimensional grid bounded by four adjacent grid points. In the

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

132 - Michael J. Zyda

Fig. 3. Example contour grid with contours
drawn for level 100.

co,21 0 30 6d

two-dimensional grid of Figures 2 and 3, the lower left-hand 2 X 2 subgrid is
bounded by points (0, 0), (1, 0), (1, l), and (0, 1). The upper right-hand 2 X 2
subgrid of the same example is bounded by points (1, l), (2, l), (2, 2), and (1, 2).

4. AN INTUITIVE PROCEIDURE FOR CONTOURING THE SUBGRID

The procedure used to gerrerate the contours for a subgrid is the core part of two-
dimensional contouring. If we compute the contours corresponding to contour
level k for all subgrids of a two-dimensional grid, then we have determined the
complete set of contours for that grid. To provide an intuitive feel for contour
generation on the subgrid., we summarize that procedure to highlight potential
problems.

The first step in the procedure is to determine whether any contours should
be generated for the subgrid. That determination is based on whether any of the
subgrid’s edges contain the desired contour level k. An edge contains contour
level k if the contour level is within the range of values defined by the grid points’
edge.

The next part of the procedure is the computation of the contour edge
intersections for any subgrid edges shown to contain the contour level. The point
of intersection is computed through linear interpolation, using the grid values
assigned to the endpoints of the edge and their corresponding coordinates. The
point of intersection represents the location on the subgrid edge corresponding
to the contour level k.

The determination of the connectivity necessary to form the appropriate
contours from the list of edge intersections is the next part of the contour
generation procedure. Before attempting to describe the procedure that assigns
those connectivities, we first examine the subgrid’s contour crossing possibilities.
We accomplish that by looking at Figure 4, which shows the 12 possible ways for
contours to cross or intersect a subgrid. (Note that rotations of cases 1-12 are
considered as equivalent.)

Each of the cases of Figure 4 belongs to one of three subgrid crossing categories:
(1) single edge crossings, (!2) double edge crossings, and (3) constant edge borders
ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

A Decomposable Algorithm for Contour Surface Display Generation l 133

at the contour level. The 12 cases are drawn according to the following small set
of rules for contour crossings:

(1) Contours are directed by the values associated with the edges and are directed
toward their subgrid edge intersection points.

(2) For nonequivalued edges, if contours are indicated for a particular subgrid-
that is, if there are edges in the subgrid that contain the contour level-there
is only one point of intersection for each edge of the subgrid.

(3) Contours are continuous; that is, if a contour enters a subgrid, it must also
leave that subgrid.

(4) Equivalued subgrid edges at the contour level are special cases and are drawn
in their entirety. The only exception to this rule is that constant-valued
subgrids are not drawn. This is by convention.

The first rule means that one determines the placement of contours, and hence,
the connectivity of the edge intersections, by using both the values assigned to
the endpoints of each edge of the subgrid and the computed intersections of the
subgrid. The importance of this rule is twofold: First, it means that no outside
forces or parameters direct contour placement. Second, it means that computed
intersections are not the sole basis for determining the connectivity of the
contours.

The second rule means that, for an edge intersected by a contour, there are no
other points along that edge with contour value k. Since the range of values
assigned to that edge is continuous and monotonic, the origin of this rule is clear.
Note that this rule does not apply to equivalued edges.

The third rule, that of contours being continuous, means that if a contour
enters a subgrid it must also leave that subgrid; that is, the contour does not end
inexplicably in the middle of the subgrid. A corollary of this rule, in combination
with the first and second rules, states that contours entering a subgrid through
an edge must leave via a different edge. Again, note that this corollary does not
apply to cases with equivalued edges. This corollary holds though for contours
tangent to grid points of the subgrid if we assign one edge to that grid point as
the entering edge and assign the other edge as the leaving edge.

The last rule, that of equivalued subgrid edges at the contour level being special
cases and being drawn in their entirety, is a rule based on visual expectations for
the contour for such a subgrid edge. The only exception to this rule, that of not
drawing constant-valued subgrids, is adopted by general convention.

Once we have an idea of the types of contour crossings possible for a subgrid,
and once we have an outline of the rules used in composing those possibilities,
we can then address the problem of forming a procedure for assigning connectiv-
ities or drawing commands to the computed edge intersections. Starting with the
simplest cases of Figure 4, the equivalued edge cases, we clearly see that the
connectivity generation procedure for subgrids containing such edges at the
contour level is simple once those equivalued edges have been detected. If we
find that we have a “constant subgrid,” we do not need to issue any coordinates
or drawing commands because by convention we have decided not to draw that
case. Two of the other three possibilities, the “contour along one edge” and

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

134 - Michael J. Zyda

Single Contour Croseings

Ceee 1: Contour Tangent
to the Subgrid

l-l

Expected Picture:

Drawpoint P

Case a: one contour
Through Adjacent Edges

Expected Picture:

Yovetm s
Drewto b
Dremto c

Case 3: One contour
Through Parallel Edgem

Expected Picture:

uoveto .
Drswto b
Drswto c

Cese 4: Contour Acrome

Expected Picture:

noveto m
Drawto b
Drawto c

Case 6: Contour Through One Corner and Through One Edge

rs

rl

Expected Picture: Expected Picture:

noveto 0 c b

IGI

Yoveto .
c b Dr~wto b Drrwto b

Drewto c d Drrwto c

e Drmwto d

Figure 4a

Double Contour Croseings

Case 6: Two contours
Tangent to the Subgrid

Expected Picture:

Drawpoint L
Drswpoint b

Case 7: One Contour Tangent,
One Contour through Adjacent Edges

Expected Picture:

noveto .
Drswto b
Drawto c
Drawpoint d

Cese 3: ha contourm
Through Adjacent Edger = f 0 sl

Expected Picture:

uoveto .
Drrwto b
Drrrto c
Yoveto d
Drswto e

Figure 4b

-\ Drrrto f

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

A Decomposable Algorithm for Contour Surface Display Generation - 135

Equivslued Edges at the Contour Level

Case 8: contour Along Ceee 11: Constant Subgrid
One Edge

Expected Picture:

n

Expected Picture:

noveto a
Drawto b

0

None.

Caee 10: contour Along
Two Edges

-a

Expected Picture:

Yoveto a
Drawto b
Yoveto b
Drowto c

a

thee la: Contour Along 1 Edge
with Centrrl Point rt Level

LQ

Expected Picture:
Yoveto .
Drrwto b
Drrrto E
Drrwto d

c d Drawto b

Figure 4c

Fig. 4. All possible contour crossings of a subgrid.

“contours along two edges” cases, are equally simple. The only operation neces-
sary once such cases have been detected is to issue coordinates and drawing
commands corresponding to the detected edges. The “contour along one edge
with central point at level” case is a bit more difficult. In this case we note that
the region b-c-d is an isovalued region. From our rules above, we know that we
must have an additional edge leading to the isovalued region (contours do not
just end inexplicably in the middle of a subgrid). We also know that we have left
only one edge that can be intersected (the other three edges have intersections).
Hence, we have the line a-b in case 12.

At first glance, given the edge intersections for a subgrid, the connectivity
generation procedure for the single-contour cases of Figure 4 seems easy. It
appears as if the only operation to be done is the issuing of coordinates and
drawing commands corresponding to the straight line between the two points of
edge intersection. Such a procedure works well if we know that we have a single
contour crossing the subgrid. The only single-contour crossing case for which
this does not work is the “contour tangent to the subgrid” case, which is an even
simpler case for connectivity generation.

It is not until we consider the two contours crossing the subgrid cases of Figure
4 that we realize the potential for problems with the single-contour crossing
procedure. A procedure based only on connecting edge intersections cannot
differentiate between such cases as the “two contours tangent to the subgrid”
and the “contour across the diagonal.” There are other similar connectivity
generation problems evident for the two-contours crossing cases. The “two
contours through adjacent edges” case has four edge intersections. For that case
we need to know which of these possible intersection pairs should be connected.

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

136 l Michael J. Zyda

Now that we have established a background for the connectivity problem for
contour crossings of the subgrid, we can describe the procedure used to contour
the subgrid. This procedure uses as a data structure the contouring tree, which
provides a coherent framework for subgrid contouring.

5. THE CONTOURING TREE

A contouring tree is a data structure that maintains the edges and associated grid
values of a subgrid in a form that permits the rapid generation of the contour
display for any contour level contained within the subgrid (see Figure 5). The
formulation of the contouring tree is based on the observation that for any two-
dimensional grid a continuous series of contour displays can be created for
contour levels within the range of the minimum and maximum grid values [15].
By continuous, we mean that for any picture at “level” there is a picture at “level
plus delta,” where delta is small, as long as “level plus delta” is within the
minimum and maximum grid values.

The use of the contouring tree is outlined best with an example of a small two-
dimensional grid. Figures :2 and 3 depict the contours generated for contour levels
50 and 100. Figures 5 and 6 present the contouring trees created for two subgrids
of the larger grid, subgrids A and B. The edges of the contouring trees correspond
to the directed downhill edges inscribed on the subgrids of the figures. There are
eight directed edges on each subgrid, four for the boundary edges and four for
the edges to the subgrid’s center point. The value used for the center point is the
average of the four values comprising the corners of the subgrid. (For a reference
on the usefulness of the ce:nter point average value in generating smooth contours,
see [12].) The edges of the contouring trees are ordered, maintaining the same
counterclockwise ordering as in the original subgrids. An “M” under a node
means that a moveto display command should be generated for any coordinate
that is created along an edge that has that drawing command on its lower valued
node. A “D” means a drawto display command should be issued, and a “P”
means a drawpoint.

Display generation from a contouring tree is performed by a preorder traversal
of the contouring tree, producing a coordinate and drawing instruction whenever
the desired contour level is found to be within the range of an edge of the
contouring tree. A preorder traversal visits the root, the left subtree, the middle
subtree, and then the right subtree. An edge’s range is defined to be the set of
values between those associated with the nodes on either end of the edge. More
precisely, we say a contour level is within an edge if the following condition
holds:

lower-node’s_value 5 contour-level < higher-node’s-value.

For example, in Figure 5 at contour level 100, we issue coordinates and drawing
instructions for the edges, 1-2, 1-5, and l-4. (Note that edges are specified by
subgrid node numbers.) The drawing command issued for each of these edges is
the one associated with the lower valued node of the edge. The coordinate for
each of these edges is generated by a linear interpolation of the edge’s endpoint
coordinates according to the decrease in contour level along the edge.

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

A Decomposable Algorithm for Contour Surface Display Generation l 137

Node 3

Level 50

Node 1 Node 2

Node 1
Level 150 P
I\ I I

Node 2 Node 5 Node 4
Level 30 L-; 40 ~ejed\70 i

D

/\
3 Node 4

0
Node 2- Node

Level 40 Level 60 Level 31
D D

/\

D

Node 2
Level 40

D

Node 4
Level 30

M

Fig. 5. Contouring tree for subgrid A.

5.1 Traversing the Contouring Tree

There are some subtleties not evident from the above that are best detailed using
a pseudocode description of the traversal algorithm. Figure 7 shows the traversal
procedure for the contouring tree assuming a particular data organization.
The pointers to the descendant nodes of NODE are LEFT(NODE), MID-
DLE(NODE), and RIGHT(NODE). For each node of the contouring tree, there
are three pieces of information: the value associated with the node,

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

138 l Michael J. Zyda

Node 4 Node 3

Node 1

(130)

Node 2 Node 4
Level 90 Level 150

Node /i:.\ode 1
Level 40 Level 82 ‘5 Level 50 M ,D \ D

Node 3 Node 1
Level 40 Level 50

D M

Node /!I:\ Node 3
Levei 5F;y1340

Node 1
Level 50 Level 40

D M

Fig. 6. Contouring trees for subgrid B.

VALUE(NODE); the coordinate associated with the node, XYZ(NODE); and
the connectivity associated with the node, CONN(NODE).

The generation of coordinates and drawing commands from a contouring tree
begins with routine CONTOUR-SUBGRID of Figure 7. That routine receives a
pointer to the root node of the contouring tree. It then starts the traversal by
calling routine VISIT with that root node. Routine VISIT checks to see whether
the edge defined by the passed-in node and that node’s ancestor, NODE and
ANCESTOR, contains the contour level. If the edge does contain the contour
level, the edge intersection coordinate is computed using linear interpolation and
issued to the display along with the drawing command associated with that node,
CONN(NODE). If we issue a coordinate and drawing command for a node, we
need to check the subtree under that node for equivalued edges. If an equivalued
edge at the contour level is found, a coordinate and drawing command are issued
for that equivalued edge (routine VISIT-SUBTREE). Once a coordinate and
drawing command have been issued for an edge, and once the subtree beneath
ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

A Decomposable Algorithm for Contour Surface Display Generation l 139

that edge has been investigated for equivalued edges, further traversal of the
subtree is terminated. If an edge is found not to contain the contour level, the
traversal continues as depicted at the bottom of routine VISIT.

The preorder traversal procedure described above generates the coordinates
and drawing commands for the represented subgrid. To generate the coordinates
for a larger two-dimensional grid, we generate the contouring trees for each
subgrid of the grid and then apply the traversal procedure to those trees. We
note here that no ordering is required in the generation of coordinates for the
subgrids. The coordinate and drawing commands generated for each subgrid are
complete and independent of the picture generated for any neighboring subgrid.

5.2 Contouring Tree Limitations

Having presented the use of the contouring tree, we must look back and discuss
its capabilities and limitations. The contouring tree provides a uniform frame-
work for generating the coordinates and drawing commands appropriate to the
subgrid. The algorithm takes care of the single-contour crossing cases readily, as
well as the two-contours crossing case for the subgrid. The algorithm correctly
handles subgrids containing equivalued lines at the contour level and subgrids
containing a single grid point at the contour level.

The core problems with this algorithm all concern issues of picture efficiency.
Since the display generated for each subgrid is generated independently of any
neighboring subgrids, equivalued lines at the contour level on the border of a
subgrid are duplicated. A similar problem occurs for subgrid corner values that
equal the contour level. If we display either of the above cases on a calligraphic
display device, we see a bright line for the equivalued edge and a bright point for
the grid value equal to the contour level. Another problem, also caused by the
independent computation of each subgrid, is that no ordering is provided for
coordinates that come out of this algorithm. For calligraphic displays this is a
problem because for such devices electron beam movement is expensive. A
contour display that causes the maximum movement of the electron beam every
other subgrid greatly decreases the vector drawing capacity of the calligraphic
display device.

There are three possible solutions to the problem of duplicate vectors. The
easiest solution is to choose an output display device for which such picture
inefficiencies do not matter, that is, a raster display. Vector ordering is also
eliminated as a problem with this solution. The second solution is to set aside at
the contour level points and lines that correspond to subgrid boundaries. A final
pass at the end of the computation for a complete two-dimensional plane could
readily cull the duplicates. This second solution does nothing for the vector
ordering problem. If this solution to the vector duplicates problem is used, one
either does not worry about the vector ordering, or one performs a sort on the
vectors. The third solution, and the most expensive of the three, is to merge the
set of trees generated for the two-dimensional grid such that duplicate edges in
separate trees are eliminated. This solution has the added benefit that the
resultant contours are generated in an order that solves the beam movement
problem. This solution is not described in detail here, and the reader is referred
to [14] for further detail. For this study, the first and simplest solution is assumed,
and consequently, the expected output display device is the raster display.

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

140 l Michael J. Zyda

Contouring Tree Structure

Pointers to Descendent Nodes:

LEPTOJODE)
MIDDLE(NODE)
RIGHT(NODE)

Values Associated with Each Node:

VALUE(NODE) : grid value.
XYZ(NODE) : coordinate. of that grid value.
CONN(NODE) : drawing command (The M, D and P commands.).

Prucedure CONTOUR2XJRGRID(ROOT)

VISlT(ROOT,ROOT) # begin the traversal of the pointed at contouring tree.

Procedure VISIT(NODE,ANCESTOR)

if(NODE = NULL)
(

retmll

if((VALUE(NODE) <= CONTOUR-LEVEL c VALUE(ANCESTOR))

(VALUE(NODE) = CONTOURJF3rEL & NODE = ANCESTOR))
1

Edge contains the contour level.

Issue a coordinate computed via linear interpolation along the edge.

Issue CONN(NODE) as the drawing command.

Check subtrees of this node for equivalued edges.
VISIT~SJJWREE(LEFf(NODE),NODE)
VISIT_SUFTREE@4IDDLE(NODE),NODE)
VISI’I~SUBTREE(RIGHT(NODE),NODE)

rehun # no need to examine the subtree further.

) # endif coordinates were generated for an edge.

VISIT(LEFf(NGDE),NODE)
VISIT(MIDDLE(NODE),NODE)
VISlT(RIGHT(NODE),NODE)

visit left subtree.
visit middle subtree.
visit right subtree.

retmn

Fig. 7. Pseudocode of the traversal algorithm for the contouring tree.
(Continued on next page.)

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

A Decomposable Algorithm for Contour Surface Display Generation . 141

Procedure VISITfdBTREE(SUBNODE,SUBANCRSTOR)

if(SUEtNODE == NULL)

return
1

if(VALUE(SUBNODE) == CONTOUR-LEVEL)
(

Issue coordinates for the equivalued edge.
Moveto XYZ(SUBANCESTOR).
Drawto XYZ(SuBNODE).

end

Figure 7 continued.

6. CONTOURING TREE CONSTRUCTION

Contouring tree construction is best understood if we describe the procedure in
graph-theoretic terms. We begin by assuming that we have a graph of five nodes,
each node being one of the subgrid definition nodes or the center node of average
value. The eight edges on that graph are the subgrid boundary edges, and the
edges from each subgrid definition point to the center point of average value. We
can readily assign directions to each edge of this graph using the values assigned
to each node. Equivalued edges can be assigned an arbitrary direction. (One such
assignment is to make equivalued edges along the border point in a counterclock-
wise fashion and equivalued edges from the center point in toward the center.)
With these assumptions, each subgrid is perceived as a directed graph. The
question then becomes, how do we obtain the contouring tree, or trees, from this
directed graph? We can put this question in graph-theoretic terms if we notice
that a contouring tree is a directed tree. The problem then becomes one of
obtaining the directed tree, or trees, from the directed graph such that the
ordering of edge attachment in the tree corresponds to the ordering in the
directed graph. From graph theory, we have the requirement that a directed tree
has the indegree of its root node equal to 0, and the indegree of every other node
equal to 1 [5, p. 351. To examine the indegree of each node of the directed graph,
we must construct the indegree matrix D for that graph. The indegree matrix D
of a directed graph G is defined in [5, p. 351 as

D(i, j) = indegree(if i=j;

D(i, j) = -k, if i # j, where k is the number of edges in G
from i to j (i.e., -1 for all our graphs).

Figures 8 and 9 show the indegree matrices for our example subgrids.

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

142 l Michael J. Zyda

Fig. 8. Indegree matrix for the directed graph of subgrid A.

Fig. 9. Indegree matrices for the directed graphs of sub-
grid B.

From the figures, we note that the roots of the contouring trees are recognizable
from D as D (i, i) = 0. This matches the first part of the directed-tree requirement.
Further examination of the diagonal of the indegree matrices introduces two
difficulties in our attempts to convert the directed graphs into directed trees: (1)
multiple roots (D(i, i) = 0 for more than one node) and (2) D(i, i) > 1 for some
nodes. (Note: We have assumed that we have the structure represented by the
directed graph and that we can manipulate it.)

The first problem, that of multiple roots, is handled by producing multiple sets
of vertices and multiple indegree matrices such that there is only one root per
indegree matrix. For our case, the maximum number of roots for a subgrid is two.
We eliminate this problem by alternately removing each root node from the
complete set of vertices and all edges attached to that deleted node, and then
making separate indegree matrices. The second problem in the conversion of the
directed graph into a directed tree, that of D(i, i) > 1 for some nodes, is resolved
by node duplication. For each diagonal entry D(i, i) = n, where n > 1, we create
n - 1 duplicates of the node, for a total of n, taking care to copy the appropriate
values, coordinates, etc. We then reassign the original edges that went to the
single node, such that each edge receives its own copy of the duplicated node.
The edges that are reassigned are those between each node of column i of D that
has a -1 and each of the n duplicate nodes. When performed for each indegree
matrix created, this operation forms a new directed graph that is the desired
directed tree.

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

A Decomposable Algorithm for Contour Surface Display Generation l 143

6.1 Drawing-Command Placement

The preceding section details the creation of the contouring trees for the subgrid
using nothing more than basic graph definitions and simple construction proce-
dures. The only thing remaining for completing this construction is the placement
of the drawing commands into the contouring trees.

Drawing commands are placed in the contouring tree to indicate when a line
enters the region represented by the contouring tree either from a neighboring
subgrid or from a location off the grid. If we look at the structure of the contouring
tree, such as that exhibited in Figure 5, and consider that during the traversal
the edges are examined in a counterclockwise, downward ordering from the root,
we note that we need to place moveto (M) drawing commands on the lower
valued node of each edge that presents a new lowest value for the tree. We insert
these drawing commands by way of a preorder traversal of the directed tree,
placing a moveto command on each node that is a new lowest value for the tree.
This drawing-command placement strategy is based on the knowledge that, if we
have a contour level for which we desire a picture, the first drawing command
we generate for any contouring tree is a moveto. Although effective, this
procedure does not provide a complete solution to drawing-command insertion.
Some neighboring edges in the contouring tree, that is, edges sharing an ancestor
node, have a “split” between them; that is, the edges are not immediate counter-
clockwise neighbors in the original grid. For this case we must mark the discon-
tinuity in the contouring tree. We register the discontinuity on the lower valued
node of the edge where the discontinuity occurs. For example, in Figure 5 the
edges 3-2 and 3-4 are neighbors in the contouring tree but are not immediate
neighbors in the original grid. We mark this split by placing an “M” on the lower
valued node of edge 3-4.

To recognize the nodes that require a drawing command marking a split edge
in the contouring tree, we must first examine where split edges occur in the
subgrid. These occur wherever the subgrid has edge directions and tree edge
configurations similar to those in Figure 10, that is, where there are neighboring
tree edges not directly corresponding to neighboring subgrid edges. There are two
cases in the figure.

For Case 1 the split edge is edge b-d. This edge neighbors edge b-c in the
contouring tree but is not the immediate counterclockwise neighbor edge of b-c.
The lower valued node of edge b-d, d, receives a moveto (M) drawing command.
From the figure, we see that node d has a possibility of being a “sink,” that is, a
node with all incoming edges. This depends on the direction of edge a-d. There
are two cases to consider: (la) a --, d or (lb) d ---, a. Case (la), a + d, is easy to
show as possible because it may be seen in Figure 5. Case (lb), d + a, is somewhat
more difficult, because we must show that it cannot possibly occur within the
relations specified on Figure 10. We begin by compiling a small set of the given
relations on the directed graph shown in the figure:

r z c,
r 2 a,
r z d,
b 1 d,
a 2 d.

ACM Transactions cm Graphics, Vol. 7, No. 2, April 1988.

144 l Michael J. Zycla

Case 1

d b

r

\
x:

a

f
--

c

Case 2

a d

b

/\
c d

hi

c b d

d
M

Fig. 10. All split-edge possibilities for the subgrid.

Case (lb) then becomes the question, is it possible to get d 2 a? Assume that
d z a is possible. Now we have b 2 d, so we can replace d with b. We get b 2 a,
which is a contradiction of our original given, a 2 b, unless a = b. So we cannot
have d + a unless a = b. Can we eliminate the possibility of the edge from a to b
pointing from the center outward in the case in which a = b? We can do this
when we set up the original directed graph, by biasing the edge selection of
constant-valued edges so that they always point toward the center. Since the
direction assigned to a constant edge is arbitrary, we can assume that we never
see the condition d --, a, given the set of fixed directions assigned to Case 1.
Hence, for Case 1 of Figure 10, a split-edge node is required during preorder
traversal of the directed tree whenever we encounter, for the first time, a node
representing a sink grid point. We now show a similar finding for Case 2.
ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

A Decomposable Algorithm for Contour Surface Display Generation . 145

In Case 2 of Figure 10, the split edge is edge b-d. This edge neighbors edge
b-c in the contouring tree, but is not the immediate counterclockwise neighbor
edge of b-c. The lower valued node of edge b-d, d, receives a moveto (M) drawing
command. From the figure, we see that node d is possibly a sink. This depends
on the direction of edge u-d. There are two cases to consider: (2a) a + d or (2b)
d + a. Case (2a), a + d, occurs in Figure 6, so we know this case is possible.
Case (2b), d + a, is more difficult, because we must show that it cannot occur.
We list a few relations describing the partial directed graph of the figure:

r 2 c,
r I b,
r 2 d,
b r c,
a r b,
b > d.

The question arises whether it is possible to get d 2 a. Assume d 2 a is possible.
Now we have b 2 d, so we can replace d with b. This gives b I a, which is a
contradiction of our original given, a L b, unless a = b. So we cannot have d + a
unless a = b. Clearly, we already have eliminated the possibility of the edge
pointing from b to a by our initial configuration and by our biased edge selection
for constant edges. Hence, for Case 2 of Figure 10, a split-edge node is required
during preorder traversal of the directed tree whenever we encounter, for the
first time, a node representing a sink grid point.

There are no other split-edge configurations possible in the subgrid. If we add
a procedure that checks not only the new lowest value in the directed tree, but
also the first encounter with a sink grid node during the same preorder traversal,
we correctly place the drawing commands in the directed tree, converting it into
the desired contouring tree.

7. IMPLEMENTATION NOTES’

Once we have an algorithm for contour generation from the subgrid, we then
need to discuss its implementation. From our discussion, there are some obvious
concerns: the time and memory costs incurred for building and using contouring
trees. The answer to the contouring tree construction concern is that we can
build all possible contouring trees ahead of time. From our prior discussion, we
note that there are only 128 different subgrid possibilities or 128 possible
contouring tree sets. (Note that there are really 256 possibilities for the eight
edges of the subgrid. From our algorithm, we know that the center point of
average value does not occur as the root of a contouring tree. Hence, we only
have 128 subgrid possibilities or 128 contouring tree sets.) The only problem with
building the contouring trees ahead of time is that it takes some memory space.
The entire set of contouring trees can be constructed with 1104 nodes of the
format shown in Figure 7. This requires about 10 kbytes of storage for the
complete set of trees, given 2 bytes for the grid value, 3 bytes for the pointers to

1 The interested reader is referred to a recent publication by Lorensen and Cline [8], which has a
3-D surface construction algorithm whose implementation has similarities to the one proposed in
this paper.

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

146 - Michael J. Zyda

Bit Number Eldge Represented

1-2
Z-W3
3-4
4-1
1-5
2-5
3+5
4-5

(1) (2)

Fig. 11. Index number edge assignments for the subgrid. A “1” in the bit
position means the edge exists. A “0” in the bit position means the edge of
opposite direction exists.

the descendant nodes, 3 bytes for the grid coordinates, and 1 byte for the drawing
command. On a graphics workstation with virtual memory, this is not a large
concern.

Once we have the complete set of all possible contouring trees, we then need
to consider how those trees are used, that is, how we go from a subgrid to a
particular contouring tree set, and then how we generate coordinates from the
contouring tree set. The first part, that of selecting a contouring tree set from an
input subgrid, is simple. We can build an a-bit index, corresponding to the
adjacency matrix for the directed graph of the subgrid, by evaluating the edge
directions (see Figure 11). This index can be used to select the corresponding
contouring tree set from our precomputed contouring trees. The only computation
involved in this operation is the computation of the edge directions, and the
formation of the index.

The final step necessary, the generation of coordinates and drawing commands
from the selected contouring tree set, is also simple. On each of the possible trees
of the set (there may be more than one), we execute the preorder traversal
algorithm of Figure 7. Figures for the number of memory references required for
the complete algorithm are reported in [16]. In 1161 the pretraversal part of the
algorithm is shown to require 602 32-bit memory references to (1) determine
whether the subgrid contains the current contour level (177 references),
(2) compute the center point of average value (263 references), and (3) compute
the index number (162 references). The maximum references for any subgrid’s
traversal is 2048 32-bit references. The maximum memory references then for
the computation of the coordinates and drawing commands for any subgrid is
2650. In [16] we see that for a typical problem, a 30 X 30 X 30 grid containing
75,690 subgrids, only 9900 of those subgrids generate any coordinates and drawing
commands. If we multiply this out, we find that the 30 X 30 X 30 grid computation
requires some 38 million memory references. If we assume 50 nanoseconds per
reference, this is about 1.9 seconds. At 250 nanoseconds per reference, this is 9.5
seconds. For the complete model used to derive these figures, see [16].
ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

A Decomposable Algorithm for Contour Surface Display Generation 147

8. SPACE AND TIME COMPLEXITY

If we propose a new algorithm for contouring, we must somehow compare that
algorithm to other algorithms in terms of space and time complexity. Unfortu-
nately, this is hard without specific implementations of both sets of algorithms.
There are, however, some generalities we can discuss.

With respect to the contouring tree algorithm and space-time complexity,
there are two views, one for a software and the other for a hardware implemen-
tation. For a software implementation, we have a requirement for an additional
10 kbytes of space for the precomputed contouring trees. This space is not
required in traditional contouring algorithms. In software, for each subgrid, we
can precompute the contouring tree indices as already discussed and thereby add
a byte of information to each subgrid. For a 30 X 30 X 30 array, we have 75,690
subgrids, or a requirement for an additional 76 kbytes of information not required
by a traditional contouring algorithm. Clearly, we buy time with this space, but
in what way? The traversal of the contouring tree is at least as fast if not faster
than traditional contouring algorithms. We can say this, because the three edge
comparisons found in traditional algorithms are complete in the contouring tree
algorithm once we have the tree’s index. Computing the tree index requires eight
edge comparisons. This means that using contouring trees is a good strategy for
situations in which we compute the contours for a set of subgrids several times
for different contour levels, computing and saving the tree indices only once per
subgrid.

For a hardware implementation, we can do away with precomputing the
contouring tree indices. The contouring tree index can be computed in the time
it takes for one comparison if we have eight comparators working in parallel. We
can have the precomputed contouring trees in ROM and can have multiple units
performing tree traversals in parallel. The hardware solutions are many. Such
solutions are more readily visible with the contouring tree algorithm than with
traditional formulations. For a discussion of one particular VLSI implementation,
the reader is referred to [17].

9. CONCLUSIONS

At the start of this paper, we expressed two motives for our work: (1) a desire for
a complete algorithm for contour surface display generation, and (2) a desire for
an algorithm that can increase the speed at which the contouring operation is
performed. With respect to the first motive, we have shown that a subgrid
contouring algorithm can be built around a unifying data structure-the con-
touring tree. The contouring tree moves the subgrid contouring operation beyond
the ad hoc methods previously found in the literature. From our discussion, we
know that the application of the subgrid contouring algorithm on each subgrid
of all the two-dimensional slices (x-y, y-z, and X-Z) of a three-dimensional grid
generates the desired contour surface display.

Our second motive, a desire for an increase in speed for the contouring
operation, is potentially solved by our algorithm. By showing that the computa-
tions on the subgrid are independent of those required for any other subgrid, we
have shown that our surface display generation algorithm is highly decomposable.
The importance of this decomposability is striking if we look at our typical 30 x

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

148 l Michael J. Zycla

30 X 30 grid that contains 75,690 subgrids. For such a case, there is a potential
for 75,690 concurrent operations. Given a technology that allows such parallelism,
and if we can both load and unload the data from that system, it appears as if
this algorithm has the potential for speeding up one of the most frequently
performed graphics computations.

ACKNOWLEDGMENTS

The author wishes to acknowledge the hard work of the reviewers and the
associate editor of ACM Transactions on Graphics in the production of this paper.

REFERENCES

1. BARRY, C. D., AND SUCHER:, J. H. Interactive real-time contouring of density maps. In Proceed-
ings of the American Crystallographic Association Winter Meeting (poster session) (Honolulu,
Hawaii, Mar. 23-25). American Crystallographic Association, New York, 1979, pp. 233-234.

2. COTTAFAVA, G., AND LE MOLI, G. Automatic contour map. Commun. ACM 12, 7 (July 1969),
386-391.

3. DAYHOFF, M. 0. A contour-map program for X-ray crystallography. Commun. ACM 6, 10 (Oct.
1963), 620-622.

4. DUTTON, G. An extensible approach to imagery of gridded data. In Computer Graphics: Pro-
ceedings of SIGGRAPH 77 (San Jose, Calif., July 20-22). ACM, New York, 1977, p. 159.

5. EVEN, S. Graph Algorithms. Computer Science Press, Potomac, Md., 1979.
6. FABER, D. H., RUTTEN-KEWLEMANS, E. W. M., AND ALTONA, C. Computer plotting of contour

maps: An improved method. Comput. Chem. 3 (1979), 51-55.
7. GOLD, G. M. Automated contour mapping using triangular element data structures and an

interpolant over each irregular triangular domain. In Computer Graphics: Proceedings of SZG-
GRAPH 77 (San Jose, Calif., July 20-22). ACM, New York, 1977, p. 170.

8. LORENSEN, W. E., AND CLINE, H. E. Marching cubes: A high-resolution 3D surface construction
algorithm. In Computer Graphics: Proceedings of SIGGRAPH 87 (Anaheim, Calif., July 27-31).
ACM, New York, 1987, pp. 163-169.

9. MCLAIN, D. H. Drawing contours from arbitrary data points. Comput. J. 27,4 (Dec. 1974), 318.
10. SUTCLIFFE, D. C. An algorithm for drawing the curve f (r, y) = 0. Comput. J. 19, 3 (Sept. 1976),

246.
11. SUTCLIFFE, D. C. A remark on a contouring algorithm. Comput. J. 29,4 (Dec. 1976), 333.
12. SUTCLIFFE, D. C. Contouring over rectangular and skewed rectangular grids-An introduction.

In Mathematical Methods in Computer Graphics and Design, K. W. Brodlie, Ed. Academic Press,
New York, 1980, pp. 39-62.

13. WRIGHT, T., AND HUMBRE(:HT, J. ISOSRF-An algorithm for plotting iso-valued surfaces of a
function of three variables. In Computer Graphics: Proceedings of SIGGRAPH 79 (Chicago, Ill.,
Aug. 8-10). ACM, New York, 1979, pp. 182-189.

14. ZYDA, M. J. Multiprocessor considerations in the design of a real-time contour display generator.
Tech. Memo. 42, Dept. of Computer Science, Washington Univ., St. Louis, MO., Dec. 1981.

15. ZYDA, M. J. Algorithm directed architectures for real-time surface display generation. D.S.
dissertation, Dept. of Computer Science, Washington Univ., St. Louis, MO., Jan. 1984.

16. ZYDA, M. J. Real-time contour surface display generation. Tech. Memo. NPS52-84-013, Dept.
of Computer Science, Naval Postgraduate School, Monterey, Calif., Sept. 1984.

17. ZYDA, M. J., AND WALKER, R. A. Design notes on a single board multiprocessor for real-time
contour surface display generation. Comput. Graph. 12, 1 (Jan. 1988). In press.

Received September 1984; revised July and October 1987; accepted November 1987

ACM Transactions on Graphics, Vol. 7, No. 2, April 1988.

