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Chapter 1. Introduction 

 

1.1. Motivation for Research 

 

Intelligent agents are playing an increasingly important role in game-based 

simulations[1][2][3][4][5].  Agent behavior has continued to improve from the purely 

robotic to more humanlike models based on ACT-R and other cognitive architectures[1].  

An important aspect of humanlike behavior is changing emotional states [6][7][8]. 

Human cognitive science, neuroscience, and psychology have extensively studied 

phenomena relating to the effects of emotion on cognition for centuries. Examples 

include Plato’s concept of emotion as a distraction from rationality, the Yerkes-Dodson 

Law illustrating enhancement of problem-solving given moderate emotional arousal [9], 

the discovery of emotion positively impacting decision-making in the Iowa gambling task 

[10], and beyond.  In the case of Phineas Gage, a physical lack of emotional processing 

capacity correlated with poor judgment [11].  Cognitive scientists have studied emotional 

effects on human planning, decision, and recall, among other processes, providing a 

reference point for computationally modeling such effects.  Relatively little work has 

been done on creating computational architectures that incorporate emotional effects with 

an integrated set of cognitive processes [12], and even less on modeling effects of 

emotion on the human capacity for decision-making [13].   
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Within the comparatively younger field of Artificial Intelligence, the subfield of 

computational cognitive modeling has often focused on deliberative processes such as 

decision-making, problem-solving or planning, in order to better understand human 

intelligence. These processes are often represented as independent of emotions. For 

instance, the ACT-R and Soar systems modeled human cognition for decades before they 

were used to run emotional simulation experiments.  

 

The study and evaluation of videogame AI characters with humanlike simulated emotion 

is part of a more general effort to model more realistic software agents.  Computational 

exploration of the interactions between emotion and other cognitive processes is 

important for developing architectures for general intelligence, and for the fields of 

human social and behavioral modeling, game AI, and human-computer interaction. For 

example, in a diplomacy training simulation, a human player could realistically anger an 

AI agent non-player character (NPC) through cultural insensitivity, causing the NPC to 

make decisions hostile to the player, even those detrimental to the NPC [14].  However, 

particularly in game AI, computational modeling of emotional effects on decision-making 

has yet to catch up to the range and depth of human studies’ results.   

 

There are several distinguishing features, both broad and specific, of suitable 

intersections between game AI and computational emotional modeling.  Generally, if one 

goal of including intelligent non-player characters in a videogame is to create a 
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psychological proximity with the player [15], then realistic emotional expression for 

NPCs would help solidify that bond and lend more engaging qualities to the game [16].  

More specifically, emotions can play a part in coloring or shaping NPCs’ interactions 

with the player, the game world, the storyline, and each other.  An internal emotional 

system gives NPCs a more specific context for their actions and choices, and also impacts 

the quality of their cognitive processes.  There is a need for a fast, lightweight, portable, 

and flexible model that can fulfill these objectives realistically.   

 

In serious games, the stakes of agent realism are raised from engagement for its own sake 

to engagement for the sake of a greater purpose such as learning or training[2][3][4].  

One example of a serious game in which realistic agent emotions would be very useful is 

a therapy training game.  The therapist in training would learn how to temper his or her 

own dialogue and actions in the real-time presence of emotionally normal and abnormal 

agents.  Another motivating example for simulation is a nuclear power plant operator 

overseeing an emergency plant shutdown. Such procedures require strong recall ability 

and precise decisions [17]. How might the operator’s emotional state affect his decisions, 

and how might emotion help or hinder his planning process under tighter time constraints 

[18]?  An operator in a positive emotional state might be more optimistic than statistically 

realistic estimates suggest, and would not feel the need to look into alternative plans; if 

unforeseen negative results get in the way during execution, the plan might not succeed. 

Also, in urgent situations, the dependence on emotional cues for decision-making 
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becomes stronger, leading to less “rational” choices [19]. To cite a specific case, 

irrationaloperator action was a major factor of the Three Mile Island nuclear plant 

accident in 1979 [20]. One potential real-world application of my model is to simulate the 

maintenance and shutdown of a similar nuclear plant, and to compare its performance 

against that of human subjects planning out and executing the same sets of (simulated) 

tasks during common crises such as a pipe rupture. 

 

Very few AIagents have been designed from the ground up to model a wide set of effects 

of emotion on deliberative human processes such as decision-making. In terms of 

structure, one of the closest matches to the research presented in this dissertation is H-

CogAff [21], which has a cognitive architecture incorporating the potential for pervasive 

emotional effects, as well as a “deliberative layer” of cognition that includes decision. 

However, H-CogAff has not been implemented, and does not clearly define a working 

memory structure that can facilitate the interaction between emotion and deliberation, and 

also does not delineate a range of emotional effects. Similarly, systems such as EM [22] 

and Tabasco [23] model a planning function without dependent cognitive processes that 

might be affected by emotion.  Other systems like certain ACT-R extensions [24][25][26], 

though built on an integrated cognitive architecture, were designed to model one 

emotional effect on recall or decision, and do not use a more general model of emotion 

and cognition to produce a wider set of results across effects or problem domains.  

Moreover, ACT-R, Soar, and other major cognitive architectures are not particularly 
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portable for embedding in various game agents that simply need supplementary 

emotional state-based emotional subsystems for realistic decision-making. Emotional 

state is disambiguated here as a high-level or consolidated variable based on the 

emotional contents of working memory [27], leaving constant other factors such as 

temperamental predispositions and physical comfort.  Emotional state is also a temporal 

structure, relatively long-lasting as compared to the vagaries of event-specific emotional 

episodes [13] but shorter-term with respect to affective temperament.  With that 

definition, emotional state is a state readily measured in human experiments by self-

report combined with physiological signal analysis.  Several human experiments use 

emotional state to provide straightforward quantitative correlation with emotional effects 

on decision-making.  Emotional state is therefore a useful variable for validation of 

claims of humanlike realism in a computational model of such effects.  However, effects 

of emotional state on decision-making have not been sufficiently addressed in agent 

architectures used in game-based simulations.  Fortunately, such effects are well studied 

in cognitive science.  That body of work provides a sound basis for creating 

computational models of emotionally sensitive agents. 

 

1.2. Problem Statement 

 

The research problem addressed in this dissertation is the development of computational 

agent models that reflect the influence of human emotional state on decision-making in 



 

11 

game-based simulations.  Consider again an agent operating a simulated nuclear power 

plant.  The operator agent needs to respond to various anomalous situations that arise 

during power plant operation. For example, the operator agent, observing a sudden drop 

in cooling water pressure, would need to make several correct assumptions and decisions 

in short order.  Those decisions require attention focus, recall ability, and precise choices, 

all of which are human processes susceptible to the effects of emotional state. For 

instance, an operator in a positive emotional state is more likely to be optimistic and 

underestimate the likelihood of a critical cause (e.g., pipe rupture) for the loss of water 

pressure, whereas an operator in a negative emotional state is more likely to suspect such 

a cause and act accordingly.   

 

My contribution is to enrich intelligent agent behavior in games through incorporating 

emotional state-based effects on decision-making.My agent architecture model 

incorporates four main integrated components: an associative semantic network model of 

memory operated on by modified spreading activation functions as per ACT-R, a model 

of human deliberative processes based on Newell’s Unified Cognitive Architecture and 

Kahneman’s two-system cognitive theory, a hybrid appraisal / dimensional model of 

human emotional, and a small set of emotional state-dependent mechanisms affecting the 

agent directly.  Together, these components are used to model a set of emotion-based 

effects ondecision-making behavior.  The implemented agent and its underlying model 
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are also designed to contribute to the general understanding of how emotion affects 

cognition and how to simulate and validate these effects computationally.   

 

1.3. Research Hypothesis 

 

An emotional agent architecture based on a precise combination of principles from 

cognitive science and computational modeling exhibits realistic behaviors in complex 

decision-making tasks performed across simulation domains.  Such an agent 

computationally models documented and quantifiable emotional state-dependent 

emotional effects with a high degree of fidelity to human data, enabling realistic 

humanlike decision-making.  Evaluation is by t-testscorrelating existing human 

experiment data with results of computationally modeling these experiments. 

 

Chapter 2. Background and Literature Review 

 

2.1. Cognitive Modeling 

 

Unified theories of cognition [28] are designed to explain and model all known aspects of 

human cognition in a single system.  According to the “Newell Test” [29], cognitive 

aspects to be unified include flexible, dynamic and adaptive behavior, as well as natural 

language processing and others. Study of unified cognitive theories gave rise to several 
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well-known architectures such as Soar, ACT-R, and CLARION.  In such systems, 

emotion can influence cognitive processes by means of providing goal-based cues and 

biases.   

 

The computational modeling of human decision-making as part of cognition iscast as an 

interdependent set of deliberative cognitive processes [30][31], according to somestudies.  

Kahneman and others refer to these deliberative processes as belonging to “Deliberative 

subsystem” of cognition, as distinct from the reactive processes of “Associative 

subsystem” [18][32]. Associative subsystemincorporates emotional heuristics [33] and is 

described as fast, intuitive, associative, and parallel.  By contrast, Deliberative subsystem 

incorporates slower, rule-based, serial cognitive processes.  The two systems interact and 

interrupt one another extensively.  Some models build in a “System 3” of reflective 

(metacognition) processes [34][35]; the model presented in this dissertation relegates 

meta-management and associated processes to Deliberative subsystem. 

 

The concept of an associative memory network underlying the interaction between 

emotion and cognition was pioneered by Bower [36] to better define the relationship 

between emotional state and memory. Anderson’s ACT and ACT-R teams developed a 

similar theory to formalize activation strength (i.e., importance and relevance) of linked 

concept “nodes” in a memory network.  The activation strength formula in ACT-R 

represents a node’s activation strength as its “base” activation (i.e., how recently and 
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frequently the node has been activated) plus the node’s strength of association with 

adjacent nodes.  The formula does not take into account emotional impact of a node to 

generate activation strength.  A later expansion of ACT-R modeling the Iowa Gambling 

Task [25] uses a modified equation thatincludes emotional weight as risk probability, 

particularly on the link betweena node representing a deck of cards and the previous 

positive or negative outcomes of choosing a card from that deck.   

 

Bower [36] represents the human memory as a semantic network of associations.  In 

Bower’s theory, a node represents a semantic concept (or an aggregated chunk of 

concepts and links).  Nodes are connected by directed links which themselves have 

semantic specifications, for instance a “causal link” from node A to node B, denoting that 

A causes B.  Other semantic link types might include “negates” or “enhances.”  The 

semantic link concept enables straightforward processing of emotional value between 

connected nodes.  For instance, if A was a very displeasing event and B is found to negate 

A, B would thereafter be regarded as more pleasing than before.  Links can also provide 

referents for directed emotion: if situation B is frustrating, and person A is found to have 

caused B, the frustration may develop into anger at A.   

 

 

2.2. Appraisal and Dimensional Emotional Theory 
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Dimensional theories of emotion generation are similar to appraisal theories in that both 

map emotion-evoking events to emotional states. Appraisal theories relate discrete 

appraisal elements to discrete emotional states, while dimensional theories posit a non-

relational “core affect” (or emotional state) emotional state tracked as a single uniquely 

determined point along a number of continuous, orthogonal dimensions [37]. The 2-

dimensional circumflex theory [38] places various emotional states around the axes of 

Pleasure (a.k.a. Valence) and Arousal. Pleasure represents the positive or negative 

reaction to an entity or situation, and Arousal represents the intensity or importance of 

same.  The Pleasure, Arousal and Dominance (PAD) dimensional theory is named for its 

three dimensions of Pleasure, Arousal, and Dominance.  Dominance is defined as the 

degree to which a person feels powerful or in control of their situation, analogous to 

coping potential in appraisal theory [39]. PAD is analogous to a 3-dimensional expansion 

of the circumflex.  For instance, in PAD theory both anger and anxiety arise from similar 

low-Pleasantness and high-Arousal events.  However, anger and anxiety are on opposite 

sides of the Dominance dimension: an anxious person feels less in control of their 

situation than does an angry person.  Like Challenge and Threat theory, but unlike the 

concept of primary vs. secondary appraisals, PAD posits both Pleasure and assessment of 

coping potential (Dominance) at the same level.  This paradigm allows an agent to 

quickly evaluate primal (e.g., fight vs. flight, anger vs. fear) circumstances [40] on a 

single node without resorting to semantic traversal of the network to make a decision; for 
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instance, to choose an action that will raise both Pleasure and Dominance, especially if 

either is critically low.   

 

2.3. Emotional Effects on Decision-Making 

 

Human emotion can cause critical interrupt signals to cognitive processes [41].  An 

emotional signal would be responsible for focusing cognitive attention onto an 

emotionally compelling stimulus [42].  Emotional intensity grants a heightened priority to 

relevant concepts attended to during an emotional episode. In a similar vein, the cue 

utilization theory [43] states that under higher levels of emotional intensity (as with 

similar stressors like task urgency or difficulty [44]), cognitive cues not central to the 

arousing agent or situation would be increasingly ignored. This “tunneling” effect could 

lead to overlooking subtle but important details, or leave the subject open to misdirection 

and other forms of deliberate manipulation [7].  

 

Emotion may refocus cognition away from a task at hand, causing distraction, even 

though the emotional episode is incidental / irrelevant to the task. The recorded theories 

of incidental emotion as distraction date back to the ancients, who likened emotion to two 

horses (aka associative subsystem) drawing “the chariot of the soul,” with reason or 

rationality (deliberative subsystem) as the charioteer.  Too much independent activity by 

the horses, especially the black one that represented negative emotions, could disrupt the 
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movement of the chariot as it proceeded towards enlightenment.    Emotional as an alarm 

signal also primes Deliberative subsystem cognitive processes to cope with an 

emotionally charged stimulus. In planning, the signal may cause a change of plan, or a 

change of goal, or a reappraisal of the stimulus and associated concepts.  

 

Distraction of attention from a concept related to a task at hand may also play an adaptive 

role in decision-making.  Some human cognitive science studies have shown that the 

nature of the distraction is the key.  If the distractor is also task-related, then there can be 

associative creativity in the solving [45]. 

 

Many experiments use an agent’s overall emotional stateto measure emotional effects on 

human cognition, as it provides a straightforward correlation between gestalt 

physiological measurements and self-reported prevailing emotional state [36][46]. 

Negative emotional state (displeasure) can lead to narrow-minded but careful decision 

making; positive emotional state (pleasure) can lead to broad decisions that attempt to 

achieve multiple goals with less attention to detail [47] and more heuristic processing 

[48].  

 

One study showed that for a subject in a positive emotional state, plan goals seem less 

costly, and positive outcomes of choices seem more likely [49][50]. Conversely, people in 

a negative emotional state pessimistically overestimate cost and planning time, allowing 
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them in some cases (when the plan is not abandoned) to plan more optimally than people 

in neutral or positive emotional states.  To explain the overall positive emotional state 

phenomenon, Mayer suggests that people in positive emotional states devote less time to 

planning because they expect favorable outcomes, and so do not look much further than 

the first plausible course of action [48].  Another experiment demonstrates that either 

positive emotional stateor negative emotional state (as opposed to neutral emotional 

state) impairs a subject’s planning by reducing planning steps (i.e., search breadth and 

depth) with respect to plan execution actions.  Both non-neutral emotional states also 

cause an underestimation of steps needed to achieve a goal, leading to fewer optimal 

solutions generated [46].   

 

Bower’s work on emotional state and memory [51][52] shows that concepts associated 

with a positive or negative aspect are more easily recalled when learned during a 

congruent emotional state (i.e., sustained emotional state).  The emotional state-congruent 

recall effect is hypothesized to be due, ultimately, to congruence building emotional 

arousal, although matching emotional state is not necessarily the cause of the recall 

congruence.    

 

A recalled concept may be strongly arousing enough that it wrests attention from the task 

at hand.  This ties in to the previous discussion of distraction vs. creative association, as 

emotional state-related distractors may or may not also be task-related.   
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Table 1. Existing human experiments of emotional state’s effects on decision-making 

 

Study Emotional state 

Induction Method 

Task Result vs. 

Neutral 

Emotional state 

[53]Spies, 1996 Autosuggestive self-
reference + music 

Working memory 
span 

Positive 
emotional state: 
impairment. 

Negative 
emotional state: 
impairment 

[54] Hesse, 1996 Autosuggestive self-
reference + music 

Word vs. non-word 
recognition 

Positiveemotiona
l state: no effect 

Negative 
emotional state: 
facilitation 

[55] Oaksford, 1996 Film clips Tower of London Positive 
emotional state: 
impairment 

[56] Gasper, 2002 Autobiographical 
memory 

Switching to novel 
word-finding 
strategy 

Positive 
emotional state: 
no effect 

Negative 
emotional 
state:facilitation 
after switch 
instruction  

[46] Phillips, 2002a Film clips and music Tower of London 
(young subjects 19-
37) 

Positive 
emotional state: 
no effect 

Negative 
emotional state: 
no effect 
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[46] Phillips, 2002a Film clips and music Tower of London 
(older subjects 53-
80) 

Positive 
emotional state: 
impairment 

Negative 
emotional state: 
impairment 

[57] Phillips, 2002b Story Initial letter fluency 
(syntax 
association) 

Positive 
emotional state: 
no effect  

[57] Phillips, 2002b Story Uses of objects 
fluency (semantic 
association) 

Positive 
emotional state: 
facilitation  

[57] Phillips, 2002b Autobiographical 
memory 

Switching syntax 
and semantics 
processing fluency; 
Stroop color test;  
switching Stroop 
color and word 
identification 

Positive 
emotional state: 
impairment  

[58] Dreisbach, 
2004 

Viewing pictures Switching to novel 
stimulus 

Positive 
emotional state: 
facilitation 

Negative 
emotional state: 
no effect 

[58] Dreisbach, 
2004 

Viewing pictures Switching to 
inhibited stimulus 

Positive 
emotional state: 
impairment 

Negative 
emotional state: 
no effect 

[59] Dreisbach, 
2006 

Viewing pictures AX Continuous 
Performance Task: 
maintain and 

Positive 
emotional state: 
impairment 
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execute goal Negative 
emotional state: 
no effect 

[59] Dreisbach, 
2006 

Viewing pictures AX Continuous 
Performance Task: 
switch goals 

Positive 
emotional state: 
facilitation 

Negative 
emotional state: 
no effect 

 

As shown in Table 1, survey of experimental evidence [60] on the facilitation or 

impairment of emotional state on various decision-making tasks presents mixed results, 

dependent on several extra factors such as the nature of the task and the population being 

tested.  The survey’s main findings are summarized in Table 1, along with supplemental 

studies [54][56][59].  All emotional states were estimated by subjects’ self-reported rating 

scales.  The combination of these results supports the claim that context (environment, 

task at hand, memory contents) influences how emotional state affects decision-

making[56].  

 

Similar to results from the Tower of London experiments [46], another study [53] showed 

that emotional state impaired attention function when memorizing words or sets of 

words.  Their results also showed that working memory capacity was adversely affected: 

fewer words in a list were retained short-term in both positive and negative emotional 

states.   
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The Tower of London emotional state experiments [55] were similar to those of Phillips 

et al. in that both showed positive emotional state as detrimental to a focused planning 

task.  However, Oaksford’s study did not show a significant difference between neutral 

and negative emotional state, though the tendency was towards impairment.  The 

differences in the experiments were the emotional state induction specifics: Oaksford 

used only film clips, while Phillips used music as well as film clips.  Also, there was no 

separation of age groups in Oaksford’s experiment.   

 

The 1996 study by Hesse and Spies [54] was an early demonstration of negative 

emotional state facilitating decision-making.  Negative-emotional state participants were 

found to perseverate on a very cut-and dried priming stimulus (e.g., PERUSE, a synonym 

of the target word READ), which helped them differentiate more readily whether the 

target was a word or a scrambled non-word, e.g. REDA, in such cases.  Positive-

emotional state participants, on the other hand, did better with free-association priming 

stimuli (e.g., WRITE and READ), as expected.   

 

Gasper did several experiments in 2002 [56] that led to a generally similar conclusion 

regarding how negative emotional state can facilitate decision-making. Gasper showed 

that negative-emotional state subjects were quicker to switch to a new specific strategy 

that broke a set pattern of word letters in a string (e.g., every other letter as in 

RXEXAXD before the set-breaking item, and every third letter RXXEXXAXXD after).  
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Positive-emotional state subjects, being less bound to a single strategy due to increased 

free-association flexibility on the previous data, did not take the set-breaking item to 

mean the beginning of a single new pattern set, and kept trying their initial strategy or 

strategies in addition to the correct new one.   

 

The battery of experiments (aside from the Tower of London experiment, discussed later) 

done by Phillips et al. in 2002 [57] studied the effect of positive emotional state on 

several color vs. word identification tasks.  Particularly, they used the Stroop test, 

wherein the name of a color is written in incompatibly colored ink.  The results showed 

that positive emotional state impaired forced strategy switching, i.e., alternately having to 

read the word vs. say its color.  The researchers’ rationale was that attention focus would 

need to be strong in order to maintain a new strategy in order to make the correct 

decisions in shorter time.  In the same paper, Phillips et al. conducted several syntax vs. 

semantics fluency experiments.  Positive emotional state impaired syntax fluency (e.g., 

“name as many words as you can that start with R”), but facilitated semantic fluency 

(e.g., “name as many uses for a newspaper as you can”).  The result echoes the finding of 

Hesse and Spies; initial letter syntax fluency requires a strong feature-matching capacity, 

while semantic fluency calls for more free association.   

 

Dreisbach's and Goschke’s experiments [58] also demonstrated the perseveration vs. 

distractibility effect of emotional state, using two letter set switching tasks: learned 
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irrelevance and perseveration.  In an example of the learned irrelevance experiment, the 

gray letter on a card with gray and black letters is initially the target stimulus, but new 

white letters become the target and black letters become distractors. In a similar case of 

the perseveration experiment, the gray letter on a card with gray and white letters is 

initially the target stimulus, but then gray letters become the distractors and new black 

letters become the target stimulus.  Results for perseveration (wherein the novel stimulus 

is a distractor) were impaired by positive emotional state, while results for learned 

irrelevance (wherein the novel stimulus is the target) were facilitated.  The hypothesis of 

the researchers was that positive emotional state increases a bias towards novel stimuli.   

 

Phillips’ Tower of London results [46] are unique in the survey in that they show negative 

emotional state impairing planning capability vis-a-vis neutral emotional state results, 

particularly for the older group of test subjects.  The Dreisbach AX Continuous 

Performance Task study [59] is a prime example of how positive emotional state can 

facilitate decision-making ability with task-related distractors.  These experiments, and 

my modeling thereof, are described in more detail in the Key Experiments and Results 

chapter, and an analysis aimed towards modeling all of the survey’s studies is in the 

Discussion chapter.  

 

One analysis that encompasses several of the above survey’s results is that positive 

emotional state leads to increased distractibility [61].  When distractors are irrelevant to a 
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cognitive  task at hand, increased distractibility impairs decision speed and accuracy [59].  

However, when distractors are task-relevant, increased distractibility leads instead to 

cognitive flexibility and creative solutions[62].   

 

Aside from the effects illustrated by the survey, the Affect Heuristic [7] is another 

emotional state-dependent and time-dependent effect of emotion on decision-making: 

“gut feelings” during emotionally arousing moments can be a useful heuristic to making a 

decision in a timely manner, bypassing deliberative evaluation or elaboration. 

Illustrations of the heuristic in action might include a quarterback making a split-second 

choice to throw to a particular receiver: “the situation just felt right.” Similarly, “the 

situation just felt wrong” to a military commander making the time-sensitive call to shoot 

an object out of the sky even though it was possibly not an enemy missile but a friendly 

fighter plane.  This heuristic would be useful for game agents when time-sensitivity is a 

factor in decisions. 

 

Limiting the time to judge a situation’s risk and benefit induces a sense of urgency and 

also increases human reliance on the affect heuristic. Under time pressure, the inverse 

relationship between expected risks and benefits (higher risk implying lower benefits and 

vice versa) becomes more pronounced in decision-making [19].  
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2.4. Previous Work: Review of Relevant Computational Models 

 

The impact of the human psychological and cognitive studies outlined above has 

contributed to an increase in computational modeling of emotion and cognition. Some 

affect-antecedent AI systems, for example, model plan-based appraisal: how thinking of a 

plan changes emotional state [8]. Affect-consequent systems[63]—computational models 

of the effects of emotion on cognition— may be categorized along several criteria.  One 

clear demarcation is between “behavior-consequent” and “cognitive-consequent” models, 

although many systems include both of these functions.  

 

A behavior-consequent model maps an agent’s emotional state / emotional state to 

embodied physical actions or other direct outward or social expression, for instance 

smiling when happy or turning on a light if afraid of the dark. Behavioral-consequent 

models are often used to synthesize human-like emotional or social behavior in embodied 

robots like Kismet [64] or in virtual agents such as Greta [65]. 

 

As this dissertation deals with the effects of emotional state on decision-making, the 

following section focuses on cognitive-consequent models: those which produce 

emotional effects on internal cognition, modeled after cognitive phenomena observed in 

human subjects.  Cognitive change may be manifested as behavior change, but not 
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necessarily. Prominent cognitive-consequent models are summarized in Table 2, with 

several elaborated on in the following paragraphs. 

Table 2. Representative computational models of emotional effects on decision 

 

System  

(Creator) 

Emotional Cognitive Effects Modeled Computational Processes 

For Modeling Effects 
[66] ACRES / 
WILL  
(Moffat & Frijda) 

Attention focus shift (coping strategy). 
Planning, Decision: Goal shift (coping 
strategy) 

Competition for slots in 
priority queue, based 
partially on intensity and 
urgency of emotion 

[67] ActAffAct / 
BehBehBeh  
(Rank) 

Choice of Relational Action Tendency 
affected (coping strategy) 

Processes related to coping 
with emotional episode 
activated, assigned priority 
and resources 

[24] ACT-R 
extension 
(Cochran) 

Recall ability of any memory decays over 
time if memory has low arousal, grows 
with high arousal  

Arousal parameter added to 
base activation formula for 
ACT-R memory chunks 

[25] ACT-R 
extension  
(Fum & Stocco) 

Memories associated with risk have 
higher recall strength for emotion-
enabled agents 

Emotional strength added to 
relevance parameter in ACT-
R memory activation 
formula 

[26] ACT-R 
extension 
(Belavkin) 

Positive and negative pleasure aid 
decision processes, up to a certain level 
of arousal 

Goal relevance + noise 
parameters added to ACT-R 
production rule selection 
equation 

[68] (no name) 
(Ahn & Picard) 

Different emotions affect risk-aversion 
when choosing actions 
 

Experienced-utility and 
expected-utility function 
parameters change based on 
emotion 

[69] ALEC 
(Gadanho) 

Rules learned based on past emotional 
experience 

Goal conduciveness 
parameter added to 
CLARION rule selection 
equation, based on Q-
Learning with emotion as 
heuristic 

[22] EM 
(Reilly) 

Planning action attributes change based 
on pleasure 

Goal conduciveness 
parameter in action selection 
process 

[37] EMA 
(Gratch & 
Marsella) 

Attention focus shift (coping). Plan 
change, BDI change, action tendencies 
change (coping strategies) 

Soar-based state propositions 
gain monitoring annotations 
(attention), see below for 
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BDI-based coping 
mechanisms 

[70]Émile 
(Gratch) 

Plan choices, plan selection criteria (Discussed) Focus planning 
algorithm on intense 
appraisal areas, 
increase/decrease importance 
of negative plan interaction  

[71] EM-ONE  
(Singh) 

Modification of plans, desires, beliefs. Top-down modification of 
decision functions (“Critics”) 

[72] FearNot! / 
(Fatima Dias, 
Paiva, & Aylett) 

Attention focus shift. 
Plan and goal choices change (coping 
strategy) 

Processing resource 
reallocation; modification of 
outcome values and 
probabilities based on 
emotional state 

[73] FLAME  
(El-Nasr) 

Plan choice and constraints change. 
Reinforcement learning biased 

Emotional state-congruence 
weighting factor added to Q-
Learning-based action 
selection equation  

[74] (no name) 
(Gmytrasiewicz 
& Lisetti) 

Emotional state-congruent choice 
evaluation (negative emotional state 
makes negative outcomes seem worse 
and also more likely) 
 

State utility shifts, state 
evocation probability shifts, 
allotted planning time 
changes 

[21] H-CogAff 
(Sloman) 

Attention focus shift (alarms). 
Emotional state-based decision biases 

Bottom-up override and bias 
signals between normally 
top-down levels of processes 

[75] 
(Malfaz & 
Salichs) 

Reinforcement learning biases  Emotional state weighting 
added to Q-Learning-based 
action evaluation 

[76] MAMID 
(Hudlicka) 

Attention focus shift. 
Decision biases and cognitive ability 
based on current emotional state 

System-wide working 
memory capacity and 
inference/recall speed 
parameters altered, 
read/write emotional 
parameters on mental 
constructs  

[77] (no name) 
(Meyer) 

Plan/agenda changes (e.g., fear causes 
cautious planning) 

Addition of emotional state 
parameters to KARO-based 
logical formulas 

[78] Soar-Emote 
(Marinier) 

Attention focus shift. 
Planning goal shift / abandonment. 
Reinforcement learning and recall biases. 

PEACTIDM-based modules 
modified to handle incoming 
emotional data; System-wide 
emotional state also used by 
modules 

[23]Tabasco Planning action choice biases RAP (Reactive Action Plan) 
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(Staller & Petta) chosen based on goal 
relevance 

[40] WASABI / 
MAX  
(Becker-Asano) 

Plan and action utility choice/evaluation 
process biased by optimism or pessimism 

BDI planning processes 
affected by specific 
emotional states triggered by 
PAD-based emotional 
settings 

 

In current systems, attention and focus shift is frequently modeled. Systems that address 

attention/focus shift include MAMID [76] and H-CogAff [21]. One of the sequential 

modules of MAMID is devoted to cognitive attention focus, which selects a subset of 

incoming data for further processing.  H-CogAff, similarly, has an oversight mechanism 

for sensing pattern-driven “alarms” from all levels of its cognitive processing: reactive, 

deliberative, and reflective—i.e., Systems 1, 2, and also 3 [32]. This mechanism in both 

models redirects cognition to process the stimulus that invoked the alarm. 

 

Effects on decision-making are often cast as constraints on goal and action choices, 

though there are other types of effects as well.  Planning effects represent a form of 

coping in EMA [37] and Émile [70], among other systems. Emotion can affect Émile’s 

planning algorithm so that, for example, it focuses on the more intensely emotional plan 

steps.  In EMA, appraisal and coping are interdependent in a closed loop and the strategy 

for building a plan to cope with a particular emotional stimulus is subject to change 

following the next round of appraisal. Meyer’s system [77] takes a different approach: 

emotions cause global effects on search control during planning; for instance, a sad agent 
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is more likely to look for alternative plans or goals, whereas a fearful agent will be 

cautious and perform more checks on its environment during planning and execution. 

 

Choice and decision biases are modeled by Becker-Asano’s WASABI [40], Rank’s 

BehBehBeh [67], Gadanho’s ALEC [69], and the system designed by Gmytrasiewicz and 

Lisetti [74]. In WASABI, the agent’s overall emotional state (used throughout this paper 

synonymously with emotional state) constrains the set of possible next actions and goals. 

BehBehBeh and other models of Frijda’s theory such as ACRES/WILL [66], use the 

concept of Relational Action Tendencies (RATs) in a similar manner to constrain 

decisions; RATs are formed as a direct result ofappraisals and narrow the set of next 

action choices. ALEC uses a fast emotional system that operates asynchronously with its 

cognitive system to model the Somatic Marker Hypothesis during decisions.  

Gmytrasiewicz and Lisetti’s system also incorporates action tendencies affected by 

emotional state state changes, formally modeled using decision theory. 

 

Emotional effects on human learning are typically memory-based, and may be used to 

reinforce recall and decision biases. Memories are evaluated as, or become associated 

with, particular emotional experiences; cognitive effects follow from these evaluations 

and associations. Recent work at MIT [68] modeling decision under emotional influence 

also demonstrates leverage of an agent’s previous emotional experience for predictive 

purposes, using prospect theory. The result is fast, subjective reinforcement learning, and 
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decision biases result from previous experience. FLAME [73] uses a fuzzy logic method 

for similar purposes, conditioning an agent by mapping emotional states to remembered 

events. 

 

Emotion as a recall heuristic has been handled in different ways by the systems that have 

modeled it. ACT-R, with its well-tested model of associative memory, has been a natural 

starting point for these systems. Fum and Stocco’s ACT-R extension [25], for example, 

takes advantage of ACT-R’s associative memory to reproduce the Iowa Gambling Task’s 

results (though with a skeptical view towards the Somatic Marker Hypothesis, as the 

researchers do not assume that the saved heuristic references are physiological as 

opposed to conceptual).  MAMID also models emotional effects on cognitive recall and 

inference, particularly changes to the speed and capacity of those processes based on 

emotional appraisal. 

 

In summary, though their designs are widely varied, existing computational models of 

emotional effects on decision-making address one or more of the following basic 

components:  

 

1. Theory of emotion supported by cognitive science[39] 

2. Memory network evaluated for emotional content[7][19] 

3. Humanlike cognitive process model sensitive to emotional state[18] 
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4. Range of known, quantified effects of emotional state on 

behavior[36][50][61][79][79a] 

 

However, no individual model contains all four components.  A further gap in 

computational agent modeling research relates to point 4. None of the systems designed 

to date has developed a model to underpin an open-ended set of realistic emotional 

effects on the decision-making behavior of humanlike agents across simulation domains.  

My work addresses these gaps by developing a computational agent architecture that is 

informed by cognitive science and based on computational modeling methods. 

Specifically, the research performed in this dissertation hypothesizes that an emotional 

agent architecture that correctly combines the aforementioned four principles from 

cognitive science and existing computational modeling can exhibit realistic decision-

making behaviors in tasks required in complex system operation (simulation). 

 

2.5. State of the Art in Game AI Emotion Research 

 

In addition to advances made in the above work, AI made specifically for games is also 

starting to embrace emotional behavior and decision-making, particularly in serious 

games.  There are several commercial emotional game agent models or “emotional game 

middleware”: for instance, EKI-One / MASA Life [80] and XAITment [81], which use 

emotional state to inform discrete action choices in finite state machines, behavior trees, 



 

33 

and path-finding algorithms.  Several experimental games also feature emotional agent 

models, as in Rosalind Picard’s and Hyungjil Ahn’s affective gamingresearch at the MIT 

Media Lab [68], and inMichael Mateas’ narrative intelligence game Façade[16].  The 

Virtual Humans group at USC/ICT, including Gratch and Marsella’s serious game work 

as well as that of Profs. Rizzo, Rosenbloom and others, incorporates cognitive systems 

such as Soar and EMA and also brings the emotional aspects of players into games via 

biofeedback [37][82].   The annual Artificial Intelligence In Digital Entertainment 

(AIIDE) conference typically showcases new models of emotional game agents, such as 

those found in the multiplayer game Pataphysic Institute [83].  One gap in game AI 

research is that none of the games or middleware to date has developed a cross-domain 

model to underpin an open-ended set of realistic emotional effects on thedecision-making 

behavior of humanlike agents.  My agent model is meant to address that gap. 

 

Chapter 3. Approach: Model andImplementation 

 

The new agent framework,dubbed "Emo," isan integrated architecture (Figure 1) 

designed to model emotional state effects on the process of decision-making in 

humanlike game agents. 



 

Figure1. High-level conceptual diagram of

 

The approach embodied in this figure 

deliberative processes [51]

implemented in Emo.  Emotion is

algorithms underlying its 

 

3.1. Essential Components

 

The framework combines the four essential components 

science and computational modeling literature

following subsections. 
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level conceptual diagram ofEmo agent framework 

embodied in this figure is in line with findings that emotion 

[51][84].  Emotion is fundamental to the 

.  Emotion is pervasive in its memory structure

algorithms underlying its processing modules.  

Components 

The framework combines the four essential components distilled from the cognitive 

science and computational modeling literature.  These componentsare

 

is in line with findings that emotion influences 

motion is fundamental to the model and is 

pervasive in its memory structure, and in the 

distilled from the cognitive 

are detailed in the 
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3.1.1. Theory of Emotion Supported by Cognitive Science 

 

Emo's emotional state and emotional memory are based on a hybrid dimensional and 

appraisal theory of emotion.  Using dimensional theory, agent emotional state is modeled 

as a global value ranging from -1.0 (negative) through 0.0 (neutral) to 1.0 (positive).  

Based on appraisal theory, each node in memory also has a similar emotional value.  The 

justification for this modeling choice is flexibility. Many emotional decision-making 

effects, for instance emotional state-congruent recall,are based on the resonance between 

the emotional content of memory and the overall emotional state. 

 

3.1.2.Memory Network Evaluated for Emotional Content 

 

The central data structure in Emo is the associative-semantic network that forms its long-

term memory [36] featuring conceptual nodes, e.g. “physical object” or “plan step.” Each 

node contains an emotional rating.  Emo’s cognitive processes are influenced by the 

emotional ratings of the memory network’s individual nodes, as well as by overall 

emotional state, which is modeled as an aggregate of the individual nodes’ ratings. In this 

sense the system has no single appraisal module; each cognitive process is affected in its 

own way by the emotional cues it encounters. 
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Links between two nodes include exactly one undirected associative strength link, and 

any number of directed semantic links [85] such as “causality.” The association links 

allow for humanlike memory association during cognitive processes. In my model, 

emotional cues and their consequent cognitive effects can be evoked by the associations 

and choices made during the process of decision-making, as opposed to emotional 

changes resulting only from the execution (successful or not) of a plan or partial plan 

[37].  

 

The model's working memory network is a dynamic, high-activation virtual subset of the 

larger long-term memory network. Working memory also functions as a central 

repository acted upon by the interdependent cognitive process modules of the deliberative 

subsystem. Deliberative process modules like choice and feature-matching recall partially 

depend on the top-level (self-invoking) deliberative subsystemdecision-maker module to 

focus attention on a particular node.  The deliberative subsystem may be interrupted if the 

associative subsystem involuntarily refocuses attention on the node in working memory 

with the highest activation rating. Some processes are subject to both associative and 

deliberative subsystem operation: for instance, involuntary recall of highly arousing 

memories vs. voluntary recall of a task-related concept.   

 

The network was partially derived from Bower’s work on emotion and cognition, with 

two important distinctions.  First, Bower’s network centralizes emotions in specially 
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designated nodes such as “Joy” or “Sadness,” to which other conceptual nodes link to 

signify emotional content.  My agent model, by contrast, carries the components for 

emotional content on each node.  This was done to enable fast processing (e.g., no 

network traversal needed) of basic emotional reactions, such as fear when encountering a 

shark.  Decentralized emotional encoding also allows quick, parallel processing of 

emotional association between nodes.  The second distinction from Bower’s work is the 

labeling of links with semantic information.  This provides the basis for referential and 

inferential processing of emotional information (e.g., if B is unpleasant, and A causes B, 

then A is unpleasant), traversable by associative and deliberative subsystem processes. 

 

As mentioned above, working memory is a subset of long-term memory with one main 

distinction: the nodes in working memory are accessible by all deliberative subsystem 

processes, but other long-term memory nodes can only be accessed by associative 

subsystem processes.  The two networks are handled separately, as they are in human 

cognitive science, because there could be translation incompleteness or error both 

forward and backward between long-term and working memory [86].   

 

3.1.3. Humanlike Cognitive Process Model Sensitive to Emotional State 

 

Aside from the previously mentioned cognitive processes acting on the memory network, 

the system’s memory is made "realistically dynamic" by means of 
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associationsmaintenance and spreading activation. These processes occur within the 

network continuously (i.e., on an ongoing basis). Association maintenance strengthens or 

weakens the associative links between nodes, depending on how often and how recently 

the nodes appear together in working memory. Spreading activation maintains the 

activation strength of linked nodes based on the ACT-R model: if node A has high 

activation strength (which is partially based on emotional ratings), associated node B will 

also gain in activation strength to a degree depending on the strength of the associative 

link between A and B [36][87]. The nature of the spreading activation may also depend 

on the semantic link between A and B—if action A negates unpleasant event B, A’s 

emotional rating might increase.  Spreading activation also includes algorithms for 

determining decay of activation over time in nodes that are not in working memory. For 

instance, as new stimuli are brought to focus, older concepts and their emotional 

information diminish out of working memory, simulating loss of activation strength over 

time [87a]. 

 

The associative subsystem process of spreading activation is a weighted version of the 

ACT-R model of memory, similar to but distinct from the ACT-R extension used to model 

the Iowa Gambling Task [25].  The base activation strength of node i depends on overall 

emotional state, as well as on the number of recent appearances of i in working memory: 

Bi = n * mi(ln ( ∑(k) tk
-d)),  
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where tk is the elapsed time since the kth appearance of node i in working memory; d 

represents a constant decay factor; mi is a bias giving higher activation strengths to nodes 

whose pleasure ratings match that of overall emotional state, and n is a weighting 

constant incorporating a normalizing factor.  n is partially based on whether i is currently 

the single node in the system’s attention focus.  

 

Bi is then merged with the spread activation strengths of directly associated nodes 

(depending in part on strength of association) into the node’s overall activation strength 

Ai: 

Ai = Bi + ∑(j) (nj*Sij*Aj), 

where Bi is the base activation of node i; Ajis the activation strength of node j; Sijis the 

association strength of the link between nodes i and j; n is a spread factor partially based 

on whether node j is in working memory, or attention, or neither. 

 

Ai is used to determine the likelihood that node i will involuntarily draw attention away 

from current deliberative processes (Associative subsystem’s involuntary attention 

refocus, an “alarm” interrupt of the deliberative subsystem) [21][41]: 
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P(Attention)i = n(Ai - Aj), where Aj is the activation strength of currently attended 

node j); and n is a weighting factor n representing the system’s overall 

susceptibility to involuntary attention shift (a variable based on emotional state). 

 

Attention provides an additional increase of a newly attended node’s activation strength.  

Competition for cognitive resources (e.g., attention, working memory) is based on the 

winner-take-all behavior of some neural networks [88]. 

 

Ai also determines the ease with which node i will be involuntarily recalled into working 

memory (associative subsystem influence on deliberative subsystem via working memory 

[88a]): 

 

P(Recall)i = nAi, where n is a weighting factor based on the system’s overall 

susceptibility to involuntary recall, which can also change with emotional state.  If 

working memory is already at capacity (the system specifies a node capacity limit 

L, “7, plus or minus 2” [89]), then the node with the least arousal is moved out of 

working memory to make room for the new node. Capacity itself can potentially 

be subject to change, depending on the experiment being modeled. 
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Association management, also modeled on ACT-R, proceeds in parallel with spreading 

activation through working and long-term memory.  Each node separately and 

continuously updates its own link strengths to adjacent nodes:  

 Sij(new)= n * Sij(current)* Tij, 

where n is a weighting factor based on whether the link’s source and destination nodes i  

and j are in working memory or not, and Tij is the number of times that i and j have both 

appeared in (or out of) working memory together. 

 

Whenever a node’s activation strength is incremented, the node is checked for 

involuntary recall into working memory and potentially into attention focus.  

Decrementing the node’s activation strength invokes similar checks to see if the node 

remains in attention or working memory.   

 

Table 3. High-level model of deliberative subsystem processes 

 

Module Function Computational Approach 

Decision-maker Solve task at hand (varies) Varies (e.g., search algorithm, goal 
switching)  

Choice Choose which goal to pursue, 
and which action or strategy to 
use to achieve that goal 

Probabilistic utility function (cost 
* probability of success).   

Feature-matching 
recall 

Bring actions, goals, and other 
concepts from long-term 
memory to working memory 

Primes the associative subsystem’s 
spreading activation to bring task-
associated concepts into working 
memory and potentially refocus 
attention involuntarily 

Voluntary attention 
refocus 

Bring actions, goals, and other 
concepts into attention focus for 

Place task-related node into 
attention focus 
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use by other Deliberative 
subsystem processes 

 

The model’s deliberativesubsystem processing modules[28][90] are described in Table 3.  

The set of modules may expand in the future, and individual modules may scale to 

become more complex, so I have built the system using the following implementation 

principles: 1) parallel, flexible, modular processing, 2) parsimony of mechanisms, and 3) 

plausible mapping from human emotional-cognitive theory and experimental results.  

 

The cognitive structure of process modules asynchronously accessing working memory is 

based on a variant of architectures used to model systems or societies of multiple agents 

[91][92]. My design allows modules at any granularity to be scoped as single processes, 

which in turn allows an easy separation of parallel processes, such as association 

maintenance, into multiple potentially competing threads. 

 

Moreover, the decision-maker module is designed to be loosely coupled with Emo's 

subsystems, allowing cross-domain flexibility.  For instance, in the three different 

experiments outlined in Chapter 4, I was able to use three different decision-maker 

algorithms: a simple decision tree, an AStar search algorithm, and a mental modeling 

process.  The remaining subsystems of Emo all remained exactly the same throughout the 

experiments. 
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Deliberative subsystem processes revolve around the high-level decision-maker (which, 

as mentioned above, varies according to the problem at hand), with function calls made 

from the decision-maker tochoice, feature-matching recall, and voluntary attention 

refocus.Currently, the deliberative subsystem’s functionality is modeled as a continuously 

running single process.  This reflects the serial nature of the deliberative subsystem (vs. 

the associative subsystem’s parallel processing).  Without associative subsystem or 

emotional memory cues involved, the deliberative subsystem would simply select a node 

from working memory and run a decision-making operation based on that node. 

 

Choice, incorporating judgment (evaluation) [93], uses a simple goal-based utility 

function (likelihood * cost) [94] as a rationale to choose among alternative options. The 

function may be modified by emotional state and by the emotional attributes of the nodes 

in question.   

 

In feature-matching recall, a node in working memory whose attributes most closely 

match the values needed by the decision-makeris brought into attention focus.   The more 

comprehensive the search criteria, the more precise the matching recall will be. The 

attention refocusing may also trigger associative subsystem-based associative recall of 

high activation strength nodes into working memory as well, as per Minsky’s K-Lines 

theory [95]; particularly useful if a completely matching node is not immediately found 
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in working memory.  Conversely, if more than one node from working memory matches 

the feature set closely enough, the choice process weighs in to select the best candidate. 

 

The reasoning behind the division of labor for recall in my model (as a partially targeted 

and partially involuntary gleaningfrom long-term memory into working memory) is that 

this emulates the human paradigm of task focus and distraction.  The recall process can 

continue over several passes of theassociative subsystem until the correct (or close 

enough by feature set) node is found.  This approach ties in with the concept of emotional 

state-congruent recall: if current emotional state is part of the search criteria, concepts 

learned in a remembered matching emotional state will be more likely to be recalled [36]. 

 

Voluntary attention refocus is directed by the top-level decision-making procedure onto a 

node to be deliberated upon by the deliberative subsystem.  This function can be hijacked 

by the associative subsystem involuntarily, as described above, if an unattended node 

attains enough activation strength.   

 

Perceptions of the world state and action execution are also parts of the model, dependent 

on the nature of Emo and its environment.  Executing an action is done such that changes 

made to the state of the world are then detectable at the next perception step thereafter.  

The decision-making procedure then checks to see which of its goals have been 

successfully resolved vis-à-vis the new state of the world.   
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3.1.4. Range of Known, Quantified Effects of Emotional State on Decision-Making 

 

Theemotional state-based effects on decision-making in my model are based on three 

mechanisms.  Singly these mechanisms are simple, but in combination they produce 

complex and realisticeffects.  The currently modeled set of effects depends mainly on the 

activation strength and pleasure attribute of a given node, and on emotional state-based 

global system values (distractibility, and others).  Description of each direct mechanism 

follows. 

 

1. The key variables of emotional state-dependent activation strength are presented 

below: 

Trigger: continuous update by associative subsystem 

Input:Emotional state m, Node n,  

Process (in spreading activation):  

n.base_activation_strength += a *  m * n.emotional_rating; 

 //where a is a normalizing constant 

Output:  Node n 

 



 

46 

In summary, the base activation strength of a given node at any update cycle is 

augmented by the similarity of its emotional rating to that of the current emotional 

state[25]. 

 

2. The key variables of emotion-dependent success probabilities are presented below: 

Trigger:  Choice called 

Input: Node_List candidate_nodes, emotional state m 

Process (in choice):  

 For all candidate_nodes.Node n:   

  probability_success(n) +=  a *  m * n.emotional_rating  

Output: Node_List candidate_nodes 

 

Conceived probability of success of an action is directly proportional to how closely the 

current emotional state pleasure matches the pleasure of the action Node.  The emotional 

state-augmented probability of success is then used by the utility-based Choice function 

(cost * probability of success) to produce a utility value for the action.  Tighter time 

urgency may increase the effect of emotional state-congruence (i.e., Affect Heuristic) on 

the success probabilities, when time is a factor [18][19][93][94]. 

 

3. The key variables of emotional state-dependent attention flexibility are presented 

below:  
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Trigger: Perception or recall raises a node's activation strength above the node 

 currently in attention focus 

Input: Working_memory wm, emotional state m 

Process (in attention):  

 float flexibility = a * m //where a is a normalizing constant 

 if (flexibility > random()) 

Node attended_node =  

   argmax<wm.Nodes>(Node.activation_strength,  

flexibility)  

Output: Node attended_node 

 

This third mechanism is behind involuntary attention refocus (to a node whose activation 

strength was highly augmented by the associative process of spreading activation).  The 

flexibility of Emo (i.e., the chance that such a refocus will be successful) is directly 

proportional to the emotional state pleasure rating [21][37][46]. 

 

3.2. Emergent Effects Leading to Emotional State-Dependent Decision Making 

 

To assure parsimony and flexibility, the set of emotion-dependent 

mechanismswasreduced to a combination of the mechanisms described in the previous 

section and the emergent effects that result from them.  This was done because increasing 
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the number of mechanisms could mean more unforeseen interactions and corrective 

hacks.  The following table shows how the deliberative processes, the mechanisms 

defined above, and the simpler effects in the table itselfcontribute to the emergence of 

further effects. 

Table 4. Effects modeled by Emo 

 

Emergent Effect 

of Emotional State 

on Decision-

Making 

Trigger Summary Description Contributing 

Processes and 

Mechanisms 

[36]Emotional 
state-Congruent 
Recall  

Emotional state at 
certain level 

Nodes with emotional 
rating aligned with 
emotional state more 
likely to be recalled 

Emotional State-
Congruent 
Activation, 
Recall 
 

[50] Optimistic / 
Pessimistic Choice 

Emotional state at 
certain level, more 
than one node is 
candidate for choice 

Node with 
emotionalrating aligned 
with emotional state more 
likely to be chosen 

Utility-Based 
Choice, 
Emotional State-
Congruent Success 
Probabilities 

[61][79]Emotional 
state-based 
Distraction OR 
Cognitive 
Flexibility 

High-activation 
node appears in 
working memory, 
other than the node 
selected by 
deliberative 
subsystem. 

New node(s) attended to 
by deliberative subsystem 
processes and checked 
via feature-matching for 
task relevance.  The more 
relevant the newly 
attended node, the more 
this process resembles 
creativity than distraction 

Emotional State-
Congruent Recall, 
Emotional State-
Dependent 
AttentionFlexibilit
y 
 

[All of the above] 
Emotional state-
Dependent 
Decision-Making 

Deliberative task 
step taken 

Task-dependent effects  All of the above, 
as the deliberative 
subsystem 
attempts to decide 
on an action to 
take 
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The entries in Table 4 arewell-cited cognitive effects from studies of normal human 

emotions that affect decision-making, and that I replicated experimentally to underscore 

the realism of the model. 

 

Chapter 4. Key Experiments and Results 

 

4.1.Background 

 

Experiments thatcan link emotional state to effects on cognitionand that lend themselves 

to computational modeling are precious few.  This is the challenge addressed in this 

research.  Specifically, I developed an agent-based modeling framework to address this 

challenge.  My model is sufficiently robust to support experimentation that would show 

the effects of emotional state changes on decision-making.  A related challenge was to 

find appropriate human data as evidence for quantitative correlation.  The strength of the 

framework lies in its ability to handle a variety of effects discussed in the cognitive 

science literature.  The model experimentally demonstrates very different and even 

apparently contradictory results.  In different experiments, neutral, positive,or negative 

emotional stateproved optimal, depending on the decision-making task for the given 

experiment.   
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4.2. AX Continuous Performance Task Experiment 

 

To ensure that Emowas calibrated to human data, I modeled Dreisbach's 2006 experiment 

[59].  The problem domain, the “AX Continuous Performance Task,” comprised a series 

of letter pairs presented one letter at a time.  The letter A would appear first in 80% of all 

pairs, followed by the letter X in ~86% of the “A” cases.  In 10% of all pairs, the X 

would appear after a different priming letter besides A.  The subject was to press the left 

arrow key on a keyboard when the X appeared as the second letter in any pair, and the 

right arrow key if any other letter appeared as the second letter of a pair. 

 

For the system's results to match the human experiment, positive emotional state would 

facilitate the “AY” cases (in which the A was followed by any letter other than X), but 

have little effect on, or even impair, performance in other cases.  Overall, the AX 

experiment was meant to illustrate that greater flexibility (in positive emotional state) 

may lead to unexpected proficiency, depending on the task-relevance of the new node in 

focus. 

 

4.2.1. Memory Contents and Game Elements 

 

The memory contained one node for each single letter involved in the experiment: A, B, 

D, E, F, G, M, P, S, U, X, and Z.  The ordered set of 200 “probe-target” letter pairs, read 
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by the perception module in random order, fit the distribution used in the human 

experiment: 70% AX, 10% AY (where Y is any of the above letters other than A or X), 

10% BX (where B is any letter other than A or X), and 10% BY (where B and Y are not 

the same letter, and neither A nor X).   

 

4.2.2. Task Procedure 

 

The decision-making process for the AX experiment involved the influence of emotional 

state on simple choice.  The choice was based on the expectation of the second (“probe”) 

letter in a “cue-probe” pair.  After each “cue” letter was read, attention focused on the 

memory node representing that letter, and the decision-maker made its prediction as to 

the “probe” letter, at which point the actual “probe” letter was pulled into competition for 

attention.  The associative system of Emo then performed its operations.  If, at the next 

perception step, the perceived letter was different from the predicted letter, the two 

corresponding nodes would most likely compete for attention.  The node that gained 

attention focus caused the correct or incorrect button to be pressed.  The emotional state-

based effect on this process was that a more positive emotional state allowed the attention 

focus to be switched more readily from the predicted node to the perceived node, which 

facilitated correct responses in the less predictable “AY” cases. 
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4.2.3. Training and Testing 

  

As was done in the human AX experiment, the system was trained on the first 100 pairs 

of letters with the distribution as described above, in order to learn prediction strategies.  

The system was then tested on 100 additional letter pairs with the same distribution, for 

the same 9 constant emotional state settings as  (-1.0 to 1.0 with 0.25 increments).  The 

results recorded during testing were the numbers for correct and incorrect guesses for 

each of the four cases: AX, AY, BX, and BY.   

 

4.2.4. Additional System Constants and Constraints 

  

There were several important system-wide constant values that were set during training 

and remained the same for all experiments, for the sake of agent consistency across 

domains.  Most importantly, an attention threshold value was set.  This value refers to the 

difference in activation strengths between a potentially “interrupting” node and the node 

currently attended to by the deliberative subsystem.  If the difference was greater than the 

threshold in favor of an interrupting distractor node, attention would involuntarily shift to 

that node.   

 

Several bias values affected nodes in memory, mainly operating on activation strengths.  

There was a base activation bias for a node in working memory, and an additional base 



 

activation bias for the node in attention.  Spreading activation was similarly affected: 

there was a spreading activation bias from a node in working memory, and an additional 

spreading activation bias from a node in attention.  There was also a decay 

lessening the spreading activation between 

 

4.2.5. Results 

 

The results from the experiment are

Figure 2. System errors in AY c
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node in attention.  Spreading activation was similarly affected: 

there was a spreading activation bias from a node in working memory, and an additional 

spreading activation bias from a node in attention.  There was also a decay 

spreading activation between any two nodes not in working memory.

The results from the experiment are summarized in Figure 2: 

s in AY case averaged by emotional state 

node in attention.  Spreading activation was similarly affected: 

there was a spreading activation bias from a node in working memory, and an additional 

spreading activation bias from a node in attention.  There was also a decay factor 

working memory. 

 

 



 

 

4.2.6. Correlation of Results 

 

Some caveats apply to the AX experimental results. First, in the human results 

state was not quantified beyond 

time between cue and probe in the human experim

This time differential was not taken into consideration; the system correlated more to the 

250ms lapse than the 1250ms lapse.  

 

Figure 3. Correlation between 
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of Results to Human Data 

pply to the AX experimental results. First, in the human results 

was not quantified beyond positive, negative, and neutral.  Second, the 

time between cue and probe in the human experiment, the more exaggerated the

This time differential was not taken into consideration; the system correlated more to the 

250ms lapse than the 1250ms lapse.   

. Correlation between agent and human AY errors 

pply to the AX experimental results. First, in the human results emotional 

.  Second, the longer the 

ent, the more exaggerated the effects.  

This time differential was not taken into consideration; the system correlated more to the 
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The result shown in Figure 3, with Emo generally matching the trend of the human 

experimental data, is that positive emotional state in combination with task-relevant 

distractors facilitates predictive decision-making when goals are abruptly switched during 

testing, but impairs the same when the original goal needs to be maintained.  Again, 

without access to the full set of human data the numerical t-test can only show a surface 

correlation; that said, for the average emotional state-based values the t-test probability of 

the correlation hypothesis being correct was 0.987113. 

 

4.3. Tower of London Experiment 

 

To further calibrate Emo, I modeled Phillips et al’s 2002 human experiment using the 

“Tower of London” (ToL) test of planning ability [46].  The experiment was designed to 

show that involuntary recall of emotionally charged nodes could distract Emo more often 

in either a positive or negative emotional state (as opposed to neutral emotional state).  To 

summarize, the Tower of London problem consists of three posts on which are stacked 

several disks (in the human experiment’s case, five disks) of equal size but different 

colors.  The subject is given a starting configuration of the disks on the three posts, and a 

desired end configuration.  The player's actions consist of moving one disk at a time from 

the top of one stack to the top of another.  Unlike the similar Tower of Hanoi game, any 

disk can stack atop any other. 
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The expected outcome was that results obtained by the system would align with results 

from the human experiment.  The human results showed that strong positive or negative 

emotional state leads to less planning time and to more trial-and-error moves made 

during decision-making.  Moreover, the experiment was meant to show that one effect of 

distraction on the decision-making process was that fewer options were presented during 

choice, leading to decreased proficiency by an agent in a non-neutral emotional state. 

 

4.3.1. Memory Contents 

 

The setup for the experiment first involved loading a network of concept nodes and links 

into Emo's long-term memory.  The concept nodes consisted of the seven colors of the 

rainbow along with seven similarly colored disks, plus the general concepts “Color” and 

“Disk,” and seven “associated” color-specific distractornodes, each one strongly (0.9) 

linked to a single color (see Appendix B for code and memory details for all 

experiments).   

 

The ordered set of five disk colors was the same for each ToL game: 1=Red Disk 

2=Orange Disk 3=Yellow Disk 4=Green Disk 5=Blue Disk.  The gameplay rules and the 

start and end positions of Tower of London games were also given to the system, though 

these were not shared in working memory for this experiment.   
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4.3.2. Decision Making Procedure 

 

Emo'sdecision-makerfor ToL was a modified A* search algorithm to consider and decide 

on the next move to be made.  After each deliberative step considered by Emo, attention 

was refocused on the particular disk to be moved.  The associative subsystem then 

performed operations over the entire contents of memory (working and long-term): 

spreading activation, link association maintenance, and finally attention refocus check.  

These processes could cause the contents of working memory to change, as well as cause 

a shift in attention focus.  In a case where a node other than the disk to be moved became 

the focus of attention, Emo was interrupted from its planning and would make a move 

based on the currently considered set of possible moves.  Otherwise, Emo would consider 

all six possible moves, pick the best of the set, and then begin planning again. 

 

Adding a wrinkle to these procedures was emotional state-congruent recall.  Emotional 

state-congruent recall means that the more that emotional state varied from a neutral 

pleasure rating, the more nodes with similar emotional state ratings would be activated 

during spreading activation.  As the only highly pleasant / unpleasant concepts in memory 

were not disks, but instead task-irrelevant distractor concept nodes like “Blood” and 

“Sky,” strong emotional state in either direction was more likely to produce attention 

focus shift away from the disk being considered for a move. 
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4.3.3. Experimental runs 

  

Emo was tested on 450 ToL games ranging from 4 to 11 minimum moves each.  For 

comparison, the psychology researchers used three games with 5, 7, and 9 minimum 

moves for each of their 96 human subjects in positive, negative, or neutral emotional state 

(per subject self-report).  The values tracked during the experimental runs were the 

number of moves made per game, the number of planning steps per move, the number of 

interrupts to the planning process and the number of times attention was wrested back to 

the correct disk for planning. 

 

4.3.4. Results 

 

 



 

Figure4a. Emo's Tower of London 
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Tower of London extra moves averaged by emotional state level

 

averaged by emotional state level 



 

Figure4b. Emo's Tower of London

level 

 

4.3.5. Results’ Correlation to Human Data

 

In analyzing the results and their correlation to the psychology researchers’ data, thr

major comparison caveats must be noted. Fi

state self-reported immediately 

correlation.  Second, planning t

taken before the first move, not the number of planning steps taken between moves.  I 

correlated this pre-move measurement to the system’s planning steps per move because 
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Tower of London planstep rate per move averaged by emotional state 

. Results’ Correlation to Human Data 

In analyzing the results and their correlation to the psychology researchers’ data, thr

major comparison caveats must be noted. First, in the human results, only the 

mediately before the set of games was used for referenc

correlation.  Second, planning time in the human data refers to the number of seconds 

taken before the first move, not the number of planning steps taken between moves.  I 

move measurement to the system’s planning steps per move because 

 

emotional state 

In analyzing the results and their correlation to the psychology researchers’ data, three 

only the emotional 

s used for reference in the 

ime in the human data refers to the number of seconds 

taken before the first move, not the number of planning steps taken between moves.  I 

move measurement to the system’s planning steps per move because 
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Emo was not given two separate phases for planning and moving, and Emo's only task 

between moves was the planning of the next move.  Third, only the older age group's 

results (n=48, ages 53-80) from the human experiment were used in the correlation, as the 

emotional state difference effects were more prominent in that group. 

 

For the data correlation, as shown in Figures 5a and 5b below, I used Emo’s emotional 

state ratings of positive = 0.75, neutral = 0.0, and negative = -0.75.  This corresponds to 

the human self-reports of induced emotional state ranging from 5 to 15 on a 20 point 

scale, as well as representing the average emotional states from the first, second, and 

third groups of system results.  Without access to the full set of human data, it is difficult 

to produce a deep t-test correlation, but for the number of moves averages, the probability 

of the correlation hypothesis being correct was 0.809519.  The steps vs. time in seconds 

correlation was not similarly not suitable for a full t-test without full human data, but for 

the averagecase, the probability of the correlation hypothesis being correct was 0.989123. 

 



 

Figure5a. Correlation between 
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. Correlation between agent and human Tower of London extra moves

 

extra moves 



 

Figure 5b. Correlation between 

 

 

4.4. Discussion of Results from Calibration

 

Within Emo, the perception module came

perceived probe and cue letters w

of the test.  Perceiving a letter, similar to 

simply put the perceived letter into competition for attention focus.  

“cue” letter was A, the predicted “probe” letter was likely X.  If the perceived “probe” 
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. Correlation between agent and human Tower of London plan step rate

Results from Calibration Experiments 

, the perception module came into play during the AX experiment, as the 

erceived probe and cue letters were unexpected though predictable, which was the basis 

.  Perceiving a letter, similar to the deliberative subsystem's recalling of a letter, 

simply put the perceived letter into competition for attention focus.  

“cue” letter was A, the predicted “probe” letter was likely X.  If the perceived “probe” 

 

plan step rate 

into play during the AX experiment, as the 

which was the basis 

recalling of a letter, 

simply put the perceived letter into competition for attention focus.  If the perceived 

“cue” letter was A, the predicted “probe” letter was likely X.  If the perceived “probe” 
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letter was then not X, depending on the emotional state-based attention threshold, the 

correct letter may have been attended to (correct result) or not (incorrect result).   

 

Results show the emergence ofemotional state-dependent decision-making across these 

two experimental domains.  The trend correlations to human data, even without changing 

the system's parameters, indicates the capability of the system to model human emotional 

state-based effects in a more important and sophisticated, yet less well-documented 

decision-making domain, such as operation of a nuclear power plant.  

 

4.5. Nuclear Power Plant Experiment 

 

4.5.1. Overview 

 

The Nuclear Power Plant experiment was designed to demonstrate that Emo was capable 

of producing a range of emotional, and particularly emotional state-dependent, effects on 

making decisions during gameplay for problems with real-world impact and implications.    

There has been work in the human-computer interaction field towards developing [96] 

and evaluating [17] intuitive and comprehensive interfaces for plant operators to 

smoothly manage maintenance, prevention, and emergency procedures. These studies are 

in turn based on the procedural manuals from the IAEA and other official sources [97]. 

Other work has attempted to isolate the primary human factors that have led to power 
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plant accidents such as 1979’s Three Mile Island disaster [17][20] but without the aim of 

computationally modeling the cognitive issues involved. Though panels have investigated 

Fukushima owner company Tepco’s training and operation practices [98], the operator 

action data from the 2011 Japanese reactor meltdown has not been analyzed in any 

academic paper to my knowledge. 

 

Human error encompasses several issues in addition to emotional state (e.g.,vigilance, 

cognitive overload).Keeping Emo’s perception ability and working memory size constant 

controlled these issues. Emotional state was the sole independent variable in the 

experiment. 

 

4.5.2.DomainModel for Nuclear Power Plant 

 

The problem domain as it appears in Emo's perception and memory are sets of potential 

action nodes and (partial) world state proposition nodes; some of the latter may be chosen 

as goals by the decision-maker.  Along with Emo's memory nodes' standard emotional 

ratings, each action node, e.g., “turn off pump,” includes estimated cost and success 

likelihood for utility function purposes.  Each state node such as “pump on” also includes 

a cost associated with that state. The multiple nodes comprising the current world state 

are instantly perceivablebyEmo, although checking actions for particular values may be 

required.   
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The Nuclear Power Plant scenario demonstrates the effects of emotional state on 

decision-making in a crisis simulation with implications for critical real-world operations. 

 

4.5.3. Procedures and Experimental Methods 

 

During the scenario enactment, Emoaims to achieve and maintain a perceived world state 

in which all goals are satisfied.  It is important to note that even if there are no high-

priority crisis-averting goal(s) at present, there are always recurring maintenance-level 

goals.  To simulate this, some goal state nodes are set back to “needs checking” status.  

The user can inject faults in the scenario such as low water pressure, which initially Emo 

is unaware of.  The fault is caused by a pipe rupture that Emo is also unaware of.  

Pursuant to checking the water pressure, Emo became aware of the pressure problem for 

the first time, and could begin to decide if a pipe rupture was present.   

 

The scenario was run across Emo, its decision-maker,and a model of the nuclear plant 

itself. 

1. Emouses its deliberative subsystem's voluntary attention refocus, feature-

matching recall and choice processes to select and assign weights to candidate 

actions.  Emo's associative subsystem also affects these procedures as elaborated 

below  
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2. The decision-maker, based on a hypothesis deduction model written in Prolog, 

maintains a set of beliefs and goals based on the state of the reactor model, and 

can construct and revisehypotheticalscenarios based on its beliefs in order to 

decide upon the best action (from a emotional state-dependent, weighted 

candidate set of actions provided by the main system) to satisfy its current goal. 

3. The nuclear power plant reactor model, which has the actual state and the controls 

to alter that state.  See Appendices for code specification. 

 

At each step,Emo and subordinate models update themselves.  The decision-making 

module within Emo initiates the cross-model activity, and the following event sequence 

occurs: 

1. The decision-maker checks the state of the reactor model, and updates its goals.   

2. The decision-maker calls Emo's attention to voluntarily refocus on the pertinent 

aspects of the reactor model state along with the proximate goal.  This refocus 

triggers a search for a suitable action by Emo. 

3. Emo runs its feature-matching recall in an attempt to recall intoworking memory 

a list of candidate actions to provide to the decision-maker.  The feature-matching 

criteria are that a goal nuclear power plant model state is a known outcome of the 

needed action, and that the current nuclear power plant model state is a known 

precondition of the needed action.  During this process, Emo's deliberative 

subsystem is more or less susceptible to distraction (for better or worse) by its 
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associative subsystem, depending on emotional state.  If Emorefocuses attention 

on a node or nodes other than a list of actions, then the decision-maker loses its 

train of thought and goes back to the beginning of step 2 above.If not distracted 

by irrelevant nodes,Emo runs its choice process to assign weights to the 

candidate actions.  The weights are based on the emotional ratings and success 

probabilities of the actions' outcomes.  The ratings and probabilities themselves 

are adjusted up or down based on emotional state.  Emo then returns the weighted 

action list to the decision-maker. 

4. The decision-maker generates hypothetical plans incorporating each candidate 

action and its weight.  The action that most likely leads to the most positive 

outcome fitting the most likely hypothetical scenario is chosen. 

5. The decision-maker passes the chosen action to the reactor model subsystem, 

which updates the actual state to match the probabilistically determined outcome 

of the action. 

 

The system  as described above was run ~20,000 times on the same testing scenario: 100 

times at emotional state values ranging from -1.0 to 1.0, with an increment of 0.01.  The 

memory contents of Emo had uniform starting activation strengths of 0.5, and starting 

emotional ratings of 0, with one exception: the “pipe rupture” node had anemotional 

rating of -0.5, to demonstrate a case involving beneficial effects of negative emotion 

(which case only appears anecdotally in the cognitive science literature).  An ablated 
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version of Emo was also run the same number of times.  The distinguishing features of 

the ablated agent were: a constant neutral emotional state rating of 0.0, and immunity to 

any emotional-state-based effects. 

 

The testing scenario was a nuclear power plant operator agent detecting low water 

pressure, modeled after a known potential power plant crisis involving operator decision 

and judgment[96][99]. During a routine system check, water pressure begins dropping 

rapidly, therefore increasing coolant temperature and threatening meltdown. Emoneeds to 

realize first that the water pressure is low, and then perhaps judgethat a pipe rupture may 

have occurred, based only on the numerical readouts.  If a rupture is hypothesized, Emo 

must isolate and repair the ruptured pipe by using the bypass valve and emergency 

sealant spray.  However, Emo may insteadhypothesize that there is a non-pipe rupture 

related emergency that can only be stopped by shutting down the reactor.  Inaction, or the 

inability to choose, will cause meltdown. 

 

The pipe rupture fix, if there is a pipe rupture, is thelesscostly option, but a rupture is less 

probable than circumstances requiring a full shutdown.  Moreover, fixing a pipe rupture 

that does not exist would still require a shutdown, and thus would cost the sum of pipe fix 

+ shutdown.  Therefore, a strictly utility function-based “by the book” operator would 

resort to the shutdown unless the pipe rupture somehow seemed to be more likely. 
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Emowasalso subject to effects of distraction, which could lead to inaction and, 

potentially, meltdown of the plant.  On the other hand, distraction by a task-relevant 

concept, (water pressure or pipe rupture, in this example) could lead to a better solution 

than might be found by focusing on the wrong aspect of the plant.  

 

Thenuclear power plant experimentalhypothesis has four sub-hypotheses: 1) Anagent in a 

negative emotional stateis more likely to hypothesize that there is a pipe rupture, and act 

accordingly to avert the crisis. 2) An agent in a positive emotional state is more likely to 

hypothesize there is nothing wrong with the plant but will perform a shutdown rather than 

have the plant melt down due to inaction.  3) Anagent in either an extremely positive or 

negative emotional state is more subject to distraction than an agent in a more neutral 

emotional state.  4) The emotionless version of Emo will always exhibit the same set of 

outcomes. 

 

4.5.4. Results and Analysis 

 



 

Figure6. Nuclear power plant pipe rupture scenario outcomes

 

As shown in Figure 6, the sub

emotional agent is able to

negative emotional state.  A

meltdowns due to over-

Emo's emotional state increases

frequently, eventually outpacing pipe fixes.  This effect is partially due to the negative 

pipe rupture concept having less activation strength 

state.  3) Shutdowns outstrip meltdowns (which represent 

inaction) for agents in more positive 
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Nuclear power plant pipe rupture scenario outcomes 

the sub-hypotheses are mostly borne out by the results.  1) The 

able to detect and resolve the pipe rupture more readily 

.  Any negative emotional state stronger than -

-focusing on irrelevant details and subsequent inaction

increases to neutral and positive, shutdowns begi

frequently, eventually outpacing pipe fixes.  This effect is partially due to the negative 

pipe rupture concept having less activation strength when Emo is in a positive 

Shutdowns outstrip meltdowns (which represent pernicious 

in more positive emotional states as well.  This is because a

 

hypotheses are mostly borne out by the results.  1) The 

resolve the pipe rupture more readily in a somewhat 

-0.5 causes more 

and subsequent inaction. 2) As 

and positive, shutdowns begin to occur more 

frequently, eventually outpacing pipe fixes.  This effect is partially due to the negative 

ositive emotional 

nicious distraction and 

as well.  This is because an agent in 
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a positive emotional state will readilychoose a non-meltdown hypothesis and take 

appropriate action.  However, in positive emotional states the pipe rupture 

hypothesisrarelyincreasesinlikelihood to warrant Emo to initiate a pipe fix; therefore, 

there are invariably more shutdowns.  4) The emotionlessagent’s performance was always 

the same, as it never had the effects of varying attention flexibility or various hypothesis 

likelihoods. 

 

Collectively, the results imply that emotional state is an important factor in a decision-

making scenario modeled on a real-world critical problem space.    

 

Chapter 5. Discussion 

 

5.1. Objective and Expected Outcome 

 

I will begin by recapitulating the objectives and expected outcomes.  Intelligent agents in 

games tend to exhibit behaviors that do not reflect humanlike qualities.  In particular, 

they do not exhibit human emotional state effects on decision-making behavior in games.  

Even when emotional behavior is expressed in a few game agent architectures, such 

behavior is not informed by an underlying theory of emotion, nor is it quantitatively 

validated using human emotional behavior data.   The objective of this dissertation was to 

present a new emotional agent architecture with both theoretical and experimental 
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underpinnings, and that manifests a range of emotional state effects on behavior, 

especially real-time decision-making behavior.  The approach is informed by the 

appraisal and dimensional theories of emotion, which together ensure that emotionally 

appraised concepts in memory correspond with the emotional state of Emo, and that such 

resonance produces multiple realistic effects on Emo’s decision-making behavior.  The 

approach was validated in a series of experiments, of increasing sophistication in terms of 

both scenario and methods employed.  The two calibration experiment designs were 

suitable analogs leading up to the nuclear experiment.  The AX experiment modeled 

simple decision, and the Tower of London modeled planning; both of these were part of 

the decision-making process used by the decision-maker in the nuclear power plant 

experiment.  In addition, both calibration experiments modeled Emo's distraction, 

emotional state-congruent recall and attention refocus, which were all also part of the 

effects on Emo in the nuclear power plant experiment.  The results of the calibration 

experimentswere correlated against human data from similar cognitive science 

experiments.  The expected outcomeof these resultswas that lightweight intelligent agents 

can exhibit realistic humanlike behavior in arbitrarily complex real-time games, across 

various domains.   

 

5.2. Scope 
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5.2.1. Theoretical Scope 

 

There are many competing theories of human emotion and decision-making behavior, 

and of the interplay between the two.  In choosing which theories to explore in my model, 

I partially worked backwards from the effects that informed the experimental design.  

This led to using a hybrid theory in which emotional statehas direct effects on cognitive 

processes, as well as a resonance with the emotional content of memory.  A future 

challenge could be to work with different theories to produce similarly humanlike results. 

 

5.2.2. Experimental Scope 

 

Limiting the evaluation plan for the model is the relative lack of human emotional state 

vs. decision-making studies that quantitatively display results for all emotional state cases 

over a wide range of effects.  The theoretical data is rich, but can only go so far in 

validating a computational model. 

 

5.2.3. Modeling and Architectural Scope 

 

Computational modeling of even a small subset of an organic system as complex as the 

human brain, without sacrificing critical elements of fidelity as regards the research 

hypotheses, is very difficult.  The fidelity at the behavioral level of modeling needed to 
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be carefully calibrated, which is what I did.  Deeper levels of fidelity were beyond the 

scope of this work; PC hardware is vastly removed from the physical nature of the human 

brain, and the brain's neural signals have physical and chemical nature very different 

from digital data transfer.   

 

At a level of slightly greater abstraction, modeling the emergence of the conceptual level 

from low-level neural activity would also require an entirely separate dissertation.  To 

study the relationships among emotional effects on cognition, I chose the 

phenomenological level for correlation with human experimental data, and to a lesser 

degree the conceptual level of data structures and process modeling based on cognitive 

theory and experimentation.  I focused on the effects of emotional state on decision-

making as, especially for game AI, these effects are relatively observable, quantifiable, 

and meaningful.   

 

5.3. Research Findings 

 

5.3.1. Summary of Methods 

 

The experiments employed in this dissertation used a combination of computational 

modeling and statistical hypothesis testing.  Results were evaluated by t-tests, correlating 

data from existing human experiments against data from agent models reflecting human 
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emotional state.  My validationexperiment, involving a nuclear power plant operator 

agent, exploited results from two calibration experiments.   

 

To calibrate the system against human data, I modeled Dreisbach's 2006 experiment on 

emotional state and distractibility featuring the “AX Continuous Performance Task,” and 

Phillips et al’s 2002 human experiment on emotional state-dependent planning using the 

“Tower of London” test.  The model can also support several other experiments from 

cognitive science that show direct effects of emotional state on decision-making; the two 

modeled experiments present the most quantifiable results over a range of effects. 

 

The nuclear power plant experiment was used to further validate the calibration results on 

a far more complex problem space with real-world impact and implications.   

 

5.3.2. Experimental Results Summary 

 

In the AX experiment, although Emo was primed to expect X after A, in cases where X 

did not appear Emo pressed the correct button more often when in a positive emotional 

state.  The t-test correlation between agent and human results was ~90%.  In the Tower of 

London experiment, performance was measured by the number of extra moves needed by 

Emo to solve the problem.  The t-test correlation between agent and human results was 

~90% for this experiment as well.For the nuclear power plant experiment, the emotional 
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agent was able to successfully hypothesize and troubleshoota pipe rupture, based on a 

low water pressure reading scenario, more often and more readily in a somewhat negative 

emotional state; these results were not attainable by the emotionless version of Emo.   

 

5.3.3. Discussion of Findings 

 

Collectively, the results confirm that emotional state is an important factor in decision-

making scenarios in game domains, scalable to model on a real-world critical problem 

space.  The videogame industry and human development initiatives have become 

increasingly related in recent years, with more call for effective, engaging, and realistic 

serious games for education, professional training, and therapy.  Specifically, social and 

behavioral models have been sought after to validate and enrich the experience of these 

games for users, developers, and researchers alike [100].   

 

Computational modeling of emotion is essential for realistic humanlike AI decision-

making in games and simulations. My research provides such a model implemented in a 

new system suitable for a game AI.  The system realistically and flexibly models 

emotional state-based effects on deliberative and associative processes, validated by its 

capability to model several human emotional state-based experiments.   

 

5.4.Implications and Conclusions 
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5.4.1. Key Findings and Research Contribution 

 

My dissertation is concerned with developing computational models of human decision-

making that are sensitive to emotional state.  Specifically, the model developed for this 

dissertation incorporates emotional state effects on human decision-making behavior. My 

contribution is to enrich intelligent agent behavior in games.  My agent architecture 

computationally models documented and quantifiable emotional state-dependent effects 

with a high degree of fidelity to human data, enabling realistic humanlike decision-

making.T-tests between existing human experiment data and system model results of AX 

and Tower of London experiments show ~80-100% correlation fidelity. 

 

Also, the combination of direct emotional state effects produces emergent behaviors that 

model human decision-making.  The approach is applicable to multiple game AI 

domains.  Implemented experiments for AX, Tower of London, and Nuclear Power Plant 

operation illustrate different aspects of AI game agent decision-making, and show how 

emotional state effects combine to produce positive and negative emergent decision-

making behaviors across different game domains. 
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The experimental findings justify the approach that I have taken, particularly in terms of 

the four components from cognitive science and computational modeling that I used as 

guidelines for designing Emo's architecture. 

 

The first component is a theory of emotion supported by cognitive science.  Emo uses a 

hybrid dimensional and appraisal theory of emotion, as supported by cognitive science.  

Working from dimensional theory, agent emotional state (core affect) is a global value.  

Based on appraisal theory, each node in memory also has a similar emotional value.  The 

justification for this modeling choice is flexibility. All of the behavioral and cognitive 

effects in this work, for instance the emotional state-dependent recall and attention 

refocus that informed distraction in the Tower of London experiment, are based on the 

interaction between the emotional content of memory and the overall emotional state. 

 

Another necessary component was the memory network that was evaluated for emotional 

content. The central data structure in Emo architecture was the associative-semantic node 

network that represents long-term memory.  An arbitrarily complex network allows 

scalability of the experimental domain from AX to Tower of London to a nuclear power 

plant.  The links allowed the network to model a humanlike dual system of associative 

(unconscious) and searchable / deliberative (conscious) memory. 
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A humanlike cognitive process model sensitive to emotional state acts upon Emo’s 

memory network.  In particular, Emo uses an associative/deliberative dual process model 

as outlined by Stanovich and West [101].  Together, the dual subsystems grant humanlike 

realism to Emo’s process model.  Unconscious and conscious work together or in 

conflict, and all processes are suffused by and susceptible to multiple emotional effects.  

The interplay between the two systems was most directly shown in the nuclear power 

plant experiment, as Associative subsystem-based optimism and pessimism played a 

direct role in the Deliberative subsystem deliberative decision process. 

 

The model uses only three direct emotional state-dependent effects whose combinations 

lead to other, emergent behaviors.  Increasing the number of hard-coded parameters 

would likely mean more unforeseen interactions and corrective hacks. The first direct 

effect is emotional state-dependent activation strength adjustment.  Memory nodes with 

emotional rating closest to Emo’s emotional state gain proportional activation strength, 

and vice versa.  This leads to increased recall and attention focused on such nodes.  The 

second effect is emotional state-dependent attention flexibility; the chance of involuntary 

attention refocus to a new stimulus is directly proportional to Emo’s emotional state.  The 

third direct effect is emotional state-dependent success probabilities.  Emo’s predicted 

probability of an outcome (of an action or an event) is directly proportional to how 

closely the current emotional state matches the emotional rating of the node associated 

with that outcome.  The predicted probability is then used by the choice utility function.   
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As seen in the nuclear power plant experiment, one behavior indirectly dependent on 

emotional state is optimism / pessimism (e.g., in a negative state, a negative event like 

pipe rupture seems more likely, and is also more likely to be recalled).  Another is 

distraction; a deliberative task can be interrupted by attention refocus to a node with 

higher activation strength, which led to meltdowns in the nuclear scenario.  Similar to 

distraction is creative solution finding, where the distractor is actually task-relevant, as 

when in more positive emotional states shutdowns and pipe fixes began to outpace 

meltdowns.   

 

 

 

 

 

To present a richer decision-making process integrated more tightly with emotional state, 

the implemented experiments can be revised with several enhancements, which give 

expected results based on theory, but are not quantifiably comparable against human data.   

 

5.4.2. Current Experiment Redesign 

 

First, the AX experiment’s decision maker could be generalized to recognize bigrams in 

addition to single letters as concepts in memory.  These bigrams may be emotionally 
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charged two-letter words [102], and resultantly the anticipation of a bigram based on the 

first card in the two-card sequence may depend on emotional state.  The mechanism used 

to track these bigrams would be a two-dimensional interaction matrix: the first letter on 

one axis, and the second letter on the other.  This method could potentially scale to 

trigrams and beyond, and also to interactions between bigrams as they appear 

consecutively in the overall sequence of an experimental run.   

 

The Tower of London could have a tighter binding of the AStar-based decision-maker to 

emotional state, meaning that the planning actions and potential positions, as well as the 

disks themselves, are concepts in memory subject to emotional effects.  The mechanism 

would be similar to the enhancement to the AX decision-maker, in that a 

multidimensional interaction matrix will cover all possible chunks of disk position (e.g., 

recognition of single stack status vs. multiple stack), and actions taken that affect those 

chunks.  Even sequences of multiple actions could be tagged with emotional ratings, 

though that would be beyond the scope of the initial revision. 

 

The nuclear power plant experiment could be upgraded to include multiple and sequential 

states and actions in memory, maintained in an interaction matrix.  The decision-maker 

would have several alternative hypotheses to choose from, to determine the cause of low 

water pressure. 
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Given Emo's flexibility to use many different high-level decision-makers, Emo's nuclear 

power plant operation decision-maker could then be augmentedto use a multi-level 

troubleshooting hypothesis deduction model.  At the ground truth level, a pipe has 

ruptured in the power plant.  At the evidentiary level, the only relevant readout on the 

console is that the water pressure is very low.  On the level of cause discernment, 

competing hypotheses can account for this evidence: 

1. The console is incorrectly displaying low water pressure and the plant is 

actually functioning normally. 

2. There is an undetectable loss of primary pump power. 

3. There is a pipe rupture somewhere along the water route. 

 

An operator weighing the likelihood of each hypothesis against the others may resolve 

the competition outright if one of the hypotheses seems far more plausible.  On the other 

hand, none of the hypotheses may be likely enough to warrant a particular course of 

action (or inaction).  In such a case, Emo would try a test action that could lend evidence 

to support or deny one of the hypotheses.  For instance, if starting the emergency pump 

does not raise the water pressure, this removes credence from the hypothesis that the 

primary pump is deficient.  If enough credence is gained, a hypothesis can be confirmed 

and further action taken.   
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A completely rational operator would follow the above troubleshooting procedure and 

balance the credence of each hypothesis by evidence alone.  However, Emo's emotional 

state would resonate with the emotional rating of each concept encountered during 

troubleshooting, causing distortion of rational behavior.  For example, the pipe rupture 

hypothesis (being the most negatively charged of the three) would seem more likely in a 

negative emotional state, perhaps to the point where no contradictory evidence, no matter 

how strong, could dissuade Emo.  Conversely, in a positive emotional state the attention 

flexibility of Emo might make its belief waver among several hypotheses, given even 

marginally supportive evidence for any of them. 

 

This enhancement would allow Emo to choose courses of action more as a human 

troubleshooter would do, stepwise, and based on evidence as opposed to relying on 

hardcoded probabilities. 

 

5.4.3. Enhancement: Emotional Feedback and Emotional State Change 

 

The revised experiments can provide an opportunity to generate changes to the emotional 

state[37].  In the AX experiment, these changes would be based on the appearance of an 

emotionally charged letter and/or bigram.  The new Tower of London experiment would 

include alteration of emotional state based on repeated moves and positions.  Emotional 

state may also change based on Emo getting closer to or further from the solution based 
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on heuristic assessment.  In the nuclear power plant experiment, the emotional state 

would change depending on the criticality of readings as well as the success or failure of 

actions taken.   

 

5.4.4. Additional Cognitive Modeling Experiments 

 

Several adjustments to Emo’s processes could be made in order to modelfurthercognitive 

scienceexperimentsinvolving decision-making and emotional state.  The additional 

experiments are listed below, along with the adjustments needed to model the 

experiments in Emo. 

 

Table 5. Summary of further experiment modeling 

 

Study Task Result Implementation 

Notes 
[53] Spies, 1996 Working memory 

span 
Positive emotional 
state: impairment. 
Negative emotional 
state: impairment 

Emotional state-
based working 
memory size 
adjustment 

[54] Hesse, 1996 Word vs. non-word 
recognition 

Neutral emotional 
state: no effect 
Negative emotional 
state: facilitation 

Feature-matching 
faster but stricter 
in negative 
emotional state 

[55] Oaksford, 
1996 

Tower of London Positive emotional 
state: impairment 
Negative emotional 
state: no effect 
(tends towards 
impairment) 

None needed 



 

86 

[56] Gasper, 2002 Switching to novel 
word-finding 
strategy 

Negative emotional 
state: 
facilitation after 
switch instruction  

Feature-matching 
strategy switches 
more readily in 
positive 
emotional state 

[46] Phillips, 
2002a 

Tower of London 
(young subjects 19-
37) 

Positive emotional 
state: no effect 
Negative emotional 
state: no effect 

Lower distraction 
threshold for all 
emotional states 

[57] Phillips, 
2002b 

Initial letter fluency 
(syntax association) 

Positive emotional 
state: no effect over 
neutral emotional 
state 

Feature-matching 
faster but stricter 
in negative 
emotional state 

[57] Phillips, 
2002b 

Uses of objects 
fluency (semantic 
association) 

Positive emotional 
state: facilitation 
over neutral 
emotional state 

Feature-matching 
faster but stricter 
in neutral or 
negative 
emotional state 

[57] Phillips, 
2002b 

Switching syntax 
and semantics 
processing fluency; 
Stroop color test;  
switching Stroop 
color and word 
identification 

Positive emotional 
state: impairment vs. 
neutral emotional 
state 

Feature-matching 
strategy switches 
more readily in 
positive 
emotional state 

[58] Dreisbach, 
2004 

Switching to novel 
stimulus 

Positive emotional 
state: facilitation 
Negative emotional 
state: no effect 

Feature-matching 
bias toward novel 
stimuli in positive 
emotional state 

[58] Dreisbach, 
2004 

Switching to 
inhibited stimulus 

Positive emotional 
state: impairment 
Negative emotional 
state: no effect 

Feature-matching 
bias toward novel 
stimuli in positive 
emotional state 

 

 

Generally, the agent framework that I have created is capable of accommodating all of 

the above experiments, though the modeling of each decision-maker and the 

corresponding problem domain and memory contents would need customization.    
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5.4.5. Towards a Nuclear Power Plant Turing Test 

 

At the present, the framework is in place to run a Turing Test-inspired experiment for 

further evaluation of the humanlike qualities displayed by the system. In the pilot study, 

two groups of human subjects would be involved: “Testers” and “Observers.” The Testers 

would use a software-based procedural help manual and a GUI-based console that I have 

implemented (shown in Figures 7-9 below), to simulate an interface for maintenance and 

emergency operations in a nuclear power plant control room.  All operations that a Tester 

initiates would have a cost associated with them (potential irradiation), and some 

operations would have a limited chance of success.  

 

Figure 7. Nuclear power plant reactor readout panel 
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Figure8. Nuclear power plant control panel 
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Figure9. Nuclear power plant help manual screen 

 

The experiment scenario for the system would cover three phases. Beforehand, the 

Testers would be asked some background information, including current emotional state, 

and then the console interface and help flowchart system would be described to them.  A 

human cognitive science experimenter would carefully vet the test scenario and the 

experimental setup.  After the experiment, the Testers would be given a survey of their 

emotional states and emotional responses during the tests.   
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The two versions of the system—the full emotional version and the ablated “emotionless” 

version—would be confronted with the same scenario as the Testers.  The ablated system 

would be modified, as in the previous experiments, to ignore emotional cues and to 

remain in a constant neutral emotional state, minimizing emotional effects on decision-

making.  

 

The hypothesis behind the experiment is that the emotional version of the system is more 

likely to be mistaken for human than the emotionless version, based on the judgment of 

human Observers. 

 

Observers would see text readout reports and visual playback of console operations from 

the Testers, mixed randomly with similar session results from the two system versions.    

System playback would be calibrated to match the speed of a human Tester, in order to 

control that variable for Observers.  The Observers’ goal will be to determine which 

reports and playback represent human Testers, and which were generated by the system. 

 

5.4.6. Agent Enhancements 

 

The previous chaptersoutlineEmo’s combination of dimensional and appraisal theory in 

memory and processes.  The state of the art in agent architectures using both dimensional 

theory and appraisal theory is represented by systems such asEMA [37] and WASABI 
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[40], though these systems were designed for different purposes than was my agent 

model: emotional plan evaluation and embodiment / expression, respectively. Based 

onstudy of these systems and on my own work, a hybrid model of emotional theory is 

quite expressive in terms of generating effects on decision-making:the resonance between 

agent emotional state and emotional memory contents, which informs many effects, is 

derived from the combination.   

 

5.4.7.  Model Augmentation 

 

Learning would become a primary element in upcoming revisions of the model.  My 

current model uses preset, static emotional memory, whereas human emotional state-

congruent recall and choice are dynamically primed by learning under particular 

emotional states.  Perception-based experiential learning, as well as inference, would 

make the system’s memory truly dynamic by creating and updating nodes and links.  The 

learning module would be reinforcement-based, from outcomes of perception, cognition 

and action, enabling case-based planning and episodic memory[28][29][103].  Learning 

could be invoked voluntarily or involuntarilyto write to long-term memory.  The 

inference module would likely be built as a rule-based production system.  Both new 

modules would be subject to emotional state effects as are the currently implemented 

deliberative subsystem processes. 
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Sophisticated time awareness would also be a key aspect of future versions of Emo.  A 

rich set of past experiences and future expectations could inform the modeling of several 

more emotional effects on decision-making.  Additionally,  the time-based Affect 

Heuristic effect would be enabled, which would causeEmo to rely more heavily on 

emotional criteria for decision making given a tighter time schedule to select an action. 

 

The current belief in cognitive science is that arousal is as important as emotional state 

for determining and modulating effects on decision-making[104].  High-arousal states 

lead to narrowed attention, while low-arousal states lead to broadened focus (e.g., more 

than one concept node in attention focus at a time).  The Yerkes-Dodson law [9] 

illustrates that moderate arousal can aid recall via motivated learning, especially when the 

arousal is integral to the learning task at hand. However, higher levels of arousal act as a 

cognitive load [105] and thereby become too distracting to allow focused attention to a 

task, and recall suffers accordingly. Other studies show a more nuanced tradeoff of 

positive and negative effects on learning and recall due to arousal. According to a 1963 

experiment [106], learning under high arousal facilitates long-term recall of the learned 

subject, but short-term recall is impaired. The opposite effect occurred in the subjects’ 

learning under low arousal.The arousal factor and its effects would be tightly integrated 

in future iterations of the model. 
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There are also a number of discrete, labeled emotions that share high or low emotional 

state and arousal ratings, e.g. fear and anger.   Even with the inclusion of dominance as a 

factor in the affective model, emotional states like foreboding or directed anger are not 

easy to model without using the semantic links between nodes over an associative 

memory network to specify future events or other referents.  Future work would augment 

my agent's hybrid appraisal dimensional / emotional model[107][108], using Table 6 

below as a starting point:  

Table 6. Augmented emotional model 

 

Emotional 

State 

Arousal Dominance Time Referent Provisional Emotion 

Label  

+ open + Future Y Anticipation 

+ open - Future open Hope 

- + + Future open Courage 

- + - Future Y Foreboding 

- - open Future open Neutrality 

+ open + Future N Confidence 

+ open - Future N Optimism 

- open + Future N Fatalism 

- open - Future N Pessimism 

+ open + Present Y Appreciation 
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+ open - Present Y Awe 

- + + Present Y Anger 

- + - Present Y Fear 

- - open Present Y Disinterest 

+ + + Present open Joy 

+ open - Present open Thrill 

+ - + Present open Satisfaction 

- + + Present N Frustration 

- + - Present N Anxiety  

- - open Present N Boredom 

+ open - Past Y Nostalgia 

- open open Past Y Guilt 

- open - Past open Regret 

+ open open Past Y Relief 

 

 

5.4.8. Applications of Future Work 

 

Generally, I intend to integrate Emo with other ongoing research such as emotion 

generation processes. This would begin with the creation of a feedback loop between 
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cognition and emotion.  For instance, success or failure of an action may alter emotional 

state, and this state may in turn affect the formation of future decisions. 

 

The model may also beapplied to emotion-enabled serious game engines and virtual 

training environments, providing more realistic and valuable interactions with humanlike 

characters than are currently available.  Emo may also be used as a modulein other 

cognitive architectures. 

 

The main prospective application for the nuclear plant simulator is behavior modeling, 

leading to training.  Numerous power plant operators, at various levels of experience and 

in various emotional states, would use the system to run several crisis-averting scenarios 

in their professional training.  The operators' data would be recorded and incorporated 

into parameters that could calibrate Emo towards a predictive model of standard operator 

behavior.  Emo would later perform many runs of the operators’ test scenarios in various 

emotional state settings; analysis of Emo’s results compared with individual operators’ 

results would suggest which operators could benefit from further training under 

emotionally stressful conditions.   

 

Besides nuclear power plant operation, other real-world domains have similar 

requirements for training: complex human-computer interaction combined with 

emotional stress.  Air traffic control trainees could use the model very similarly to nuclear 
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operators.  The aspects of Emo that would need to change significantly would be the 

world state (modeling air traffic interactions and interface), the memory contents 

(airplanes and weather patterns), and decision-making rules.  The main system would 

remain the same as the one used in the nuclear experiment. 

 

One intriguing challenge for the Emo model is that it could be used in conjunction with 

human emotion detection to enable an affect-based level of interaction between human 

users and AI.  For example, a training application for therapists who work with Post-

Traumatic Stress Disorder (PTSD) patients could incorporate the model into a system that 

tracks when and how an AI-based patient is emotionally triggered, then advises a 

therapist how to manage trigger-based crisis situations.  Concurrently, the therapist's own 

affective signals would be monitored by the system.  Those signals could engender 

calming or excitatory effects on a PTSD patient, and when appropriate the system would 

provide suggestions to the therapist for coping with emotional stress in themselves as 

well as their patients. 

 

Appendix A: Further Background and Discussion 

 

A.1. Human Planning, Problem-Solving, and Decision-Making 
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The fields of human cognitive science and artificial intelligence define the basic process 

of planning similarly [109][110], as creating and executing procedures for achieving 

particular goals or desired outcomes. The basic creation of plans has also been described 

as a search through a space (or set of related spaces) of connected problem states [111], or 

as future-oriented problem-solving [112].  Beyond problem solving, planning can involve 

predicting outcomes, scheduling, testing solutions, plan revision, evaluation after the fact, 

and learning from previous outcomes [113].  Planning domains for both humans and 

computers can include well-defined problems such as chess as well as ill-defined 

domains like grocery shopping [114].  

 

Human planning uses a limited working memory (a structure wherein plans can be 

retained temporarily when they are being formed or transformed or executed), including a 

“problem space,” and larger long-term memory which includes goal and action ‘libraries’ 

[115], possibly augmented by reference to externally stored information [116].  Planning 

involves complex processes such as decision (i.e., how/when to solve a problem) and 

simple processes such as recall [90][109].  Attention, time (urgency) and other heuristics 

guide decision, search, recall, and other planning-related processes. Case-based reasoning 

is also in effect during planning: this amounts to expression of recalled plan preferences 

[117]. Further, expression of planning is determined by the influences of prejudices and 

preferences. [117][118][119]. 
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Other computational characteristics of human planning involve incremental interleaving 

of planning (refinement) and execution phases, allowing cognition to opportunistically 

react to environmental changes [118][120]. Human planning is also partial-order and 

bidirectionally sequential, e.g., backward-chaining from the goal state and concurrently 

forward-chaining from start state, or top-down and bottom-up processing if a hierarchical 

task network or similar is to be modeled. Global/abstract changes are made to higher-

level goals, and local/concrete details can also be changed at the lower levels. 

 

Three specific computational models of human planning appear in the cognitive 

architectures of Soar [121], ACT-R [122], and CLARION [123].  Soar models planning 

as a specific case of cognitive activity, i.e. successive refinement of state structures by 

operators within multiple problem spaces.  A significant aspect of ACT-R is its modeling 

of memory as a network of nodes bound by weighted associative links, which can inform 

search, recall and decision during the planning process. CLARION’s modular cognitive 

processing architecture contains subsystems of various processing speeds that can 

conflict with and interrupt each other. Particularly pertinent to my work is CLARION’s 

motivational subsystem (Associative subsystem) having the capacity to interrupt the 

deliberations of the action-centered subsystem (Deliberative subsystem).  

 

A.1.1. Reactive and Deliberative Planning 
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The human capacity for planning developed in a partially unpredictable environment.  

One form of planning suited for that type of environment is an integration of reactive and 

deliberative planning [124].  Deliberative planning manages the long-term goals and 

formulation of plans to achieve those goals, while reactive planning does periodic 

maintenance on the plan such that if changes to the world state have obviated a plan step 

or made a goal inaccessible, the plan can be repaired or overhauled.  Though 

sophisticated, this “one-shot” type of planning has shortcomings, as the planner does not 

automatically learn from experience. 

 

A.1.2. Case-based Planning 

 

Planning with an experience-based learning module enables “case-based planning” in 

which previous uses of a plan, plan step, or goal can be evaluated from past experience 

[103].  Integrating the above reactive/deliberative planner with a case-based system is 

more in line with the human use of memory and experience in both reaction and 

deliberation, and particularly allows emotionally charged experiences to influence these 

processes.  Sufficient training of a case-based planner allows the creation or modification 

of rules to follow given a familiar problem space.  In recent versions of Soar [125], 

combined episodic / procedural / semantic memory structures, supported by 

reinforcement learning, have been used to enable case-based reasoning. 
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A.2. Additional Modeling Background 

 

A.2.1. Activation and Association Maintenance Modeling 

 

The standard ACT-R [122] equation for the activation strength Ai of node i,  

 

Ai = Bi+∑(j)Wj Sij ,  

 

where Bi is the “base activation” of node i, Wj is a weighting factor of associated node j, 

and Sijrepresents the strength of association between i and j; modified in my model toij 

incorporate the emotional impact of associated nodes.   

 

 

In ACT-R, the value of a node i’s base activation is  

 

Bi = ln ( ∑(k) tk
-d),  

 

where tk is the elapsed time since the kth activation of node i, and d represents a constant 

decay factor.   
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A.2.2. Unified Model of Process Cooperation 

 

The blackboard architecture [126] is a basic computational model of distributed process 

cooperation that enables implementation of the unified models of cognition described by 

Newell and Kahneman.  The architecture has as its basis the “blackboard,” a shared 

knowledge base, which in my system is the network of memory. The classical blackboard 

architecture also incorporates multiple specialist processes that provide partial solutions 

to a given problem on the blackboard.   The blackboard architecture also contains a 

control shell or meta-module that moderates the specialists’ activities.  In future versions 

of the system, that portion of the architecture could have several levels and components, 

such as the standard low-level processes of a modern digital computer, as well as the 

higher-level transactional control over asynchronous processes’ access to conceptual 

nodes in working memory.   

 

A.3. Further Discussion of Emotional Theory 

 

There are several psychological theories analyzing human emotions.  In the 19th century, 

the psychologist William James and others theorized that emotions were brought on by 

physiological reactions to situations.  James’s theory was a precursor to appraisal theory, 

whose proponents also view emotions as effects of reactions to situations, though with 

less of a focus on physiological reactions.  Appraisal theory is dominant in the 
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community of computational emotional modeling, though other schools of thought have 

also made an impact in that arena.  Within appraisal theory itself, there are several lines 

of subdivision. 

 

Appraisal theory was developed as a means to predict individual human emotions given 

particular situations [127][128][129].  The basis of the theory is that a person can 

appraise (i.e., evaluate) an entity, concept, event, or situation with respect to the 

appraiser’s beliefs, desires, and intentions.  This evaluation can be organized by factors 

called appraisal variables, and a certain combination of appraisal variable values 

(collectively, an “appraisal frame”) predictably gives rise to a distinct emotion.  The 

mapping from appraisal variables to emotion has been termed “affect derivation” (often 

coupled with or subsuming a derivation of emotional intensity).  For instance, a swimmer 

might appraise a shark encounter as likely to result in serious physical harm, and this 

appraisal would generate an intense emotion of fear in the person. 

 

One way in which appraisal theories differ from one another is in the number, 

breakdown, and definition of appraisal variables accounted for by each theory, and the 

ways in which the variables combine to predictably generate labeled emotions.  However, 

most appraisal theories share some basic variables: pleasure (a.k.a. valence, or a person’s 

subjective positive/negative view of what is being appraised) is present or inferable 

among many theories’ appraisal variables [129][130][131].  Also, arousal (intensity of 
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feeling) is measured as an appraisal variable in several theories or else assumed to be a 

factor in generating emotional response upon appraisal of a situation relevant to Emo and 

its goals [132].  Coping potential is another commonly used variable—the ability to deal 

with a situation.  Coping itself may include taking direct action regarding the situation, or 

cognitive redefinition of one’s beliefs, desires, or intentions; for example, the “sour 

grapes” approach of reappraising a negative situation as a positive.  Lazarus [128] 

developed the similar concept of primary vs. secondary appraisals: primary appraisal 

takes in a situation’s significance, and secondary appraisal (coping potential) assesses the 

ability to deal with the situation.  Frijda [133] relates emotions to action tendencies, with 

emotional cues providing constraints on the next set of decisions or actions made by an 

agent.  For instance, fear may limit action tendencies to avoidant behavior. 

 

The OCC (Ortony, Clore, and Collins) appraisal theory [130] categorizes emotions based 

on appraisal of pleasure / displeasure and arousal.  To more specifically predict emotion 

generation, OCC theory breaks down appraisal of pleasure / displeasure into three 

categories based on what is being appraised: desirability (of an event), praiseworthiness 

(of an action), and like/dislike (of an entity).  Also, actions and events may be further 

differentiated by an attribution variable: for instance, was an action taken by (or did an 

event affect) oneself, or another?  Appraisal across these variables defines different 

specific emotions; for instance, a positive-pleasure appraisal of an action attributable to 

oneself might create an emotion of pride in the appraiser, whereas the swimmer’s 
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appraisal of the shark encounter as above would be as a negative event attributable to the 

shark, with prospective negative consequences for the swimmer, thus producing fear of 

the shark. 

 

Challenge and Threat theory [131] uses two main variables: demand and resources.  

Demand in turn is broken down into three variables: required effort, danger, and 

uncertainty.  The resources variable is similar to the coping potential variable in other 

theories.  According to Challenge and Threat theory, a swimmer’s appraisal of a shark 

encounter’s danger as “high”, combined with the appraisal of insufficient resources to 

deal with the shark, would produce a feeling of threat.  However, if the swimmer’s 

evaluationof the situation identified sufficient resources like a nearby beach, the overall 

assessmentwould lead to a (positive) feeling of challenge.   

 

Several researchers have devised high-variable-count appraisal theories that map specific 

configurations and values of appraisal variables to a range of generated emotions and a 

sequential series of checks.  One such map [108] is summarized in Table 7 below. 

Table 7. Map of appraisal dimensions to predicted emotion generation 

 

Check Seq Joy Fear Anger Sad-

ness 

Disgust Shame Guilt 

Expected-
ness 

1 Open Low Open Open Open Open Open 

Unpleasant-
ness 

1 Low High Open Open V.High Open Open 
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Goal 
Hindrance 

1 V.Low High High High Open Open Low 

External 
Causation? 

2 Open Ext. Ext. Open Ext. Int. Int. 

Coping 
Potential 

3 Med. V.Low High Low Open Open Open 

Immorality 4 Open Open High Open Open Open V.High 
Self-
Consistency 

4 Open Open Low Open Open V.Low V.Low 

 

For example, fear is the predicted result of an unexpected, unpleasant, goal-hindering, 

externally caused situation for which the appraiser has a low coping potential (resources): 

e.g., a shark attacking a swimmer.  Immorality (defined loosely as the breaking of societal 

or personal norms or values) does not come into effect in that example; nor does the 

swimmer’s sense of self-consistency (or integrity).  Hence those two variables are 

generally categorized as “Open” in terms of generating fear. 

 

Beyond divergent sets of variables, some appraisal theories postulate more than one 

appraisal level or sequence (related to primary and secondary appraisal as per Lazarus).  

Scherer [108] introduces the idea of “sequential checking” as an order of operations for 

appraisal.  See “Seq.” column in Table 9 for Scherer’s organization of appraisal variables 

into a sequence of four ordered checks: 1) a check as to relevance of an event to the 

appraiser; 2) if relevant, a check for causality and other implications, followed by 3) a 

coping potential check if necessary and 4) a normative significance check 

(morality/integrity).    
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Other theories outline a distinction between non-cognitive and cognitive appraisal.  One 

difference is that cognitive appraisal processes (like inferring the cause of a situation) are 

generally slower than appraisals based on direct sensory feedback (like physical pain) 

[10] expresses these different appraisal levels as somatic (primary) and recalled 

(secondary) “emotion inducers”.  Some researchers use this distinction to define certain 

emotions as secondary— only able to arise following some cognitive processing[40].  For 

instance, anger at a person most likely stems from cognitively attributing an action or 

event (previously appraised as unpleasant) to that person, such as a “shark attack” 

revealed to be another swimmer playing a practical joke. 

 

Part of the difference between theories that postulate two levels of appraisal and theories 

which only identify one (fast) appraisal level is semantic in nature: the two-level theories 

include non-evaluative cognitive processing (e.g., inference or recall) as part of 

“secondary appraisal,” whereas the one-level theories limit appraisal to quick situational 

evaluation of sensed situations and cognized situations alike [133a].  The one-level 

theories view the cognitive processing of events as coping, instead of as appraisal [134].  

Also, according to Leventhal and Scherer [135], there is not a clear line between calling a 

given appraisal process cognitive or non-cognitive.   The line can be further blurred in 

that routine appraisals of a particular situation can enable future appraisals (recognition 

response) of that situation to be quicker and more reflexive than an initial, purely 

cognitively based appraisal [136].  In keeping with the Associative subsystem / 
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Deliberative subsystem paradigm, primary appraisal in two-level theories would mainly 

be handled by Associative subsystem, while cognitive processing (whether described as 

coping or secondary appraisal) would be handled by Deliberative subsystem.  

 

A.4. Further Effects to be Modeled 

 

Aside from the studies mentioned in previous sections, there is a wealth of theoretical and 

experimental work, from ancient times onward, on how emotion affects decision-making 

behavior, which my model does not currently take into account.  Some of these (whether 

or not they are emotional state-related) would be suitable for further exploration in the 

model once it is augmented as described above. 

 

Several effects of emotion on deliberative cognitive processes fall under the heading of 

induced biases and heuristics. In one sense, these effects allow deliberative processes to 

assume continuity or predictability in the environment, given a priming emotional state or 

stimulus [137]. For instance, a person walking down a street at night might become 

fearful, and then evaluate ordinarily neutral concepts or percepts as threatening.  

However, this Affective Priming effect may be incorrect or misleading, as in the case of 

sad music causing shoppers to feel the need for short-term comfort and thus to buy more 

readily [138].   
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The Affective Infusion Model [139] provides a more structured paradigm for several 

emotional bias effects on decision than my model currently covers.  The AIM posits four 

strategies, from least to most deliberation-intensive, and hence in order of probable use: 

1) Direct-access processing: a previously stored, relevant decision is readily recalled. 2) 

“Motivated” processing: both recall and inference are guided by a strong motivating goal 

of the judge. 3) “Emotional state-heuristic” processing: the judge’s current emotional 

state guides decision without much further cognitive processing, and 4) “Substantive” 

processing: the judge performs integration of information into a complex concept, and 

emotional state may or may not affect any given recall or inference process used in that 

integration. The motivated and heuristic strategies align with the theory that at least some 

affective response precedes [140] and biases deliberative processing.   

 

The Somatic Marker Hypothesis [141] predicts that an emotional heuristic aids the 

process of decision-making. Specifically, an emotionally charged state of mind is first 

stored in memory, associated with recollections of the situation that produced the state. 

Then, the recurrence of the situation (or a similar one) will produce a quick, reflexive 

response: “reliving” of the state and of the emotion behind it, before slower, more 

deliberative cognition can occur. Bechara demonstrated the effect (though not necessarily 

proving the Somatic Marker Hypothesis) using the Iowa Gambling Task experiment [10]. 

The experiment showed that emotion-linked reasoning causes people to avoid behavior 

that they have learned carries unnecessary risks. Specifically, subjects chose from two 
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sets of cards that gave monetary rewards and punishments; set 1 had higher individual 

rewards but had a long-term negative outcome potential, whereas set 2 would provide a 

long-term positive reward. The predicted result was that feelings of regret or loss would 

become associated with continued choosing of cards from set 1, and that set 1 would 

eventually be deemed less useful than set 2. Participants in the experiment were divided 

into two groups: a control group with normal brain function, and people with damage to 

the ventromedial sector of the prefrontal cortex, which enables emotional states to be 

stored in memory.  The result showed that the control group built up a somatic “stress” 

reaction associated with choosing from set 1, and thus learned to minimize risk by 

favoring set 2. The group with cortical damage, as predicted, continued to use set 1’s 

riskier decks more often than not.  According to some, the Somatic Marker Hypothesis is 

not necessarily proven by the Gambling Task results [25], as the same results could be 

attributable to deliberative processing of the losses accrued during the task.  

Table 8. Further emotional effects for future work 

 

Effect of Emotion  Computational 

Model Trigger 

Computational Model Effects Summary 

Learning under 
Cognitive Arousal  

Arousal level of 
emotional state and 
of node(s) being 
attended to by 
deliberative 
subsystem 
processes 

Scope of working memory increases, learned 
memories gain emotional state-congruent recall 
propensity; reverse effect begins to occur if 
arousal increases beyond a certain threshold 

Affective Priming  Emotional state at 
certain level of 
arousal, pleasure, 
and dominance 

Nodes attended to by cognitive processes have 
perceived pleasure, arousal, and dominance 
ratings closer to current emotional state values 
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Bias/Heuristic: 
Judgment Strategy 
Choice (Affective 
Infusion and 
Gambling Task 
effects) 

Choice invoked In decreasing order of priority: 1) Relevant 
judgment readily recalled (fast feature-matching); 
2) Quick recall and/or inference congruent to the 
attended nodes’ pleasure rating; 3) Emotional 
state-dependent decision 4) Cognitive judgment 
using emotional state-congruent recall (and 
inference) 

 

Table 8 summarizes the how certain further emotional effects may be modeled.  This will 

also necessitate more and finer-grained processes than currently exist in my model, 

among other enhancements (e.g., learning, inference, case-based planning, and episodic 

memory). 

Appendix B: Implementation 

 

B.1. Code specification Including Memory for ExperimentalDomains 

 

http://ncr.isi.edu/svn/Projects/Nuclear%20Plant%20Experiment 

Contact author for user id and password. 

 

B.2.  Sample Output from Nuclear Power Plant Decision-Maker 

 

Got action check(coolantTemperature,) 
level: 381.6 
Result from performing check(coolantTemperature,) is 381 
Got action check(waterPressure,) 
level: 2.4 
Result from performing check(waterPressure,) is 2 
Got action checkSystem1(fixWaterPressure,) 
EmoCog Loop initialized 
Result from performing checkSystem1(fixWaterPressure,) is 
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nodeList(emergencyBypassPump, 0.6000000238418579, 
nodeList(doNothing, 
0.6000000238418579, nodeList(emergencyPump, 0.6000000238418579, 
nodeList(emergencySealantSpray, 0.6000000238418579, 
nodeList(pipeRupture, 0.6000000238418579, end))))) 
asserting system1Fact(emergencyBypassPump,0.6000000238418579) 
asserting system1Fact(doNothing,0.6000000238418579) 
asserting system1Fact(emergencyPump,0.6000000238418579) 
asserting system1Fact(emergencySealantSpray,0.6000000238418579) 
asserting system1Fact(pipeRupture,0.6000000238418579) 
comparing [emergencySealantSpray] and [emergencyPump] in model 
correct 
Project emergencySealantSpray on [] to 
[[1.0,[emergencySealantSpray]]]Trigger correct on 
[emergencySealantSpray] to [[1.0,[emergencySealantSpray]]]0 new worlds 
created in simulation 
Project emergencyPump on [] to [[1.0,[emergencyPump,bad]]]Trigger 
correct on [emergencyPump,bad] to [[1.0,[emergencyPump,bad]]]0 new 
worlds created in simulation 
Utility of [emergencySealantSpray] is 5 
Utility of [emergencyPump,bad] is -10 
Prefer [[1.0,[emergencySealantSpray]]] over 
[[1.0,[emergencyPump,bad]]] since 5.0 > -10.0 
comparing [emergencySealantSpray] and [emergencyPump] in model 
correct 
Project emergencySealantSpray on [] to 
[[1.0,[emergencySealantSpray]]]Trigger correct on 
[emergencySealantSpray] to [[1.0,[emergencySealantSpray]]]0 new worlds 
created in simulation 
Project emergencyPump on [] to [[1.0,[emergencyPump,bad]]]Trigger 
correct on [emergencyPump,bad] to [[1.0,[emergencyPump,bad]]]0 new 
worlds created in simulation 
Utility of [emergencySealantSpray] is 5 
Utility of [emergencyPump,bad] is -10 
Prefer [[1.0,[emergencySealantSpray]]] over 
[[1.0,[emergencyPump,bad]]] since 5.0 > -10.0 
Got action set(emergencyBypassPump,on,) 
Running stub code to set a value in the simulator 
[DatabaseLogger.logEvent] logging, type = 
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REACTOR_OPEN_BYPASS_VALVE_SUCCESS desc = opened bypass 
valve 
successfully 
Result from performing set(emergencyBypassPump,on,) is 1 
Got action checkSystem1(fixWaterPressure,) 
EmoCog Loop initialized 
Result from performing checkSystem1(fixWaterPressure,) is 
nodeList(emergencyBypassPump, 0.6000000238418579, 
nodeList(doNothing, 
0.6000000238418579, nodeList(emergencyPump, 0.6000000238418579, 
nodeList(emergencySealantSpray, 0.6000000238418579, 
nodeList(pipeRupture, 0.6000000238418579, end))))) 
asserting system1Fact(emergencyBypassPump,0.6000000238418579) 
asserting system1Fact(doNothing,0.6000000238418579) 
asserting system1Fact(emergencyPump,0.6000000238418579) 
asserting system1Fact(emergencySealantSpray,0.6000000238418579) 
asserting system1Fact(pipeRupture,0.6000000238418579) 
comparing [emergencySealantSpray] and [emergencyPump] in model 
correct 
Project emergencySealantSpray on [] to 
[[1.0,[emergencySealantSpray]]]Trigger correct on 
[emergencySealantSpray] to [[1.0,[emergencySealantSpray]]]0 new worlds 
created in simulation 
Project emergencyPump on [] to [[1.0,[emergencyPump,bad]]]Trigger 
correct on [emergencyPump,bad] to [[1.0,[emergencyPump,bad]]]0 new 
worlds created in simulation 
Utility of [emergencySealantSpray] is 5 
Utility of [emergencyPump,bad] is -10 
Prefer [[1.0,[emergencySealantSpray]]] over 
[[1.0,[emergencyPump,bad]]] since 5.0 > -10.0 
comparing [emergencySealantSpray] and [emergencyPump] in model 
correct 
Project emergencySealantSpray on [] to 
[[1.0,[emergencySealantSpray]]]Trigger correct on 
[emergencySealantSpray] to [[1.0,[emergencySealantSpray]]]0 new worlds 
created in simulation 
Project emergencyPump on [] to [[1.0,[emergencyPump,bad]]]Trigger 
correct on [emergencyPump,bad] to [[1.0,[emergencyPump,bad]]]0 new 
worlds created in simulation 
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Utility of [emergencySealantSpray] is 5 
Utility of [emergencyPump,bad] is -10 
Prefer [[1.0,[emergencySealantSpray]]] over 
[[1.0,[emergencyPump,bad]]] since 5.0 > -10.0 
comparing [emergencySealantSpray] and [emergencyPump] in model 
correct 
Project emergencySealantSpray on [] to 
[[1.0,[emergencySealantSpray]]]Trigger correct on 
[emergencySealantSpray] to [[1.0,[emergencySealantSpray]]]0 new worlds 
created in simulation 
Project emergencyPump on [] to [[1.0,[emergencyPump,bad]]]Trigger 
correct on [emergencyPump,bad] to [[1.0,[emergencyPump,bad]]]0 new 
worlds created in simulation 
Utility of [emergencySealantSpray] is 5 
Utility of [emergencyPump,bad] is -10 
Prefer [[1.0,[emergencySealantSpray]]] over 
[[1.0,[emergencyPump,bad]]] since 5.0 > -10.0 
comparing [emergencySealantSpray] and [emergencyPump] in model 
correct 
Project emergencySealantSpray on [] to 
[[1.0,[emergencySealantSpray]]]Trigger correct on 
[emergencySealantSpray] to [[1.0,[emergencySealantSpray]]]0 new worlds 
created in simulation 
Project emergencyPump on [] to [[1.0,[emergencyPump,bad]]]Trigger 
correct on [emergencyPump,bad] to [[1.0,[emergencyPump,bad]]]0 new 
worlds created in simulation 
Utility of [emergencySealantSpray] is 5 
Utility of [emergencyPump,bad] is -10 
Prefer [[1.0,[emergencySealantSpray]]] over 
[[1.0,[emergencyPump,bad]]] since 5.0 > -10.0 
Got action set(emergencySealantSpray,on,) 
Running stub code to set a value in the simulator 
[DatabaseLogger.logEvent] logging, type = 
REACTOR_START_EMERGENCY_SEALANT_SPRAY_SUCCESS desc 
= started emergency 
sealant spray successfully 
[DatabaseLogger.logEvent] logging, type = 
REACTOR_PIPING_RUPTURE_DISABLED desc = piping rupture 
disabled 



 

114 

[DatabaseLogger.logEvent] logging, type = 
SYSTEM_RESET_WATER_PRESSURE_MID desc = reset water 
pressure to mid 
[DatabaseLogger.logEvent] logging, type = 
SYSTEM_END_CONDITION_PIPE_FIXED desc = end condition: pipe 
fixed 
Result from performing set(emergencySealantSpray,on,) is 1 
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