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ABSTRACT
Player-Game interaction can be viewed as a sequence of game
events between game systems and players. In each event, a piece
of information (for example, a game challenge) is presented to the
player, and the player responds to that information by executing
proper in-game actions. Since di�erent games have di�erent sys-
tems and mechanics, it is di�cult to analyze and compare game
events across di�erent games. In this paper, we propose an approach
tomeasure the similarity between game events from di�erent games
quantitatively. This similarity information can then be used to trans-
fer probabilistic models built for analyzing and generating game
levels for one game to another game.

CCS CONCEPTS
•Human-centered computing→HCI design and evaluation
methods; • Applied computing → Computer games;
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1 INTRODUCTION
Since the popularity of video games has increased dramatically in
the past few decades, there is an increasing need to understand the
intrinsic properties that make video games so intriguing, in order
to analyze the "quality" of existing games and improve the designs
of future games. Exploring the similarity between di�erent games
should shed light on understanding the intrinsic properties of video
games.

In the Player Experience of Needs Satisfactionmodel [14], gamers
play video games to satisfy their psychological needs. For most
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gamers, they do not just play one game. Instead, they play di�erent
kinds of games. It suggests that those games that one player loves
to play can satisfy the player’s psychological needs in a similar
fashion.

It implies that at a certain level of abstraction, di�erent games can
be analyzed and compared together. Games that provide a similar
experience are similar at this level. Once this level of abstraction
is found, existing knowledge from one game can be transferred to
a di�erent game. For example, a game designer can create a game
so that the game levels will be generated based on the player’s
preference. That way, the game can provide playing experiences
similar to the levels from the given player’s favorite games

In this paper, we argue that a game level can be abstracted as a
sequence of game events. Within each game event, the interaction
between the player and the game can be characterized as a proba-
bility distribution. The similarity of probability distributions from
di�erent events measures how similar the experiences provided
by those events are. Probabilistic models (n-gram models) for one
game are built to classify enjoyable game levels and to generate
new enjoyable levels. Those models are then transferred to a di�er-
ent game by mapping each event in the original game to the most
similar event in the new game. Results show that a sequence of
game events is a valid abstract representation of a game level, and
this abstract representation enables cross-game level classi�cation
and generation.

2 RELATEDWORKS
Cousin’s article in [4] argued that the interaction between players
and games can be analyzed as a hierarchy of units. The top-level
unit is the interaction of a player playing the whole game. This
unit can be subdivided into the interaction of a player playing dif-
ferent game levels. Then each level can be subdivided into a series
of game events. The smallest units are called "primary elements"
within which interaction between the player and the game cannot
be further subdivided. It is di�cult to compare primary elements
across di�erent games because player actions in primary elements
can be entirely di�erent. For example, the primary element in a plat-
former game requires players to press the jump button to jump over
obstacles, while the primary element in a shooter game requires
players to move the cursor to aim and shoot a target. In this paper,
we focus our research on the level of game events. Though game
events are also di�erent in di�erent games, we can characterize the
challenge presented in each game event by measuring players’ per-
formance on that challenge. This approach enables us to compare
game events across di�erent games. One can argue that players’
performance on primary elements can also be measured to compare
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di�erent primary elements. The issue is that players’ performance
on a single primary element depends on other primary elements
in the same game events. For example, when a player is asked to
jump over two consecutive obstacles, the chance that the player
can successfully jump over the second platform depends on how
di�cult it is to jump over the �rst one. It implies that the depen-
dencies between primary elements in the same game event should
be examined, which is beyond the scope of this paper. The types
of challenges (di�cult, medium, or easy) presented to a player are
closely related to the enjoyment a player can obtain from a game
level [5]. Thus, analyzing a sequence of game events help us classify
the enjoyment a player can obtain from the game level.

Sequential analysis is important in understanding the interac-
tions between players and games [19]. In [19], lag sequential analy-
sis (LSA) is used to analyze sequential behavior patterns of players.
In [18], the sequential analysis is conducted on players’ behavioral
code to analyze the quality of video games objectively. Sequences of
game level elements and sequences of player behavior are analyzed
to �nd the connection between in-game content and player expe-
riences in [16], which helps improve the quality of automatically
generated game content. In our work, probabilistic models are built
to analyze sequences of games events that are characterized by
players’ performance.

Probability models have been widely used in game research. In
[12], Bayesian optimization is used to identify game design charac-
teristics that are important for tuning game di�culty and encour-
aging player engagement. N-gram [3] is a statistical model based
on counting n-element subsequences. It has been used in natural
language processing for document classi�cation and generation.
In [6], one-tile-wide vertical slices of platformer game levels are
treated as building blocks for constructing game levels. N-gram
models are trained on those building blocks to generate new game
levels that have a similar style to the levels in the training corpus.
A sentence in natural language processing consists of a sequence
of words, while a game level, in our view, consists of a sequence
of game events. Because of the analogy between words and game
events, we use n-gram models to classify and generate enjoyable
game levels.

Also related to our work is that of Snodgrass and Ontanon [17]
who �nd the mappings between game tiles from di�erent plat-
former games. Once such mappings are found, probabilistic models
(multi-dimensional Markov chains) trained for one game can be
transferred to generate game levels for another game. The gener-
ated levels for the new game would have similar geometric features
to the game levels in the original game. Compared to their work,
we want to �nd the mapping between the higher-level building
blocks, i.e., game events, across di�erent games. Thus, the levels
generated by our models would not have similar geometric features
but would provide game experiences that are similar to the levels
in the training corpus.

3 PLAYER-GAME INTERACTION
When a player plays a video game, the output devices continuously
present information about the current game state to the player, and
the player processes this information to form an understanding of
the game states and react accordingly through input devices.

In this sense, games can be viewed as systems of information.
Here, the information is the ”knowledge” - the informational con-
tent of the game state.

The player’s emotional needs [15] are satis�ed by the process
of player gathering information through the output device and
executing actions through the input device as a result of decision-
making about game states. To better analyze how information is
presented to a player and how the player reacts to it, we need to
understand when and what information is presented.

In this paper, a game event is de�ned to include the piece of
information presented to the player that contributes to his/her
game experiences, and the player’s response elicited by this piece
of information. Thus, the interaction between player and game can
be modeled as a sequence of events.

Information presented in an event will contribute to the overall
game experience. For example, a passcode on a piece of paper the
player will need later to unlock a treasure chest; the enemy at-
tacking animation that noti�es the player that he/she needs to take
proper actions now, such as blocking or dodging; or the background
music that sets tragic mood for the bad ending of the game.

Information can be divided into smaller chunks. For example,
the information about an entire level can be broken down into
the information about di�erent encounters. The information about
each encounter consists of the information about each enemy in
that encounter, and the information about each enemy includes
its type, its hit points, and its current movement. The hierarchical
structure of information implies the interaction between player
and game can be analyzed on di�erent levels of granularity. For
example, the characteristics of encounter events will determine the
game experience of the whole level, and the information for all
enemies in an encounter will determine the game experience for
that encounter. In this paper, we focus our discussion on the level
of encounters, which are called ”game events” in our paper.

3.1 Player Experience
In the Player Experience of Need Satisfaction model (PENS) pro-
posed by Rigby in [15], players are "glued" to video games because
they have psychological needs for competence, autonomy, and re-
latedness that can be satis�ed by games. Players’ experiences are
considered "good" if the psychological needs can be satis�ed. In
this paper, we focus our discussion on the Competence aspect of
PENS model.

Competence is described in [15] as the player’s need to conquer
challenges and feel a sense of mastery. This concept is closely
related to the theory of �ow proposed by Csikszentmihalyi in [5].

One of the key elements of achieving �ow is the balance be-
tween challenge and participant’s skill level. If the challenge is too
hard for the participant, the participant will feel anxious instead of
�ow; on the other hand, if the challenge is too easy, the participant
will be bored. A proper level of challenge is important for creating
�ow in participants, as well as satisfying players’ needs for compe-
tence. In this sense, a game level is considered "enjoyable," if proper
challenges are provided to players [1].

When an event provides a challenge to a player, the performance
of the player for this event can be evaluated by examining how
optimal the player’s reactions are. For example, in a �rst-person
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shooter (FPS) game, the performance can be evaluated as the total
quantity of resources, such as hit points and ammo, consumed to
complete the challenge. If a player is an expert in this game, it
is likely that he/she will use relatively fewer resources to defeat
enemies; on the other hand, if a player is a novice, he/she will likely
get hit more often and shoot less accurately, thus consuming more
resources.

The performance for an event can be viewed as the result of a
player’s cognitive ability (reasoning the proper action to take) and
physical ability (execute the action reasoned in a timely manner).
So, the outcome can be viewed as an indicator of challenging level
for the players.

Since the skill levels of di�erent players are not all the same and
mental/physical condition for the same player might not remain
the same across di�erent game sessions, the performance of dif-
ferent players across di�erent game sessions can be represented
as a random variable. So, the level of challenge of an event can be
characterized by the probability distribution of player performance
in that event. If most people can complete this event optimally, then
we consider this event to be relatively easy. However, if most peo-
ple’s performance in this event is poor, then we consider this event
to be di�cult. Two events in the same game are considered to have
the similar levels of challenge if their performance distributions are
similar.

We argue that the similarity of challenging level for events from
di�erent games can also be measured using player performance
distribution. Games are categorized into di�erent genres, and dif-
ferent game genres have di�erent core mechanics, which produce
di�erent types of challenges. In a �rst-person shooter game, the
primary challenge is to shoot enemies [20], which requires players
�rst to �nd the location of the enemy in the game space and coor-
dinate his/her hand to move the cursor to the enemy position and
press the �re button. In a platformer game, the core mechanic is
to jump over obstacles, which requires that players �nd the right
timing for jump and press the jump button accordingly. Although
the challenges in di�erent game genres require di�erent ability, we
can still compare the challenging levels of events from di�erent
genres if player performance for those events can be measured on
a uni�ed scale. Suppose there is an FPS game where each player
only has one hit point and one bullet, similar to western duels. Also,
suppose there is a platformer game where each player only has
one hit point, and the game will end if the player fails to avoid any
obstacle once. In both games, the possible outcome of an event is
either a success or a failure. This allows us to use the chances of
completing the events as a measure for comparing the similarity
between events from di�erent genres.

The event sequence for a game level can be characterized by
the performance distribution of each event within that sequence.
Two event sequences are considered similar if they have the same
number of events and similar performance probability distributions
for each pair of events at the same temporal location. We argue
that game levels whose event sequences are similar would provide
similar game experience.

Figure 1: Performance Distributions

4 QUANTIFY SIMILARITY BETWEEN GAME
EVENTS

KL-Divergence (Kullback-Leibler divergence) [13] is used to identify
the similarity between two performance distributions.

DKL(P | |Q) =
’
i
P (i) lo� P (i)

Q (i)

Here P and Q are the performance distributions wewant to compare.
P(i) is the probability for outcome i in the performance distribution
P.

KL-Divergence is a divergence measure named after Kullback
and Leibler. It is a non-negative value, and it is 0 when two per-
formance probability distributions are identical. The more similar
two probability distributions are, the closer KL-divergence will
approach 0. KL-divergence is not symmetric, so DKL(P | |Q) and
DKL(Q | |P) are not the same. In order to measure the similarity
between any pair of events. A modi�ed KL-divergence [13] is used
in this study, which is symmetric.

DKL(P | |Q) + DKL(Q | |P)
In this paper, player performance is measured as the resources

consumed to complete the event. Another possible measure of sim-
ilarity can be the di�erence between the mean values (averaged
resources consumed to complete the event) of two di�erent per-
formance distributions. In this study, we choose KL-Divergence
instead of mean performance di�erence, because KL-divergence
can distinguish between two performance distributions, even if
they have similar mean values.
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Figure 2: Screenshots for platformer game (left) and FPS
game (right) used in experiments.

Consider the performance distributions in Figure 1. The possible
value of performance for each event can be 0, 1 or 2. In the �rst
distribution, performance can be 0 or 2 with equal probability. In the
second distribution, performance is guaranteed to be 1. The mean
performance for both distributions are 1, but the shapes of these
performance distributions are entirely di�erent. Suppose the player
can only use up to two units of resources (for example, hit points)
through the whole level. If an event with the �rst performance
distribution happens at the very beginning of the level, then there is
a 50% chance that the player will fail (after consuming all resources).
However, if an event with the second distribution occurs at the
beginning of the level, it is guaranteed that the player can proceed to
the next event. The feeling of progression on those two conditions
would vary, thus a�ecting the overall game experience.

5 TRANSFER EXISTING GAME LEVELS TO
ANOTHER GAME

5.1 Games
Two games (Figure 2) of di�erent genres were created for experi-
ments in this paper.

The �rst game is a classic platformer game. Players need to
proceed to end of the level while avoiding obstacles (stationary and
moving). The player-controlled character is moved forward by the
game system at a constant speed. The only in-game action that
players can perform is jumping. In this game, the di�culty of an
event can be manipulated by changing the number of obstacles, the
height for each obstacle, the distance between obstacles, and the
speed of moving obstacles.

The second game is a stationary FPS game. The player-controlled
character is placed at a �xed location with a �xed orientation. The
player cannot move or rotate the character. Two types of enemies
can be spawned in the game. The �rst type of enemy will self-
explode after a certain amount of time. The second type of enemy
will continuously �re bullets towards the player. The player can use
the mouse to aim the on-screen cursor, then click the mouse button
to damage and destroy enemies. The di�culty of an event in the
FPS game can be manipulated by changing the number of enemies
for each type, the hit points for each enemy, the time before the �rst
type of enemy triggers self-destruction, and the attack frequency
and bullet moving speed for the second type of enemy.

For each game, 20 events of various di�culties were pre-designed
by authors of this paper. For simple games used in our experiments,

we think 20 events are enough to present all core game mechanics
at all di�culty levels.

5.2 Performance Distribution
Event performance is measured as the quantity of resource con-
sumed to complete an event.

In the platformer game, the player needs to avoid all obstacles
in one event. If a player fails to dodge one obstacle in an event,
he/she needs to re-play the current event from the beginning. The
resources for each event are the number of attempts available for
the player to complete the event.

In the FPS game, resources are hit points that the player has. If
a player is hit by an explosion or a bullet, he/she will lose one hit
point. For each event, the player needs to defeat all enemies before
running out of all hits points.

Performance distributions for 20 pre-designed events in each
game are calculated using player logs from �fteen college students
(N = 15, fourteen males and one female). All participants are within
the age range of 20 to 25, and all reported to have played video
games for at least two years. Before any data was collected, a tutorial
level in each game was presented to the participants to help them
get familiar with game controls and mechanics. Each participant
was asked to play all 20 events on a desktop computer inside a quiet
room. Event performance was recorded automatically to the hard
drive installed on the desktop computer. For each event in both
games, three units of resources were provided to the player, thus
leaving four possible outcomes for performance distribution, i.e.,
using zero, one, two, or three units of resources to complete the
event. The performance distribution models the probability that a
certain number of resources is needed to complete the event.

After all performance distributions were obtained, symmetric
KL-divergence was calculated between every platformer event and
every FPS event. Each platformer event is mapped to the FPS event
with smallest symmetric KL-divergence.We consider the platformer
event and its mapped FPS event to be the game events that provide
the most similar game experience to players.

5.3 Procedure
Two levels, each of 6 events, were manually generated by the au-
thors for the platformer game using 20 pre-designed events. Level
A is composed of relatively easy events. Level B is composed of
events with moderate di�culty. The average quantity of resources
needed to complete an event in Level A are 0.712 (SD =0.423), while
the average quantity of resources needed to complete an event in
Level B are 1.326 (SD=0.561).

In order to create FPS levels that provide similar game experience
to the two levels we created for the platformer game, events in
platformer Level A and Level B were substituted with their most
similar FPS events found using KL-divergence. In this way, two
transferred levels were created for the FPS game. In FPS Level A,
each event needs 0.705 (SD= 0.492) units of resources to complete
on average. In FPS Level B, each event needs 1.288 (SD= 0.556) units
of resources to complete on average.

Subjects for this experiment were the same 15 college students
whose playing logs were used for calculating the performance
distributions. Each participant was required to play all four levels
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Table 1: Mean enjoyment ratings with standard deviation
and results from within genre Friedman’s Test

games Level A Level B p-value

Platformer 3.47 ± 0.92 3.80 ± 1.01 0.1317
FPS 3.20 ± 1.21 3.80 ± 1.01 0.0833

(two from each game). The order for which game to play �rst is
randomized, and the order for which level to play within the same
game is randomized. A player must �nish both levels in one game
before playing the other game.

Players were asked to rate how "enjoyable" each level is on a
5-point scale, where one means least enjoyable and �ve means most
enjoyable. Ties are allowed, so two levels from the same game can
be assigned the same rating of enjoyment.

5.4 Result
Friedman’s Test [8] is conducted to check if all subjects have the
same preference for both games. Though the mean enjoyment
score for Level B is higher in both games, the di�erence between
Level A and Level B is not statistically signi�cant within each game
(Table 1). It implies that di�erent participants might have di�erent
preferences for enjoyable levels.

Spearman’s correlation coe�cient [9] was calculated between
the enjoyment rating for platformer game levels and the enjoyment
rating for their transferred FPS game levels. The Spearman’s cor-
relation is 0.6122 with p=0.015. This result shows that there is a
strong correlation between the enjoyment rating for platformer lev-
els and their transferred FPS levels. It implies that if a player prefers
a speci�c platformer level, he/she is likely to prefer its transferred
FPS level.

The number of subjects whose preferred level remains consistent
across games is counted. 14 out of 15 (93.33%) participants’ preferred
FPS level is the transferred level of his/her preferred platformer level.
This result shows that performance distributions do characterize
the types of challenges presented in events from di�erent games,
and it can be used to transfer knowledge we have for one game to
another.

6 PROBABILISTIC MODELS
In this section, we describe our approach for building the proba-
bilistic models for classifying and generating enjoyable levels for
the platformer game. From the last section, the most similar FPS
event is found for every platformer event. With this information,
models built for the platformer game can be transferred to classify
and generate enjoyable levels for the FPS game. The same games
and the same 20 pre-designed events from the last section were
used in this experiment. A game level is de�ned as a sequence of
game events.

l = e1e2e3 . . . en
Here l is a game level of n events. It starts at event e1 and ends at
event en .

To classify a game level l as "enjoyable" or "not enjoyable," The
Bayesian classi�er [11] can be used. Let P(f un |l) and P(not f un |l)
denote the probability that level l is fun and the probability that

level l is not fun, respectively. According to the Bayesian theorem
[11], we need to compare the following two probabilities

P (f un |l) = P(l | f un)P(f un)
P(l)

P (not f un |l) = P(l |not f un)P(not f un)
P(l)

Probabilities P(l | f un) and P(l |not f un) are di�cult to calculate di-
rectly, but we can approximate them using empirical data. Once we
have the approximation for P(l | f un), new levels can be generated
directly using this probability distribution.

6.1 N-gram Models
N-gram models [3] have been widely used in natural language
processing for document classi�cation. In an n-gram model, a doc-
ument is represented as a sequence of words, and the probability of
a certain word in a document is dependent on previous (n-1) words.
We argue that in a game level, the probability of a certain event can
also be modeled using n-gram.

6.1.1 Unigram. The unigram model is the simplest form of n-
gram (n=1). It assumes that the probability of each event is inde-
pendent. So, probability P(l | f un) can be approximated as

P (l | f un) =
n’
i=1

P(ei | f un)

The probability P(l |not f un) can be approximated in the same fash-
ion.

If unigram is used, then our probabilistic model is, in fact, the
Naive Bayes Classi�er. Here, we propose a modi�ed version of uni-
gram, denoted by "unigram-position." In unigram-position model,
the probability of each event is dependent on its absolute position
in the game levels.

P (l | f un) =
n’
i=1

P(ei | f un, i)

The intuition behind the unigram-positionmodel is that game levels
typically start with rather easy events and become more and more
di�cult as the player progresses through the level [2], making the
absolute position of an event important.

6.1.2 Bigram. Bigram model is another kind of n-gram (n=2)
model. It assumes that the probability of a certain event is de-
pendent on the event that proceeds it. In the bigram model, the
approximation is

P (l | f un) = P(e1 | f un)
n’
i=2

P(ei | f un, ei�1)

Compared to unigram, bigram can model dependence between two
consecutive events.

6.2 Event Clustering
Agglomerative Clustering [10] can build a hierarchy of clusters by
gradually merging clusters that are similar to each other to form a
larger cluster.

Agglomerative Clustering is used in our approximation models
for two reasons. First, approximation models need a lot of empirical
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data, but collecting the gameplay data is labor-intensive. By cluster-
ing similar game events together, we are lowering the number of
variables that need to be considered in our approximation models,
thus lowering the amount of empirical data that need to be collected.
Second, once similar events are clustered, we can generate event
patterns that are not present in the collected data. Since events be-
longing to the same cluster are similar to each other, new patterns
can be generated by substituting events in existing patterns with
other events in the same cluster.

We used symmetrical KL-divergence as the similarity measure
to cluster the 20 pre-designed events for the platformer game. 7
clusters were identi�ed.

6.3 Procedure
For this experiment, 150 random platformer levels and 50 random
FPS levels were generated. Each level was generated by randomly
selecting �ve events from 20 pre-designed events in each game.

A college student with two years of game design experience was
asked to play all 200 levels and annotate each of them as either
"enjoyable" or "not enjoyable." We found in the last section that
di�erent players tended to have di�erent preferences for game
levels. So, it is di�cult to achieve an inter-rater agreement without
categorizing players’ preferences �rst. Moreover, the objective of
this experiment is to demonstrate that probabilistic models built
for one game, for one player can be transferred to a new game for
the same player. So, one rater is enough for this experiment.

Among 150 platformer levels, 100 of them were used as the
training set to build probabilistic models, and the remaining 50
were used as the testing set. All 50 FPS levels were used as the
testing set.

Four probabilistic models were built for the platformer game: un-
igram, unigram with clustering, unigram-position with clustering,
and bigram with clustering. A total of 200 platformer levels were
generated from those models, with each model generating roughly
50 levels. The same rater was asked to play those 200 levels and
annotate each of them as either "enjoyable" or "not enjoyable."

In order to transfer models for the platformer game to classify
FPS levels, each FPS level was �rst transferred to a platformer level
by mapping each FPS event to its most similar platformer event.
Then, the transferred level was fed into models for classi�cation.

In order to generate transferred FPS levels, a platformer level
was �rst generated by probabilistic models, and then this level was
transferred to an FPS level by mapping each platformer event to its
most similar FPS event. A total of 200 FPS levels were generated in
this way, with each model generating roughly 50 levels.

6.4 Result
Classi�cation performance for each model is reported in Table 2.
Precision is the fraction of levels recognized as fun by our models
that are actually fun. Recall is the fraction of fun levels that are
successfully identi�ed by our models. F1 is the measure of model
performance considering both precision and recall.

F1 = 2
precision · recall
precision + recall

Among all four models, unigram with clustering is the one with
the least capability of classifying whether a level is "enjoyable." It

Table 2: Classi�cation performance for each platformer
model and the percentage of "enjoyable" platformer levels
generated by each model

models precision recall F1 enjoy

unigram 0.727 0.762 0.744 60.4%
unigram,clustering 0.609 0.667 0.636 47.8%
unigram-position, clus-
tering

0.824 0.667 0.737 60.4%

bigram, clustering 0.667 0.857 0.750 54.7%
baseline 0.500 0.500 0.500 46.0%

Table 3: Classi�cation and generation performance of trans-
ferred FPS models

models recision recall F1 enjoy

unigram 0.600 0.818 0.692 56.3%
unigram,clustering 0.560 0.636 0.596 45.1%
unigram-position, clus-
tering

0.714 0.682 0.697 51.0%

bigram, clustering 0.620 0.818 0.705 53.9%
baseline 0.500 0.500 0.500 44.0%

is caused by the fact that event clustering averages over all events
within the same cluster. Compared to unigram with clustering,
unigram-position model has the better performance in terms of
precision and F1 score. Cluster 7 is the group of easiest events
for the platformer game. When events from cluster 7 are present
in "fun" levels, they are more likely to appear at the beginning
of the level (P (c7 | f un, i = 1) = 0.037, P (c7 | f un, i = 5) = 0.019).
When those events are present in "not fun" levels, they tend to
appear towards the end of the level (P (c7 |not f un, i = 1) = 0.017,
P (c7 |not f un, i = 5) = 0.06). This shows that absolute position for
a certain event or a cluster of events is important for level clas-
si�cation. Bigram with clustering also shows good classi�cation
performance, because it can model dependency between two clus-
ters.

The percentage of "enjoyable" levels generated by each model is
also reported in Table 2 (last column). The baseline is the percent-
age of "enjoyable" levels when levels are generated completely at
random. Unigram with clustering has similar generation quality to
baseline because the averaging e�ect of events clustering will make
less favorable events appear more often and more favorable events
appear less often. When the bigrammodel is used, the improvement
on generation quality is not as signi�cant as the improvement on
classi�cation performance. The lack of position information in the
bigram model makes it generate unenjoyable levels starting with
di�cult events.

Table 3 shows the classi�cation and generation performance of
the transferred FPS models. All performance measures are higher
than the baseline, which shows the knowledge that probabilistic
models learned from the platformer game is transferred to the FPS
game. It should be noted that most of the performance measures
for the transferred FPS models are lower than the corresponding



Exploring the Similarity between Game Events for Game Level Analysis and Generation FDG’18, August 7-10, 2018, Malmö, Sweden

performance measures for the original platformer models. One
reason for this is that for some platformer events, the KL-divergence
between them and their most similar FPS events are not close to zero,
thus providing challenges that are not very similar to players. In
the future, we plan to analyze how the transferred models improve
performance as the divergence between the event from one game
and its most similar event from another game decreases.

7 CONCLUSION
In this paper, we propose an approach to measure the similarity
between game events from di�erent games quantitatively. Players’
performance on each event can be modeled by a probabilistic distri-
bution. The performance distribution can characterize the di�culty
of the challenge presented. KL-Divergence is used to calculate the
divergence between two performance distributions, thus measuring
the similarity between events from di�erent games. The results
from our experiments demostrate that knowledge and models from
one game can be applied to another game once the similarity be-
tween events from those games is explored.

In the next step, events can be characterized by a more compli-
cated model other than the performance distribution. The limitation
of the current approach is that we must have a uni�ed measure
of players’ performance in di�erent games to calculate event sim-
ilarity. One possible solution is to adopt a cognitive model with
which a game event can be characterized by the cognitive process
to complete the challenge. Now, the information presented in each
event is only viewed as challenges provided to the player to satisfy
the need for Competence or create the experience of �ow. The
needs for Autonomy and Relatedness can also be explored. For
example, how the information presented in a event contributes to
the storytelling of Role Player Game or elicits certain emotions can
be investigated. This would require an investigation of semantic
information presented in each event [7].
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