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ABSTRACT

Eventually there will exist virtual environments inhabited by millions, but as

virtual environments grow in size and number of entities, many problems emerge.

Because of these problems, increasing attention is being brought to the issue of filtering

data that is not of interest to a given client. Such filtering is known as interest

management.

This dissertation outlines a Three-Tiered approach to interest management. The

first tier breaks the world into manageable pieces. The second tier uses the data from the

first to create a protocol independent perfect match between a client’s interests and the

environment. The third tier, building on the second, adds protocol dependence allowing

the client to receive only the data from the protocol it needs. At the same time, separating

out the protocol from the core interest management can allow multiple protocols to

simultaneously exist within the same environment, while using the same underlying

filtering mechanism.

Results from this work have shown that it is possible to create an interest

management software architecture that allows bandwidth, packets per second, and CPU

time to scale dependent only on the number of entities a given client is interested in at

any one time.
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I. INTRODUCTION

A. THESIS STATEMENT

It is possible to create an interest management software architecture allowing

persistent distributed virtual environments to scale dependent only on the number of

entities a given client is interested in at any one time.

B. GOALS

Eventually there will exist persistent, large-scale, distributed virtual environments

inhabited by millions of entities. A persistent distributed virtual environment is defined as

one that is “never-ending” or “always on.” This is either because its users require that it is

always running, or because it is so large and distributed that stopping the entire

simulation to make changes is just not possible. One persistent environment that many

people are familiar with is the Internet. Pieces of the Internet are regularly upgraded, and

new protocols and software are constantly being introduced. While pieces of the Internet

can be rebooted, the Internet as a whole can never be taken down for upgrades. Clearly

that would not be acceptable.

 A large-scale distributed virtual environment is made up of many entities. In

general, an entity is any independent object in the virtual environment, anything from a

word-processing document to an ant to an entire city block. Each computer participating

in the environment runs a specific set of software called a client, which in turn controls

one or more local entities within the environment. The client is also responsible for
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establishing and controlling communication between itself and other remote clients. It

periodically receives state information about remote entities from remote clients, and

updates local information about the remote entities. Figure 1 illustrates the relationships

between computers, clients, local entities, and remote entities.

Figure 1. The relationships between computers, clients, local entities and remote entities

As virtual environments grow in size and number of entities, many problems

emerge. For example, computers cannot handle receiving messages from an ever-growing
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number entities, and certainly cannot handle the processing of those messages in a timely

manner. Past research has shown that up to 99% of all data transmitted within a pure

broadcast based distributed virtual environment is irrelevant to any one local host

(VanHook, Calvin et al. 1994; Morse 1999; Morse 1999). Yet in order to solve more

complex problems, many researchers developing virtual environments often want or need

more entities in larger, more complex environments.

To allow the virtual environment to scale, information must be filtered that is of

no use to a client’s local entities. This filtering is known as interest management. For

interest management to be accomplished, entities express interest using a set of criteria

known as an interest expression (IE). The interest expression criteria must be met for a

remote entity to be of interest to that client. Ideally, clients only receive updates about

entities that meet the IE criteria. Many researchers have tried to use interest management

to reduce the effects of the problems associated with scaling, and they have succeeded to

varying degrees.

The goal is to design an interest management software architecture that can allow

the existence of a large distributed persistent virtual environment. That is, the goal is to

create an architecture that is both scalable and extensible.

1. Scalable

To create a scalable virtual environment architecture, network bandwidth, packets

per second (PPS), and CPU usage for a given client ideally independent of the total

number of entities in the environment. These metrics should instead only depend on the

number of entities in which that particular client is interested in at any time. Ideally this
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scaling should be accomplished without using prior knowledge of a particular scenario. If

a virtual environment scales independently from a specific scenario, the scenario is free

to change over time without compromising the environment’s scalability, as long as the

client is able to handle the flow of information that its local entities are interested in

receiving.

2. Extensible

To make a persistent virtual environment scalable, its architecture must be

extensible. That is, protocols must be able to be added and removed at runtime, without

shutting down the environment. An extensible architecture called “Dynamic Protocols”

(Watsen and Zyda 1998) has been developed to handle the addition or removal of

application communication protocols at runtime. If one were to use a dynamically

changing set of application protocols to develop a virtual environment, the interest

management system used must also be extensible so that it can handle the dynamically

changing set of state variables.

C. SUMMARY

A system that is both scalable and extensible would be a significant contribution

to the field because a virtual environment using such a system should only be limited in

scale by the number of entities in which a particular client is interested. It would also be

able to be dynamically extended, and therefore will never need to be shut down for

software upgrades.
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D. DISSERTATION OVERVIEW

The next chapter outlines related work to this dissertation. Specifically, it

describes three categories of interest management schemes and discusses their strengths

and shortcomings. Descriptions of previous systems are then presented and grouped

appropriately into one of the three categories. Also discussed in Chapter II is the use of

Internet Protocol (IP) multicast by interest management systems, as well as its current

limitations and future promises.

Chapter III presents the Three-Tier interest management system and describes

how it addresses the shortcomings of the existing of interest management schemes.

Chapter IV presents the implementation decisions and details that were used in

effectively realizing the design of the Three-Tier system.

Chapter V presents the experimental design and results of measurements

conducted on a Local Area Network (LAN) comparing the Three-Tier system against

systems using broadcast-based and region-based filtering.

Finally, Chapter VI concludes with a discussion of issues not addressed in this

work, and recommendations for future work in this area.
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II. RELATED WORK

A. OVERVIEW

This chapter presents three categories of interest management schemes and

discusses their strengths and shortcomings. Descriptions of thirty-one previous systems

are presented and grouped appropriately into one of the three categories. Also discussed

is the use of IP multicast by interest management systems, as well as its current

limitations and future promises.

B. PREVIOUS WORK

There are several existing techniques for filtering information within virtual

environments. These techniques can be grouped into the following categories: server-

based filtering, sender-based filtering, and region-based filtering.

The following is a description and categorization of thirty-one interest

management systems. When a system appears to fit into more than one category, it is

placed in the category thought to be most limiting to its scale or function. A categorized

overview of these systems can be seen in Table 1 at the end of this section.

1. Server-Based Filtering

The category of server-based filtering is one in which a client that controls one or

more entities connects to one or more servers. The servers decide which messages should

be distributed to which clients based on each client’s interest expressions. The strong

point of this method is that consistency can be maintained across all the clients, and the
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potential for exact filtering exists because the server always has complete knowledge of

the virtual environment.

There are two common problems with this method of interest management. The

first is that when servers become overloaded, the only way to make the system scale is to

add more servers, possibly decreasing the exactness of the filtering and/or leading to a

worse form of the second problem, latency. Even in non-distributed virtual environments,

latency is a major concern. If a server also acts as a packet forwarder, as is the case in

most server-based virtual environments, it adds latency to message distribution. Every

time a message must be forwarded, the latency increases. The larger a virtual

environment that uses server-based filtering becomes, the more servers that are needed,

and potentially the more times a packet must be forwarded.

 In the Waterloo Virtual Environment System (WAVES) (Kazman 1993; Kazman

1995; Kazman 1995), servers called “message managers” mediate communication

between hosts, and are responsible for filtering information. A host typically sends

requests to the “message manager,” for example, “send information which meets the

following semantic criteria.” These servers can also delegate point-to-point connections,

for high bandwidth communications between hosts, when needed. As the size and

number of entities in the virtual world increases, more servers can be added. Hosts are

allocated to each server dynamically using a load balancing clustering algorithm. Because

interaction detection is such a large task, specialized hosts called “Interaction detection

hosts” are responsible for notifying entities of interactions. These agents continuously

resolve logical constraints on objects, such as “X is near Y,” using rules in a specific or
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general resolution mechanism. A prototype implementation called HIDRA was

constructed on the Sun Sparc 2 architecture, but contained neither intelligent message

filtering nor load balancing which the authors state “are necessary in large, scalable,

complex virtual worlds.”

RING (Funkhouser 1995) is a client-server architecture similar to that of

WAVES. Entities are simulated on clients, which connect to one of many servers. Servers

are connected to each other via high-speed networks, while clients can use lower speed

connections to communicate to their server. Each server performs an approximate

occlusion filtering of the entity updates based on pre-computed line-of-sight visibility,

and only forwards these updates to other servers and clients when needed.

In BrickNet (Singh, Serra et al. 1994), clients do not communicate directly with

each other but instead always communicate through servers to update each other.

Communication is via User Datagram Protocol (UDP) to reduce latency. The servers in

turn communicate with each other to satisfy client requests.  BrickNet contains two types

of objects: local and remote. Only remote objects are shared across the network. Interest

management is accomplished by expressing interest in a particular object to a server. The

server in turn sends the updated state information of the objects whenever it is needed.

The Distributed Interactive Virtual Environment (DIVE) system (Carlsson and

Hagsand 1993; Carlsson and Hagsand 1993; Morse, Bic et al. 2000) is made up of many

separated regions called “worlds.” Early versions of DIVE associated each world with its

own multicast address, and no interest management was performed. In later versions of

DIVE each “world” relies on two servers, a “Collision Manager” and an “Aura
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Manager,” although communication between entities is peer-to-peer via SRM (Floyd,

Jacobson et al. 1997) based reliable multicast. Entities move from world to world through

gateways. An entity within a “world” queries the “Collision Manager” to determine

entities and objects within visual range using the concept of  “focus” and “nimbus.” If

something is within your “focus” you can see or hear it. If something is within your

“nimbus” it can see or hear you. DIVE can be thought of as a distributed database.

Different parts of the database are associated with different auras. The “Aura Managers”

are used as a means to signal to the clients which parts of the database need to be

replicated. Each replicated part is associated with different multicast groups. For the

system to scale, a hierarchy of “Aura Managers” is used. The root “Aura Manager,”

known as the “Master Aura Manager,” is also used as a name server.

The Model, Architecture and System for Spatial Interaction in Virtual

Environments (MASSIVE) (Greenhalgh and Benford 1995; Morse, Bic et al. 2000) uses

one or more servers called “Aura Managers” to determine the intersections of different

entities’ interests. The determination of interest is based on the collision of one or more

“Auras,” each representing the extent to which interaction with other entities is possible.

When an intersection is found, the server tells the clients of respective entities, and the

clients in turn communicate peer-to-peer until they are no longer of interest to each other.

The third generation system MASSIVE-3/HIVEK (Greenhalgh 1999) which is still under

initial development also uses a server for communication and filtering. To accomplish

filtering it uses a system similar to Spline (see subsection 3) called “locales,” where the

world is broken into pieces, each hosted by a server.



11

Community Place, part of The Virtual Society project (Lea, Honda et al. 1997), is

based on both DIVE and MASSIVE, but is targeted toward low-cost consumer

equipment. Like those previous systems, each entity has a boundary called an “Aura.” An

entity can only be interacted with by other entities within its “Aura.”  A server called an

“Aura Manager” is used to detect the intersection of an entity’s aura with other entities

within the virtual world. The server acts as a “message redistributer” which forwards

messages of interest based on these intersecting auras. Multiple servers communicate via

multicast to support consistency between them.

Instead of a shared database representation, AVIARY (Snowdon and West 1994)

uses an object-oriented representation. Objects explicitly express interest in other objects.

The common way this is accomplished within AVIARY is by using an intersection test

between a viewing volume and all the objects in the world. A viewer is interested in

objects that intersect its viewing volume. A server called an “Environment Database”

handles this potentially large intersection test using a binary space partition tree and

reports the collisions back to the objects.  It is hypothesized that as the world grows

multiple Environment Database servers can be used, although how to efficiently handle

an intersection with multiple servers was left as future work.

In the Joint Precision Strike Demonstration (JPSD) (Powell, Mellon et al. 1996;

Morse, Bic et al. 2000) each simulation is connected to a sever called a “Run Time

Gateway” via an ATM IP Multicast virtual LAN. “Run Time Gateways” in turn

communicate with each other using several multicast addresses. One multicast address is

used for interest expressions, and several are used for data. Packets are sent in the form of
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Protocol Data Units (PDUs). Entities send interest expressions to the “Run Time

Gateways” in terms of PDU type and a limited set of derived fields that are recalculated

for each incoming PDU. The “Run Time Gateways” act as a filter of outgoing and

incoming PDUs, and only passes PDUs that conform to one of its currently active interest

expressions. If a PDU is of interest to other, non-local, entities, the PDU is passed to

other “Run Time Gateways” with matching interest expressions. Interest expression

evaluation is performed using a predicate evaluation framework that allows dynamic,

application-specific predicates to be executed using application-specific compiled-code.

NetEffect (Das, Singh et al. 1997) uses a client-server architecture. In each world,

there is a master server that is connected to many peer servers through point-to-point

connections. The virtual world is broken into many “communities.” Each peer server is

responsible for one or more communities that have been delegated to it by the master

server. Clients connect to one peer server at a time, but can migrate to another server at

any time. All clients participating in a particular community are connected to the same

server to eliminate inter-server communication. Peer servers send object updates to

clients in a “need-to-know” fashion. This is done for objects “in the place which the user

is located,” for example only objects located in the same room as the client. All client

communication is via a direct Transmission Control Protocol (TCP)/IP connection with a

peer server with the exception of voice chat, which is handled directly between clients.

To accomplish load balancing, communities and clients can be migrated from a peer

server with a high load to one with a lower load.
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Systems using the Aggregate Level Simulation Protocol (ALSP) (Wilson and

Weatherly 1994; Morse, Bic et al. 2000) use a hierarchy of servers to tie together many

architecturally dissimilar simulations. Each server, called a “ALSP Broadcast Emulator”

(ABE), is connected to other ABEs or to a simulation. Original versions of the ABEs

were nothing more than packet forwarders. Messages would be received on one network

connection and sent out on all others. ALSP eventually had problems scaling, and interest

management was added to the ABEs. In the newer versions, objects and events are

filtered at the sender, while messages are dropped at the receiver based on attribute

values within the messages. All current ALSP systems are in the process of being

converted over to using High-Level Architecture (HLA) (see subsection 3).

The Manchester Virtual Environment Interface Kernel (MAVERIK)/Deva

(Hubbold, Dongbo et al. 1996; Pettifer 1997; Pettifer 1999; Morse, Bic et al. 2000) shares

the same vision as this dissertation in that it tries to support a persistent virtual

environment that does not ever need to be rebooted. However, each environment uses a

server that performs all of the interest management within that environment. In an

attempt to make the system scalable, each server task can be distributed among many

processors. Each client connects to the server using TCP/IP, and communicates through a

software layer called a “Spatial Manager.” Each environment can select its own “Spatial

Manager” to best fit its needs. Spatial Managers can support various types of filtering

including grid cells and n-dimensional trees, but currently each client receives a unicast

copy of every message the server-based Spatial Manager receives. However future

designers can write custom “Spatial Managers” and install them in a server. This means
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that future versions of MAVERIK/Deva can support various types of server based

interest management.

V-Worlds(Vellon, Marple et al. 1998) uses a single server that accepts

connections from many clients. The world is partitioned into “rooms,” and a client can

only be in one room at a time. To limited communication the server uses a “bystander”

algorithm which only updates objects contained within the clients current room and are

not contained within closed containers. Clients can also register explicit interest in an

object, although the authors discourage this practice.

Out of all of the above systems, only MAVERIK/Deva is extensible at runtime,

and all are classic client-server systems, and will therefore have problems scaling due to

latency problems with the exception of DIVE, MASSSIVE, and JPSD. Each “world” in

DIVE and MASSIVE uses a server which must perform a O(N2) collision problem

between each entity within the “world”, clearly this is not scalable. Not only does JPSD

use gateways that add latency, it also has problems scaling because it relies on sender-

based filtering, which is described in the following subsection.

2. Sender-Based Filtering

The category of sender-based filtering is one in which the sending entity decides

which other entities need to receive a message. The strong point of this category of

filtering is that remote clients only receive messages of interest, and never need to throw

away information. One common problem with this scheme is that a sending entity needs

to have knowledge of, as well as evaluate, the interest expressions of all other entities in

the simulation. In these systems, scale is clearly dependent on the total number of entities
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within the environment. Also, if these interest expressions include relative location, then

the sending entity must also know the positions of all other entities in the simulation. In

the worst case if all sending entities are receiving entities, then every entity may need to

regularly receive information about every other entity, altogether defeating the purpose of

interest management. Another problem with sender-based filtering is that the sending

entity has two choices on message delivery, the first being sending a copy of each

message to every entity interested, increasing bandwidth usage and latency. The other

choice is to dynamically group receiving entities with similar interests, which also

increases latency and bandwidth, can be costly in terms of CPU time, and in general

yields a less optimal result (Levine, Crowcroft et al. 1999).

The Minimal Reality (MR) Toolkit (Shaw, Green et al. 1993; Wang, Green et al.

1995) was extended through its Peer package to support multiple user networking. Each

recipient maintains a list of other participants or “peers” to which it is connected. By

default each peer is connected to every other peer using UDP messaging. The toolkit only

sends messages for shared variables that have changed. Messages may be sent to any or

all peers at once. Sender-based interest management is accomplished by sending

messages to select peers. Receiving peers can also request other peers to stop or start

sending messages to them for a period of time by sending “quenching” or “unquenching”

messages.

All entities in Advanced Distributed Simulation (ADS) (Mellon and West 1995)

access data about other entities through a “Ground Truth Database,” which is shared

across all hosts in the simulation. Each host maintains its own copy of the database,
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which is minimally updated based on the needs of the entities it is simulating. After

entities declare their interests to the “Ground Truth Database,” the database itself is

responsible for maintaining the set of data items in the database that match the union of

all the entities interests. The interest expressions are predicate-based, and are evaluated at

all the sources. The interest expressions also support variable resolution data, which also

must be calculated at the source. To reduce overall computation at the source, the authors

suggest specifying a small set of resolution parameters, and combining predicates. The

authors also suggest that applying a scheme such as grid based filtering is possible by

adding fields to items in the database. These fields can then be used as a first order pass

filter.

A recent approach (Morse 1998; Morse 1999; Morse 1999) still under

investigation uses mobile agents to create dynamic multicast groupings using a new

distributed algorithm. It is to be built on top of HLA (see subsection 3) and its goal is to

dynamically group senders and receivers based on their interests and transmissions. Once

senders and receivers are grouped, they can communicate using one of a fixed number of

multicast groups. It is hoped that this dynamic grouping offers a good trade off between

fixed region based filtering, and a multicast per entity approach.

None of the above systems are extensible at runtime, and all are classic sender-

based systems that require total knowledge of all entity interest expressions with the

exception of the recent work on dynamic multicast grouping. Because this approach is

still under investigation, how well it scales is still unknown, but it will certainly yield

increasingly less exact filtering as the number of entities increases.
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3. Region-Based Filtering

The category of region-based filtering is one in which the virtual environment is

statically broken up into pieces or regions. The tesselation of the world allows for rough

filtering based on an entity’s location. However, these regions need not be limited to the

three-dimensional space of location, in some systems they can be of arbitrary dimensions

and shape. Typically, sending entities send messages to a multicast address assigned to a

region, while receiving entities subscribe to the multicast addresses of regions of interest.

One strong point of this scheme is that deciding which regions to send to, and which

regions to subscribe to, does not consume many CPU cycles. Another strong point is that

by using multicast most of the filtering is done by the network hardware, not by the

client’s software. One common problem is that because this is only a rough filtering,

more information may be received and processed than is needed.

Another problem is that a virtual environment can suffer from what is known as

crowding or clumping. If many entities crowd, or clump, into one region, an entity which

subscribes to that region may be overwhelmed by entities it cares little about. In its worst

form, the clumping problem degrades the system to a simple broadcast communication

paradigm.

To avoid this clumping problem, past research has partially focused on

determining the “right” size for regions. One researcher determined that a region size of 2

to 2.5 km provided the most significant reduction in total host bandwidth usage (Rak and

VanHook 1996). Yet another researcher concluded that hexagons of size 4 km,

approximately equal in area to 6.5 km square regions, were optimal (Macedonia, Zyda et
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al. 1995). Clearly both answers are different, yet both have supporting experimental data

proving that they are correct. This indicates that optimal region size is a function of the

application scenario, and that one answer cannot be obtained.

Other research to avoid this clumping problem focused on dynamically

subdividing regions in an attempt to create an even distribution of entities per region. One

particular researcher was even able to show that an O(N2) collision detection simulation

can be solved in O(N) time regardless of entity distribution using dynamic partitioning of

the non-distributed environment (Harless and Rogers 1995).

In Space Fusion (Sugano, Otani et al. 1997) the world is broken into many

regions. Each region can contain information about a different geographical area, or

different information for the same geographical area. The mode of communication is a

client-server architecture in which a client connects to several servers at once and then

“fuses” information from many regions together. The client also calculates which entities

it is interested in based on the locations of entities within the regions, and the server that

contains the entity sends detailed data to the client when needed.

A prototype system for GreenSpace (Pulkka 1995) used a combination of grid

based filtering and the COMIC spatial model of interaction that is also used by DIVE and

MASSIVE. Each cell in a static grid is assigned a multicast address, and an entity in the

world subscribes to addresses for the grid it is in as well as the eight cells directly

adjacent to it. Entities send messages to the address of the cell they are currently in and

send messages to a “group update” address when they change cells or have been in the

same cell for a long period of time. Two types of messages are supported: text and
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position. Position messages are used to render entities within the virtual world. Entities

are rendered in an estimated position when detailed information is not available because

those entities are not within one of the nine cells currently subscribed to. When an entity

receives a text message, it is ignored if it is from another entity more than one cell away.

If the sending entity is less than a cell away but more that a half cell away, the system

simulates an audio drop-off by replacing the text of the message with “UserX is saying

something, but is too far away to hear.”

The most sophisticated interest management that Modular Semi-Automated

Forces (ModSAF) (Smith, Russo et al. 1995; Morse, Bic et al. 2000) has used was in

version 1.4. That particular version included extensions for cell based multicast support.

Using these extensions, the gaming area is broken into a grid of cells. Each cell has two

multicast addresses, one for low fidelity and one for high fidelity. Packets in the form of

PDUs are sent to the multicast address of an individual cell based on the location of the

event, or entity. The high fidelity address is used if an entity has already sent an entity

state PDU to the low fidelity address within some time threshold. The low fidelity

address is used otherwise, as well as for all other types of PDUs. Entities express interest

by subscribing to either the low fidelity address or to both the low and high fidelity

addresses. The use of two multicast address per cell reduces the amount of data that wide

area viewers, such as plan view displays, have to receive. Although this helped to reduce

traffic, each wide area viewer has its own idea of what “low fidelity” means; the authors

state that “…this concept needs to be further refined.” (Smith, Russo et al. 1995)
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The Close Combat Tactical Trainer (CCTT) (Mastagllio and Callahan 1995;

Morse, Bic et al. 2000) was built on top of a FDDI network using a combination of grid-

based multicast groups and filtering based on PDU types. Entities subscribe to multiple

grid addresses based on their areas of interest and then throw away incoming PDUs that

do not fit their interest expression.

Proximity Detection (Steinman and Wieland 1994; Morse, Bic et al. 2000) uses a

“fuzzy”-grid-based filtering mechanism. The grid cells are considered “fuzzy” because

the radius of the area of interest of each entity is extended to take into account some

uncertainty in entity positions. Each entity receives messages for all other entities within

its fuzzy grids of interest. The receiving entity may then drop messages based on its

specific interests.

In (Macedonia, Zyda et al. 1994; Macedonia 1995; Macedonia, Zyda et al. 1995),

the Area of Interest Manager (AOIM) for NPSNET-IV is described. Although this AOIM

was never implemented, a simulation was developed to predict and evaluate the results if

such an AOIM was used within NPSNET-IV. The AOIM divides the gaming area into a

grid of hexagonal cells. Each cell is mapped to a multicast group. An entity expresses its

interest by subscribing to the multicast addresses of cells that intersect its area of interest.

When an entity first subscribes to a cell, it issues a join PDU to that cell. The oldest entity

in that cell responds via TCP/IP with a PDU containing the aggregation of the entity state

PDUs for all entities within that cell. When an entity leaves a cell, it issues a leave PDU.

In standard Distributed Interactive Simulation (DIS), entities are required to transmit their

state PDUs periodically, typically every 5 seconds, even if no state information has
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changed. NPSNET-IV’s addition of simple join/leave functionality to the DIS protocol

allows the designers of virtual environments to remove this retransmission requirement,

which greatly reduces bandwidth consumption.

The Synthetic Theater of War-Europe (STOW-E) (VanHook, Calvin et al. 1994;

VanHook, Rak et al. 1994; Morse, Bic et al. 2000) also divides the gaming area into

grids. Each local area network has an Application Gateway connecting it to the wide area

network (WAN). A LAN’s Application Gateway is responsible for communicating the

interests of entities on its LAN. It does this by sending the union of grid cells that each

entity is interested in to all the remote Application Gateways. When a PDU from an

entity on a local LAN falls within one of the cells that it received from a remote gateway,

the Application Gateway broadcasts the PDU to all the other application gateways. PDUs

that fall outside one of the requested cells are broadcast only once in every n PDUs, as a

lower fidelity transmission.

Using a scheme similar to ModSAF 1.4, STOW ED-1 (Calvin, Cebula et al. 1995;

Morse, Bic et al. 2000) uses a two grid, with each grid cell having two multicast

addresses. An entity expresses interest of a cell at low fidelity by subscribing to one of

the two multicast addresses and at high fidelity by subscribing to both addresses. Instead

of subscribing to the multicast addresses themselves, the entities send their interest

expressions to a host on the LAN called an Agent Host. The Agent Host is then

responsible for subscribing to the requested multicast addresses. The data from these

groups is then broadcast back to the LAN.



22

 One unique system (Makbily, Gotsman et al. 1999) uses concept of “update free

regions” (UFRs). A UFR is a region that is calculated by each entity based on geometric

occlusion. While the entity is contained within its UFR, it does not need to send state

updates to other entities. Whenever an entity leaves its UFR, it transmits a state message,

and recalculates the extents of its UFR. This provides a very good filtering, but has two

drawbacks. First, for a given entity a UFR must be calculated for every other entity in the

environment. Second, the algorithm to calculate a UFR is O(N3) with respect to the

number of occluder vertices in the environment.

Another unique approach (Lim and Lee 1999) divides regions into sub-regions

which border adjacent regions. Instead of being aware of multiple regions, an entity is

only aware of the region it is in and the sub-regions of the adjacent regions that border its

region. This is thought to help a distributed virtual environment scale because entities

need not have full knowledge of neighboring regions. The size of a given sub-region can

be dynamically controlled based on entity density within a region. Regions with higher

entity counts would have smaller sub-regions, while regions with low entity counts would

have large sub-regions.

In Scalable Platform for Large Interactive Networked Environments (Spline)

(Barrus, Waters et al. 1996; Waters, Anderson et al. 1997), the world is broken up into

regions in space called “locales.” A region-based communication server handles the

communication for one or more “locales,” and each locale can dynamically change

servers at any time. Objects in the virtual world must reside in only one “locale.” A

process expresses interest by placing special objects called “spCom objects” in each
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“locale” it is interested in. A process will then receive updates via multicast for every

object in those “locales” of interest. Also controlling the virtual world are content-based

communication servers. Each serves many “Beacons,” which are objects that contain

URL-like tags. These “Beacons” are used to locate “locales” of interest based on content,

and the content-based servers act as a sort of dynamically changing name server for

locales.

SmallView (Broll 1997) breaks up the virtual world into regions. Each region has

arbitrary shape and has its own multicast group. Regions are made up of three parts:

radiation, horizon, and hull. Clients that are within the radiation portion of the region

subscribe to its multicast group. By subscribing to the multicast group, the client will

receive messages about things that happen within the horizon portion of the region.

Clients outside the radiation, but within the hull see only an external representation of the

region. Clients that are not multicast capable can use a unicast address for communication

instead. To make multicast more reliable, a server is used for acknowledgment. Clients

that receive an acknowledgment, but did not receive the actual data can request it from

the same server via unicast.

MASSIVE-2 (Greenhalgh and Benford 1997; Morse, Bic et al. 2000), like its

predecessor MASSIVE, uses the concept of auras to represent the extent to which

interaction with other entities is possible. However, MASSIVE-2 uses arbitrarily shaped,

mobile regions called “third-party objects” to help mediate communications. These

regions can change the relationship between objects by introducing notions such as

attenuation. Regions can also be used to represent an aggregate version of its contents
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when clients are farther away. Each region is assigned a multicast address. When an

entity’s spatial interest intersects with a region’s extents, the entity subscribes to that

region’s multicast group. When no intersections occur, the entity subscribes to a default

multicast address for the world.

The U.S. Defense Department High-Level Architecture (HLA) (Dahmann,

Weatherly et al. 1999; VanHook, Rak et al. 1996; Morse 1998; Morse, Bic et al. 2000)

uses a generic filtering scheme called “Routing Spaces.” A routing space is a multi-

dimensional attribute space. For example a location vector maps to a three-dimensional

“routing space,” or a temperature scalar maps to a one-dimensional “routing space.” An

entity expresses interest in sections of a “routing space,” for example a volume within a

three-dimensional location “routing space.” These sections of interest are called

“Subscription Regions.” Entities also update within regions of the “routing space.” These

regions are called “Update Regions.” Connections are made between entities with

overlapping subscription and update regions. How these connections are made is

implementation dependent. The current standard implementation, called the Run Time

Infrastructure (RTI) version 1.3, statically breaks up a “routing space” into sections, and

assigns a multicast address to each section. Entities simply subscribe to the multicast

addresses correlating to the sections of the routing space they are interested in. As entities

change interests, they change multicast groups. For a location vector, this process maps

exactly into a three-dimensional grid based filtering scheme.

Projection Aggregation (Singhal and Cherition 1996) uses a combination of

hierarchical grid based filtering along with aggregation of entities. Like many of the
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schemes above the world is broken up into regions. However, each region can have

multiple addresses, called projections, one for each different type of entity. This is similar

to a multidimensional attribute space in HLA. For example, tanks transmit to one address,

while cars transmit to another, even though they are within the same region. Also within

the virtual environment are logical entities, called “Organization Aggregations,” which

represent an aggregate version of many entities, within many regions. An entity then

subscribes to aggregate projections of regions depending on its interests.

None of the above systems are extensible at runtime, and with the exception of

UFRs, MASSIVE-2 and Projection Aggregation, all use static regions that suffer from the

clumping problem. UFRs have clear scalability problems because of the time complexity

of the algorithm. MASSIVE-2 added support for mobile regions, however these regions

must transmit their positions to a single default multicast address, leading to a different

form of the clumping problem. Although Projection Aggregation uses an octree, it may

still be possible in some cases for it to suffer from a form of the clumping problem.

4. Summary

Table 1 presents a summary of filtering schemes used by the thirty-one past

systems described above. Although it does not fit easily within this categorization, the

Three-Tier system described in the next chapter is listed at the bottom.
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Server-based Sender-based Region-based
WAVES 4

DIVE 4
AVIARY 4
BrickNet 4

MASSIVE 4

MASSIVE-3 4 É
Community Place 4

RING 4

JPSD 4 É
NetEffect 4

ALSP 4
MAVERIK/Deva 4 Ü Ü

V-Worlds 4 É
MR Toolkit 4

ADS 4 Ü
Dynamic Multicast Groups 4

Space Fusion É 4
GreenSpace 4

ModSAF 1.4 4

CCTT 4
Proximity Detection 4

NPSNET 4

STOW-E É 4

STOW ED-1 É 4

UFRs 4
Sub-regions 4

Spline 4

SmallView É 4

MASSIVE-2 4

HLA (RTI 1.3) ¯ ¯ 4
Projection Aggregation 4

Three-Tier system 4*

4 System uses category as its primary interest management
É System uses category as its secondary interest management
¯ System has the potential to use category instead of  current interest management
Ü System has the potential to add category as secondary interest management

4* System uses a hybrid hierarchical region/protocol independent/protocol dependent filtering

Table 1. Summary of filtering schemes used by past systems
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C. MULTICAST AND ITS LIMITATIONS

Many past and current interest management systems use IP multicast to

accomplish implicit filtering by the hardware within the network infrastructure. The

system presented in this dissertation relies heavily on future IP multicast scalablity, so it

is important that the reader is aware of its problems and promises.

IP multicast is many-to-many network delivery mechanism based on the UDP

datagram. Senders of IP multicast packets do not send to a particular Internet address, but

instead send the packet to a group address. The 268 million IP version 4 (IPv4) Class D

addresses 224.0.0.0 through 239.255.255.255 are reserved as multicast group addresses

(Stevens 1998). An advantage to multicast is that because the packets are addressed to a

group rather than to a specific receiver, the sender never needs to know the set of

receivers, so it may be arbitrary in number. Another advantage is that only one copy of

the packet needs to be transmitted by the sender no matter how many receivers are

listening. Receivers open a network connection similarly to receiving broadcast traffic

but also must “join” the multicast groups that they are interested in. Joining is achieved

by sending an Internet Group Management Protocol (IGMP) packet to a well-known

multicast address. This ‘join’ packet informs routers listening on this address that the

sender would like packets from a certain multicast group forwarded on to the local

network segment. The result is something similar to radio. Senders transmit on many

different channels, and receivers tune their radios to the channels they are interested in.

Although there is nothing inherently limiting in the IP multicast architecture, there are

many problems and limitations with the current implementation on the Internet.
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1. Address Space Limitations

Like many emerging technologies, the current implementation of multicast on the

Internet has limited capacity. One limitation of multicast is the amount of address space

available, and how it is allocated. Under the IPv4 mapping to Ethernet, the address space

for multicast is limited to just over 8 million addresses (Stevens 1998). Although this is a

large number, if each virtual environment were to use thousands or millions of address,

this resource may quickly run dry.

Already IP version 6 (IPv6) is being used on the Internet in the form of the 6Bone

(Durand and Buclin 1999; Fink 1999), an IPv6 network tunneled over the regular

Internet. Under the current IPv6 mapping to Ethernet, the address space used for

multicast routing is currently over 32 bits, but has allocated space for over 112 bits to be

used once routing hardware and software catch up (Stevens 1998). IPv6 is designed to

run side by side with its predecessor IPv4, allowing a slow but easy migration to a native

IPv6 Internet. Recently the Internet Assigned Numbers Authority (IANA) has even begun

to allocate IPv6 address, however the complete IPv6 transition of the entire Internet is not

expected until at least the year 2005 (Kahney 1999).

2. Address Allocation Problems

Although 112 bits of space will likely provide enough addresses for any need,

there is currently no way of dynamically allocating an address for a specific purpose. One

proposed solution to this problem is the Multicast Address Allocation (MALLOC)

architecture (Handley, Thaler et al. 1999). The MALLOC architecture is a three-layer set

of protocols, along with their implementations in the form of server and client software.
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Put simply, MALLOC allows a software application to reserve a set of multicast

addresses for a specified length of time. This architecture is currently under testing, and

as of October 1999, an alpha implementation had already become available to the general

public.

3. Router Configuration Problems

Even if a software application has a set of addresses reserved for its use, there is

no guarantee that IP multicast will work properly because most routers on the Internet are

not currently configured for IP multicast. The Multicast Debugging Handbook (Thaler

and Aboba 1998) outlines several common symptoms of mis-configured routers. A

partial list includes packet loss, duplicate packets, and receiving packets from only some

multicast groups. Currently the only general method to get multicast traffic across the

vast Internet is via the MBone (Macedonia and Brutzman 1994; Casner, Kristol et al.

1997), a tunneled network similar in concept to the 6Bone.

Even if two applications have every router between them configured for multicast,

some of their dynamically reserved multicast addresses might not work. When a router is

configured for multicast, it has a limit on how many multicast address routes it can hold

in memory. Because in many cases this constraint is simply a memory issue, it is very

easy to add support for more addresses. For example if a router requires 1K of memory

for each multicast route, one can simply configure the router with 8 gigabytes of memory

to support the entire IPv4 Ethernet multicast address space. This is a potentially viable

solution for IPv4, but not for IPv6. If a router requires 1K of memory for each multicast

address, it would need over 2x10115 bytes of memory to support the entire IPv6 address



30

space. Clearly this solution is not viable for the foreseeable future. One possible solution

to this problem is Border Gateway Multicast Protocol (BGMP) (Thaler, Estrin et al.

1998), which works closely with the MALLOC architecture to provide multicast routing.

BGMP creates shared distribution trees with the root located anywhere within an entire

single domain. Which domain is used is decided based on which MALLOC domain the

multicast address was allocated from. Because BGMP uses shared trees, it is optimal for

single source multicast groups which are created by the group-per-entity paradigm made

employed the architecture to be presented in Chapter III. The authors of BGMP have

outlined a transition strategy for the Internet, but it is not clear how long this process

would take. Other routing protocols that also may solve this problem are hierarchical

Protocol Independent Multicast (PIM), and bi-direction PIM with GRIB (Oran 1999). In

the end, which protocols become standard is ultimately up to the large router vendors to

decide.

4. Network Interface Card Problems

Even if all of the routers between two applications are able to handle all of the

reserved multicast addresses, there is still one hardware hurdle left. The network interface

cards on most computers are extremely limited in their multicast capability. The most

extensive support on PC cards today is a 512-bit hash table, allowing partial hardware

filtering of up to 1024 multicast groups (McGregor 1998), and many cards support fewer

addresses. If any host must subscribe to more multicast groups then its network card

supports then the filtering of multicast packets must take place completely in software

within the network layer of your operating system. Recent research shows that when
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there is a lack of hardware support, up to 10% of a modern CPU can be required to filter

a 10Mbps network saturated with multicast packets (McGregor 1998). While this result is

disappointing, it may not be limiting to many applications. In the worst case, the most

demanding applications need only add a second current day $200 CPU to their machines

making them capable of filtering a multicast saturated 100Mbps network. If CPU speeds

increase at the same rate as network bandwidth a two CPU computer will always be able

to filter a completely saturated network LAN, leaving one CPU free.

The above numbers represent a worst case. Recall that the multicast filtering that

the network interface card must accomplish is, in essence, a second stage filter because

the multicast router only forwards packets onto the LAN that hosts on that LAN

requested. If there is only one host on the LAN using multicast, then the network layer

will only have to receive and filter relevant traffic, which it would have to do anyway.

5. Unreliable Nature

Because senders cannot know to whom they are sending, they can never know

whether the message they sent was received. This is why IP multicast is unreliable by

nature. Several attempts have been made to devise schemes that can overcome the

unreliable nature of multicast. The Scalable Reliable Multicast (SRM) architecture uses

sequence numbers, and negative acknowledgments (NAK) with statistical random timers

to provide a scalable framework for large-scale multicast applications (Floyd, Jacobson et

al. 1997). Other approaches include various combinations of request/repair, hierarchical

approaches, acknowledgments, negative acknowledgments, aggregated negative

acknowledgments, statistically based negative acknowledgments, polling, forward error
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correction, all of which use multicast and/or unicast to handle out of band communication

(Multicast-Implementation-STudy 1999). While these “reliable” multicast protocols work

in many situations, it is difficult to guarantee that a single non-sequenced packet will

reach all of its destinations.

One future development on the Internet that will help with this particular problem

with multicast is the concept of Quality of Service (QoS). QoS allows a router to

guarantee network qualities such as latency, jitter, and bandwidth. Although there are

several competing systems for handling QoS (Stardust.com 1999), the leading research

seems to be focused on “differentiated services.” Differentiated services uses 4 bits

within a packet’s header to differentiate that packet from other packets. Depending on

which bits are set, a packet receives a different quality of service. The highest quality of

service is sometimes called “Premium” or “Virtual Leased Line.” This “Premium”

service guarantees, among other attributes, an amount of bandwidth. As long as a stream

stays within its bandwidth limits, its packets will never get dropped due to router

congestion. Although how to apply QoS to multicast is still an open issue, this bandwidth

part of the “Premium” service would prevent multicast packets from being dropped due

to congestion, making multicast much more reliable without the need for supporting

reliability protocols. QoS is currently being tested on the Internet. Developers and testers

have formed a test on the Internet call the QBone (Teitelbaum 1999). The QBone,

although similar in name to the MBone or 6Bone, is not a tunneled network over the

regular Internet. Instead QBone is simply a contiguous set of networks within the Internet

each providing interdomain “Premium” QoS.
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Another unreliable attribute of multicast is that when a host requests to join a

multicast group, an uncertain amount of time will elapse before the host receives data

from the multicast group. This has become known as “time to join” for a multicast group.

When a computer joins a multicast group, it sends an IGMP message to the nearest

router. This router then subscribes to the multicast group by sending messages to other

neighboring routers. This process continues along this new branch of the multicast

group’s distribution tree until it is grafted onto the main tree. Time to join the group is

therefore the time to propagate the subscription request up to the nearest existing branch

of the distribution tree, so that multicast packets can be routed to the newly-subscribed

host. In the worst case, this delay is on the same order of magnitude as the round-trip

time to the root of the multicast distribution tree. This is not an attribute that is going to

improve much, but one can use this knowledge to plan ahead when subscribing to

multicast groups. By an anticipating multicast subscriptions, an application may be able

to lessen the impact of these delays.

6. Summary

Although the current multicast implementation on the Internet has its limitations,

research is well on its way toward supporting applications that require a large number of

multicast addresses. Several aspects of this dissertation assume success from these

current research efforts.
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D. SUMMARY

In this chapter three categories of interest management schemes were described

and their strengths and shortcomings discussed. Descriptions of thirty-one previous

systems were presented and grouped appropriately into one of the three categories. Also

discussed was the use of IP multicast by interest management systems, along with its

current limitations and future promises. The next chapter presents the theory and design

of the Three-Tier interest management system, a solution that attempts to avoid the

shortcomings of these three categories of interest management schemes while still

retaining their strengths.
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III. DESIGN OF THE THREE-TIERED INTEREST MANAGEMENT SYSTEM

A. INTRODUCTION

This chapter presents the theory and design of the Three-Tier interest

management system. Specifically it outlines the overall goals for a successful interest

management system, and the theory behind each of the three tiers in the system presented

in this dissertation.

B. GOALS

For an interest management system to help a virtual environment become

completely scalable it must overcome the shortcomings of the three categories of interest

management. That is, the system must not have high latency and therefore behavior

communication must be server-less during active participation. It must not suffer from

the “clumping” problem, where entities can easily crowd into one region. It should use

multicast to take advantage of filtering at the network hardware level, while at the same

time avoid redundant communication. It should use regions to break the virtual

environment into manageable pieces, yet allow for near perfect filtering according to

clients’ information needs. These regions should be hierarchical, to allow for efficient

aggregation. It should be extensible, allowing multiple application protocols to be

dynamically added or removed from the system at run-time.
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C. OVERVIEW

Interest management has typically been a one-step process. Data flows in from the

network, and then interest manager software roughly filters it, hopefully passing what

would be mostly relevant data on to the client. This dissertation outlines a three-step, or

tiered, approach to interest management. The first tier uses region-based filtering, where

the world is divided into manageable pieces. However, these approaches are extended to

allow the regions to change size dynamically, thereby eliminating the clumping problem.

Also, the information sent to these regions is only sent at a low rate and contains low

fidelity information, thereby reducing the amount of information that must be transmitted

and processed. The goal of the first tier is to receive and process just enough information

to allow the second tier to determine whether an entity is of possible interest at any

particular moment in time.

The second tier uses the data from the first tier to create an application protocol-

independent perfect match between a client’s interests and the environment. This second

pass is done in a broad and protocol-independent manner using interest expressions

common to most virtual environment applications.

The third tier, building on the first two, adds application protocol dependence,

potentially allowing the client to receive only the needed data from the protocol it. At the

same time, separating the protocol from the core interest management can allow multiple

protocols to simultaneously exist within the same environment, while using the same

underlying filtering mechanism. Figure 2 shows a simple dataflow diagram of these tiers.
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Figure 2. Dataflow Between Tiers

It is proposed that, together, these tiers create an excellent match between what

the client wants to receive, and what it actually receives, while conserving network

bandwidth and CPU cycles.

D. THREE-TIER DESIGN

1. Tier One: Dynamically Sized Regions

Data is often only roughly filtered by interest management systems that handle

large numbers of clients. The reason for this is that it can be too costly in terms of both

CPU time and bandwidth to calculate an exact intersection of a client’s interest

expression (IE) and all of the data arriving over the network.

However, if the roughly filtered data was used as a first pass toward computing

this intersection, it may be possible to compute exactly the data needed for a given client

by choosing from only this subset of the available data. It is hypothesized that by
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reducing the dataset in this manner, the size of a simulation would only be limited by the

number of entities a given client is interacting with, not the number of entities in the

entire simulation.

One measure present in most IEs is the distance from an entity. Typically this area

of interest (AOI) can be represented by a sphere with a radius equal to the maximum

distance of interest. As described in Chapter II, several approaches have used spatially

based multicast groups to reduce network and CPU load at a hardware level. The success

of these approaches is defined by the size of each region. If a region is too small, a client

has to subscribe to too many groups, and entities switch multicast regions frequently. If

the region is too large, a client has to listen to other entities that it did not care about, and

in the worse case, the system would, for practical purposes, degrade into a broadcast

means of communication.

Although regions can be composed of arbitrary dimensions, for convenience, the

explanations and examples throughout the remainder of this chapter will use the

dimensions physical space. Figure 3 shows an example of a case in which the regions are

too large in size. It presents four regions among many within a much larger virtual

environment. It is easily seen that there are many entities “clumped” in region 4, but few

entities in region 1, 2, or 3. If an entity, with an AOI as shown by the circle, were

interested in only a small corner of region 4, it would be overwhelmed with data from

entities it cares little about.
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Figure 3. Example of ‘Clumping’

For the military simulation STOW-E, it was concluded that a multicast region size

of 2 to 2.5 km provided significant reduction in total bandwidth usage, and that sizes less

than 2 km provided only marginal additional benefit (Rak and VanHook 1996). It was

also concluded that, “if the multicast grid could be dynamically re-sized and re-aligned
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locally, relative to the areas of highest activity, a significant reduction in total host

download would be achieved.”

For another military simulation (Macedonia, Zyda et al. 1995) the optimal region

size was determined to be a hexagon with a radius of 4 km, this is approximately the

equivalent area of a square region with a side length of 6.4 km. One possible explanation

for this difference in optimal region size is that these values were determined empirically

for different specific simulated military exercises. That is to say, region size is a function

of the specific simulation, and a single number cannot be determined for all simulations.

One simple solution to the problem of determining region size is to use an octree

to load balance these regions, and therefore the number of entities within a multicast

group. If too many entities fall within one region, the octree simply subdivides it into

eight regions. If too many entities leave a sub-tree of regions, eight child regions are

merged into the parent region. By load balancing the multicast groups in this manner, it is

impossible to encounter the clumping example described above. Figure 4 shows the same

distribution of entities as in Figure 3, but with load balanced regions. The area shaded

with diagonal lines represents the portion of the world that has been filtered by octree

subdivision. Notice that an entity with an AOI as shown by the circle, will only receive

information about 12 other entities, instead of 24 as in Figure 3.
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Figure 4. ‘Clumping’ with dynamic load balancing

However, the dynamic subdivision of the octree creates a new problem. If there is

a very high density of entities, subdivision can occur to the point where entities are

continuously switching regions and adding both subscription and transmission overhead

when it is needed least. Take for example the case of a man standing next to an anthill

covered with 10,000 ants. Because of the high density of ants, the octree will subdivide

until it meets some criteria of entity density. This is exactly what the ants need, but

exactly what the man does not. If the man were to move across the hill, he would go

through tens, possibly hundreds, of regions with each step.

The concept of a smallest region is introduced to solve this new problem. An

entity calculates a minimum size requirement that is the smallest region that it deems

reasonable given its size and speed. When a region that an entity is in divides, it simply

checks to see whether the new subregions are smaller than its minimum size requirement.
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If so, it continues to transmit via the current region instead of switching to one of the

eight new subregions.

The outcome is that entities are found throughout the octree, not only in the leaf

nodes, and they are distributed not only by location, but also by a function of their size

and speed. This has the added benefit for additional filtering based on size, and the ability

to do efficient aggregation. Again take the example of the man and the ants. It may be

that the man is running through a field, and happens to pass by the hill. If so, he may not

be interested in things that are the size of ants, and as such, need not subscribe to regions

small enough to hold the ants. An aggregate entity representing an aggregate view of the

ants may be present in one of the larger regions, giving the man the impression that the

ants are there as he passes by. But if he stops to examine the hill, he can simply subscribe

to the smaller regions temporarily, to see the ants in all of their detail. It should be noted

that in the real world, people do not encounter a situation between themselves and 10,000

ants. A person’s brain would automatically filter such information to prevent an overload

of irrelevant data. This filtering is the goal of any interest management system.

The smallest region for an entity should have a high probability of containing an

entity of a given size, with a given speed, for a given amount of time. A dimensional

analysis provides insight into the problem of picking the smallest region. On an intuitive

basis M, the minimum length of a side of a region, is expected to depend on:

1. The size of the entity, represented by some chosen reference length. Here the

radius of the bounding sphere for the entity, R, is chosen.

2. Average maximum speed of an entity, S.
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3. Average time the entity should remain within the region, T.

In light of the above, and without any a priori knowledge about the variation of

M, one can naively express M as:

)]([ R,S,TfKM =

where K is a constant of proportionality. Knowing that when S = 0, M must still

be at least as large as R, it can be guessed that:

)],()([ TSfRfKM +=

By using dimensional analysis, and knowing that M is in units of length, it must

be that f(R) and f(S,T) must also have units of length. R is already in units of length, so it

can be said f(R) = R. For f(S,T) to have units of length, S and T can simply be multiplied,

such that f(S,T) = ST. Putting the above back into equation 2 yields the simple equation:

)( STRKM +=

Looking at equation 3, it is easy to see that M is simply a multiple of the radius of

a sphere that represents the possible bounds of an entity after T seconds. K can then be

thought of as a scalar to prevent the entity from leaving the region too soon. The worst

case assumption can be used in which the entity travels as quickly as possible along the

shortest distance toward the region boundary. For example, if K = 1, the only possible

way for the entity to remain in the region for T seconds is for it to start in the exact

center. For an entity that moves in only two dimensions and probability of 50% that in

the worst case the entity fits completely within its region after the given time, K can be

found using the ratio of the areas of two squares, as illustrated Figure 5.

( 1 )

( 2 )

( 3 )
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Figure 5. Area ratio of two squares

Solving for K yields:
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Similarly, for entities that move in all three dimensions and a probability of 50%,

K is calculated as the ratio of the volumes of two cubes:
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For example, if arbitrary time T of 600 seconds (10 minutes) is chosen, a

stationary tank with a bounding sphere of 5-meters in diameter would only need a

minimum region size of 24 meters. However, when the tank is moving at an average of

1.6 m/s (Macedonia, Zyda et al. 1995), it would need a minimum region size of 4593

meters. This region size is comparable with the average of previous region size estimates

(2500 meters (Rak and VanHook 1996) and 6450 meters (Macedonia, Zyda et al. 1995)

averaging 4475 meters) for military ground vehicles.

Some types of entities may have special requirements. For example an entity

which makes a very loud sound, or has a very bright light may want to position itself in a

larger region than calculated because it can be seen or heard from a farther distance away.

To accomplish this, an entity can just scale the R value to account for the enhanced

visibility. Perhaps the tank in the last example has a bright spotlight on top of it that

allows it to be seen from twice the distance away than a normal tank. To accommodate

this special feature, R would then be scaled from 5 to 10 meters, yielding a smallest

( 5 )
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region of 48 meters compared to 24 meters for the stationary case, and 4617 meters

compared to 4593 meters for the moving case.

Because a formula for deciding the smallest region an entity can subscribe to is

now known, such requirements can be placed in an entity’s interest expression. For

example, given the size and speed of the smallest entity that a client is interested in, the

same formula can be used to decide what is the smallest region a client should subscribe

to. Of course, this is just a guideline, and the choice of which regions to subscribe to is

still left up to the client. For example, a client can subscribe to only very large regions

which are far away, and subscribe to progressively smaller and smaller regions as they

grow nearer. The client can also determine its network and CPU load and dynamically

subscribe and unsubscribe to larger or smaller regions based on this load.

To address the issue of what should be considered “low” fidelity and a “low” rate,

the first tier uses an algorithm called “dead reckoning,” which only sends out state

messages consisting of position, velocity, and time, whenever an error threshold has been

exceeded. Clients receiving the state messages can accurately predict the entity’s position

within the error threshold by using the simple equation of motion:

)( 000 ttVPP −+=
vvv

 Figure 6 shows an entity’s actual and predicted positions over time. Packets are

only sent when the error threshold is exceeded. Fidelity is a function of the error

threshold, which, like regions size, should depend on an entity’s size and speed.

Therefore, it can now be said that the error threshold is proportional to the size of an

entity’s smallest region.

( 6 )
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Figure 6. Dead Reckoning Algorithm

From the above statements, intuitively, this problem can be written as:

cME =

The constant of proportionality c, can then be thought of as a percent error with

respect to the region size. For the low fidelity updates to be within 1% of the actual

positions when compared to the size of the region, c would simply be 0.01. Again

consider the example of the moving tank with a region size of 4593 meters. With a c

value of 0.01 the error threshold would be about 46 meters. An ant on the other hand with

a smallest region size of 4 meters, would have an error threshold of just 4 centimeters.

( 7 )
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It was stated earlier that octree division is based on entity density. The reasoning

behind dividing the octree is that there would be too many state packets being sent if all

entities were clumped into one region. The more state packets, the more bandwidth and

processing that is needed.

A packet is sent from an entity whenever the error threshold is exceeded. The

worst case scenario is that after sending a state packet the entity immediately turns in the

opposite direction, thereby diverging from the predicted position at a rate of 2S, but this

is rare. Instead it can be said that the average worse case is that the entity stops, and

therefore diverges at a rate of S from the predicted position.  If Pmax is the maximum

number of packets per second that can be tolerated per region, then Nmax is the maximum

number of entities that can be tolerated before the octree region is divided. Based on an

entity’s error threshold and speed it can be written:

S

EP
N max

max =

Substituting equation 7 and 3 into equation 8 yields:
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If it is assumed that R is small when compared with ST, then equation 9 can be

simplified:
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Equation 10 contains no entity dependent terms, so Nmax is entity independent and

represents the threshold at which the octree should be divided. For example if clients can

handle regions with a rate of Pmax = 2 packets per second, using previous values of T, c,

and K, the octree would be divided at Nmax = 54 entities, guaranteeing an average

maximum rate of 2 packets per second per region.

The point at which to merge octree regions is then a simple ratio. To achieve at

most Nmax entities in a single octree region, the number of entities in the leaves of an

octree cell must be less than Nmax.  If the extreme case is that out of the eight leaves all

the entities are in a single leaf, then there exists a minimum number of packets per second

Pmin that must be maintained. The minimum number of entities in the eight adjacent leaf

cells Nmin, can now be expressed as:

max
max

min
min N

P

P
N =

For example, if the previous value of Nmax = 54 and a minimum number of

packets per second, Pmin = 1, are used, then the number of entities at which point the

regions would merge is Nmin = 27.

One of the limitations of IP multicast stated in Chapter II was that joining or

leaving a multicast group is not instantaneous. In fact, the latency can be on the order of

one half second or more. If the first tier is implemented using IP multicast, this problem

can be accounted for when deciding on an AOI. For example if an entity can move within

the virtual environment at a speed of 100 meters per second, the radius of its AOI can be

extended by 50 meters to account for a 0.5-second lag in the time it takes to join a group.

( 10 )

( 11 )
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By adding to the AOI in this fashion it is possible that the client may receive information

about more entities than is wanted. However, region-based filtering is only a first pass

and the second tier will decide if indeed an entity’s higher fidelity information is

potentially needed.

2. Tier Two: Protocol-Independent Filtering

A client can use the information gained from the first tier filtering to limit the list

of possible entity candidates to choose from, thereby limiting the amount of network and

CPU resources needed for interest management. By examining only the data in the first

tier, the search problem is reduced from O(N), to O(M), where N is the total number of

entities in the virtual environment, and M is the number of entities in the octree regions

an entity is interested in. Furthermore, if the first tier is implemented using multicast

groups, than this initial reduction from N to M is accomplished almost entirely by the

network hardware itself, the client only needs to specify which regions are of interest.

Figure 7 shows the same AOI and region intersections from Figure 4, but now the entity

chooses only in entities that are within the AOI. The AOI represents a protocol-

independent IE and the dimensions in which this AOI is placed represents a common

attribute space for all protocol-independent IEs to filter from.
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Figure 7. Load balancing with AOI filter

The manner in which data is gathered in the first tier need not be protocol-

specific. In fact, it has already been demonstrated how multiple protocols can be

dynamically inserted into a simulation at run time (Watsen and Zyda 1998). It has also

been shown that using a multicast address per data stream is optimal for long-duration

data flow applications in terms of both bandwidth and CPU usage (*Levine, Crowcroft et

al. 1999). If each entity were to have its own multicast address, clients could subscribe to

each other on a per entity basis. An added benefit to having a network stream per entity

or protocol is that the streams can be application protocol specific, and can bypass the

generic IM layer all together. The protocol specific streams can also make general

assumptions to take advantage of the specifics of the entity states that it is trying to

communicate. For example, if a generic protocol is trying to transmit the position of a

train, it can do so by regularly sending state packets containing the train’s position.
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However, if a train-specific protocol is used to transmit the position of a train, it can

simply send the track once, and then send the train’s velocity and position whenever they

change dramatically from the predicted values.

Figure 8 shows the same AOI and region intersections from Figure 4, but now the

entity is interested only in entities that are within the AOI and using the circle protocol.

Figure 8. AOI and protocol filter

3. Tier Three: Protocol-Dependent Filtering

The first two tiers can be implemented in a protocol-independent manner, so that

a simulation consisting of multiple protocols can operate without performing interest

management specifically for each protocol used within a client.

This introduces a problem. If the interest management software is unaware of

specific attributes of a given protocol, than these attributes cannot be contained within a
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client’s IE and used for filtering. By adding interest management information specific to

a protocol, a third tier can be created to allow an almost perfect filtering of data.

Continuing the example from Figure 8, Figure 9 again shows the same AOI and

region intersections, but now the entity is interested only in entities that are circles, and

have the protocol specific property of being solid in color. This yields only one entity,

rather than 24 as in Figure 3.

Figure 9. AOI and protocol specific filter

The second tier simply hands a packet from an entity to the correct protocol-

specific filtering module, and then that filter decides how or whether to obtain

information about that entity. For example, an entity might publish to multiple multicast

addresses, each with a specific type of data or at a different rate. By selecting from

among there groups, a client can receive exactly the data it needs.
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Alternatively, to reduce the number of multicast addresses used, a protocol can

aggregate entities into a fixed number of multicast groups. Although this has been shown

to be less efficient in terms of both bandwidth and CPU usage (Levine, Crowcroft et al.

1999), today’s routing hardware and software can only handle thousands of multicast

addresses, not millions.

Figure 10 continues the example from Figure 8, but this time the entity is

interested in any color circle, but with increasing fidelity as it approaches the center of

the AOI.

Figure 10. AOI with varying fidelity

Of course a client can be implimented so that is doe not subscribe to any

individual entities, but only to the regions found in the first tier. This can be very useful

for Plan View Displays, where information about many, perhaps hundreds of thousands

of entities is needed, but only at a low rate, and at low fidelity.
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E. SUMMARY

This chapter presented the theory and design of the Three-Tier interest

management system. Specifically it outlined the overall goals for a successful interest

management system, and the theory behind each of the three tiers in the system presented

in this dissertation. The next chapter presents the implementation decisions and details

behind the design.
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IV. IMPLEMENTATION

A. INTRODUCTION

This chapter presents the implementation decisions and details behind the design

of the Three-Tier interest management system. Specifically it explains the rationale

behind its component design choices, use of a server, and class hierarchy.

B. BAMBOO

To successfully implement a virtual environment that can never be shut down,

portions of the simulation software need to be updated, removed, or added at runtime. For

this reason Bamboo (Watsen and Zyda 1998) was chosen as the underlying software

engineering framework for the Three-Tier interest management system.

Bamboo simply provides a language-and-platform-neutral framework to support

the loading and unloading of executable code or data at runtime. Data or code is

packaged into units called “modules.” A module is simply any filesystem subdirectory

hierarchy, containing a file called ”.module.txt” in its root. This file contains all of the

information needed to load and unload the module. This information includes the

function that should be called when the module is loaded, the function to call when the

module is unloaded, and dependencies regarding which other modules that should be

loaded into memory before the current module can be loaded.
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C. MOSTLY SERVER-LESS ARCHITECTURE

For a system to be fully scalable yet reduce transmission latency, it should only

use peer-to-peer networking, and not have a server. Two problems emerge within the

Three-Tier architecture without a server: octree consistency and lost entities.

If the simulation is to be fully distributed then the entities themselves must

determine when to divide or merge the octree. To accomplish such decision making this

one can use the concept of a master entity in each region (Macedonia, Zyda et al. 1995)

or a randomized response timer (Floyd, Jacobson et al. 1997); unfortunately both of these

approaches have the same flaw when using unreliable communication methods. In the

case of the master entity, there is a chance that two entities could both believe that they

are masters, and both could divide the octree, creating two parallel virtual environments

with some entities in each. The same scenario could happen with a randomized timer

algorithm; that is, more than one entity could respond at about the same time, and create

parallel environments. The creation of these parallel universes would be fatal to a

persistent virtual environment.

Another problem is that entities can become “lost.” As entities move from region

to region, they must periodically obtain information about the octree so that they may

subscribe to the correct multicast address. If entities are distributed evenly throughout the

octree, and all clients are aware of the twenty-six octree regions surrounding the one that

they are currently in, then this task can be accomplished easily, and there would never be

a gap in information. However, suppose that a client controlling a single entity is moving

from region to region, when suddenly all of the entities around it decide to leave the
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virtual world. When the entity moves to an unexplored area, it will have no neighbors to

ask for information about the octree. At this point the entity would become ‘lost’ leaving

its current region without knowledge of what multicast addresses lay ahead.

Using a lightweight server that keeps a complete copy of the octree in memory

can solve both the octree consistency problem and the lost entity problem. The server

answers two basic requests. To solve the octree consistency problem, whenever a client

decides to divide or merge the octree, it simply sends a reliable message to the server

asking for permission. The server only grants the first client that asks permission, thereby

keeping the octree consistent. Clients can still use randomized timers to delay the sending

of messages to the server, to avoid overloading it with useless redundant messages.

Because the server always has a consistent copy of the octree in memory, it can

handle search queries about the octree. For example an entity can state its location and

radius of interest and ask for a list of octree regions that overlap this interest radius. This

way an entity always has a reliable source of octree information.

This is not to say that an entity should rely on the server on a regular basis.

Everything besides octree consistency can remain server-less, and the server should be

used only as a fail-safe in case a client cannot get the information it needs from other

clients.

The actual server implementation is a very small program, written in less than 500

lines of C++ code. The only information stored in the server is the octree structure and a

multicast address for each region. Each node in the octree requires only 12 bytes of

storage. If entities were only present in the leaves of the octree and each node could hold
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40 entities, then the server could store an octree large enough for 5 billion entities within

a 32bit memory address-space. For a virtual environment that is persistent, a fault-

tolerant mechanism to distribute the workload among many servers must be created,

although it does not exist in this implementation.

D. CLIENT BASE CLASS MODULE

The main core of the software architecture is built using a Bamboo module

containing a set of C++ base classes. There are five key base classes: IMBaseClient,

IMBaseEntity, IMBaseInEntity, IMBaseOutEntity, and IMBaseProtocol. Virtual

environment developers need not concern themselves with the internal workings of the

Three-Tier architecture, but only need to derive from these five classes to use or extend

its functionality. Figure 11 presents a simplified UML diagram of these five classes.

Interested programmers are urged to read Appendix A, which contains the source code

for these five main base classes.
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Figure 11. Simplified UML class hierarchy diagram of the five key base classes
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1. IMBaseClient

The main class of the five base classes is the IMBaseClient class. It is responsible

for subscribing and unsubscribing to multicast addresses, processing and tier two filtering

of entities, maintaining a local partial copy of the octree, and managing the loading and

unloading of protocol modules. Developers of new clients only need to derive from the

IMBaseClient class, and implement client specific functionality. Examples of derived

clients include stealth viewers, flight simulators, and automated entity control. Each

client has two main threads of execution: a tick thread and a network thread.

The tick thread is responsible for updating the state of the client for each

simulation “tick” or time unit. Specifically it updates its components in the following

order:

1. Delay Respond Queue. The delay respond queue is a time-ordered queue that,

when used in conjunction with a random timer, allows a random delay to be

introduced before a response is issued for octree query.

2. Delay Send Queue. The delay send queue is also a time-ordered queue that

allows the sending of a multicast packet to be delayed. This is used to send

duplicate packets to a multicast address to allow from some packet loss as

described in Chapter II.

3. Octree Recheck Queues. These time-ordered queues are used to check the

octree against density constraints after a certain period of time. This helps
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prevent octree subdivision oscillation. By placing a random delay in the

queue, it can also prevent server overload.

4. Simulation Time. The simulation clock is incremented either by the real-time

clock, or a user defined clock. All entity tick functions use this value as the

universal simulation time.

5. Interesting Entities List. Each local entity’s ‘interesting entities’ list is

computed by comparing its location with every other entity that the client

currently knows about, that is every entity which falls within the interesting

octree regions. If the entity falls within the entity’s second tier thresholds, it is

checked against its “interestedIn” function, which is described below.

6. Entity Ticks. Every local and remote entity’s “tick” function is called.

The tick thread must be allocated and managed by an outer application, which is

responsible for deciding the simulation tick rate. There are also hooks to control

simulation time, to allow for non-real-time distributed simulations.

The network thread is allocated by the baseClient itself and is responsible for

receiving and processing incoming messages from the network. There are six types of

messages that can originate from an octree multicast address: MOVED, PINGING,

MERGE, SPLIT, QUERY, and RESPOND. When a client receives a PINGING message

from an entity within a region, all local entities within that region are instructed to then

send updated state messages. When a client receives a MERGE or SPLIT message, the

client updates its local copy of the octree to reflect the octree structure change and then
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updates the effected local entities. The QUERY and RESPOND message are used to

maintain the local copy of the octree without having to contact the server. Instead a

random client listening to the region handles the QUERY message, and responds with a

RESPOND message. The bulk of the messages that a client receives from the octree

regions are MOVED messages. These represent state updates from entities within the

region. Figure 12 shows a flowchart representing the path each MOVED message must

take and the time complexity of each step, where P is number of application protocols

known to the client, R is the number of entities in the octree regions the client is currently

interested in, Er is the number of entities within a specific region, and Eq is the number

of regions within the recheck queues. It should be noted that because the values of P, Er,

and Eq are normally all small compared to R, worst case this is a O(lg R).

Entities express interest through interest expressions. The current client

implements interest expressions using an attribute value associative array, evaluated via

compiled code within the “interestedIn” function of the IMBaseOutEntity class described

below.
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Figure 12. Flowchart illustrating the path each MOVED message follows
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2. IMBaseEntity

The IMBaseInEntity and IMBaseOutEntity classes are used as protocol

independent handles to entities. An IMBaseInEntity represents an inbound entity

reflected from the network, it contains all the code and data necessary to represent itself

on the local client.  An IMBaseOutEntity represents an outbound entity controlled by the

local client. The IMBaseClient maintains a list of interesting entities for each outbound

entity based on interest expressions contained within each IMBaseOutEntity. Classes

derived from the IMBaseInEntity and IMBaseOutEntity classes also know how to

communicate directly among themselves, providing a protocol dependent communication

channel when necessary. An example of a derived entity is a human avatar. Using the

base methods a client can learn about the human entity. The human entity modules can

then communicate between themselves, efficiently relaying entity specific information

such as joint angles and eye gaze direction.

To implement a derived entity’s functionality, a developer needs to only

implement the “tick” and “interestedIn” functions. By default an entity’s “tick” function

is called once each time the base client it “ticked.” For an inbound entity, a standard

approach would be to dead reckon and smooth entity specific data received over the

network from its outbound counterpart, then call the super class’ “tick” function. For

example, if this entity represents a human avatar, the tick function dead reckons joint

angles based on angular velocity. The super class IMBaseInEntity “tick” function then

calculates the current predicted position based on dead reckoning parameters and, upon
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receiving a new update, smoothes position values by interpolating between old and new

positions.

For an outbound entity, a standard approach is to look at other interesting entities

contained within the list generated by the client, update the entity’s position as well as

other fields within the entity, then call the super class’ “tick” function. The inherited

IMBaseOutEntity “tick” function automatically calculates dead reckoning predicted error

and sends new octree packets when error thresholds are exceeded. It also determines the

entities’ primary region and interesting regions based on octree intersection.

As described above from the point of view of the client, an outbound entity’s

“interestedIn” function is called during each simulation tick for every other entity that the

system knows about. This simple function implements the third tier filtering. Using either

compiled-in prior knowledge of other entity types, or by using the named attribute map

described above, an outbound entity decides which entities are of interest to it.

Continuing our example from above, an outbound fish entity may only be interested in

other fish that are of its same species. If the developer wants to make the simulation more

complicated, he/she could use the attribute map to express that the fish is interested in all

entities that are larger in size than it, because these entities may hurt the fish. The

developer could then extend it further by expressing that the fish is also interested in

other fish that are smaller that it, so that it may eat them. From these simple expressions,

the “interesting entities” list is formed. It is then up to the outbound entity’s “tick”

function to do something intelligent with this list.
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Interested programmers are urged to read Appendix B, which contains the source

code for the entities used in the experiment outlined in the next chapter.

3. IMBaseProtocol

The IMBaseProtocol class is a base from which all protocols can derive. It simply

knows how to construct entities that use the protocol. Developers of new protocols only

need to create a new protocol module. Protocol modules are Bamboo modules that

contain an initialization function and three classes that are derivations of

IMBaseProtocol, IMBaseInEntity, and IMBaseOutEntity. The derived IMBaseInEntity

and IMBaseOutEntity classes are the protocol specific versions of the entities, which

know how to communicate with each other.

The initialization function is designated as the Bamboo module initialization

function, and its only requirement is to create a single instance of the derived

IMBaseProtocol module. Developers can opt to package many different versions of an

entity class within the module and instantiate them based on some criteria. For example,

if a graphics module is already being used within the currently running system, the

protocol module should instantiate a entity that knows how to draw itself, whereas if

there is no graphics currently loaded within the system, a simpler, lighter-weight version

can be instantiated instead.

The rationale behind using protocol modules is that they can define new ways of

communicating between their entities. For example a derived protocol class can create its

own socket, allowing it to send and receive its own packet format. By doing so it can

optimize its transmissions specifically for its entities.
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Interested programmers are again urged to read Appendix B, which contains the

source code for the protocol module used in the experiment outlined in the next chapter.

E. SUMMARY

This chapter presented the implementation decisions and details behind the design

of the Three-Tier interest management system. The next chapter presents the

experimental design and results of measurements comparing the Three-Tier interest

management system against systems using broadcast based and region-based filtering.
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V. EXPERIMENTATION AND MEASUREMENT

A. INTRODUCTION

This chapter presents the experimental design and results of measurements

comparing the Three-Tier interest management system against systems using broadcast-

based and region-based filtering.

B. MEASURES OF EFFECTIVENESS

For the Three-Tier system to be effective, it must meet the requirements listed in

Chapter I.  Specifically, Packets Per Second, Bandwidth, and CPU Time must depend

only on the number of entities a client is interested in at any one time. Thus each

experiment records:

1. Packets Per Second: The average number of packets received and processed

per second at each client.

2. Bandwidth: The average number of bytes received and processed per second

at each client.

3. CPU Time: The total number of seconds used to complete one simulation

cycle for each client.

4. Interesting Entities: The number of entities of interest at a given moment for

each client.
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5. Application Metric: How well does the application “work,” using application

specific criteria.

The experiments also seek to validate the set of formulas from Chapter III.

Specifically, they show that the formulas accurately predict the maximum number of

packets per second for a given region, as well as the average amount of time a given

entity remains within one region. To do this, the following additional measurements are

taken:

6. Packets Per Second Per Region: The number of packets that are received and

processed, recorded on a per region basis at each client.

7. Time Per Region Per Entity: The amount of time that each entity spends

within a region.

Also, because this work relies on networking technology, the status of the loaded

network is recorded during each experimental run. It should be noted that in theory the

performance of the architecture being tested should be independent of these

measurements, but they are recorded in order to place this work within its networking

context. Specifically the metrics are:

8. Total Segment Packets Per Second: The number of packets on a local LAN

segment.
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9. Packet Latency: The number of milliseconds it takes to send a packet from

one computer to another.

10. Packet Jitter: The variation in packet latency.

11. Time to Join: The number of milliseconds it takes to receive a packet from a

multicast group after joining a that group.

C. EXPERIMENTAL DESIGN

The test application scenario used for this experiment was entity flocking

(Reynolds 1987). Flocking is CPU intensive for large numbers of entities, and is typically

implemented as a O(N) problem to compute the next heading for a given entity, which

ordinarily makes the problem O(N2) for the entire system during each simulation update

cycle. For each iteration, the algorithm works as follows:

1. Each entity calculates its distance from all other entities, and then selects

entities that fall within some pre-defined radius.

2. The heading toward the centroid of the selected entities is calculated.

3. The average heading of the selected entities is calculated

4. An average avoidance heading is calculated for all entities within a smaller

pre-defined radius.

5. A new entity heading is computed from the weighted average of the three

headings above.
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6. If the new entity heading diverges too far from the current entity heading, it is

clipped based on a maximum turn rate. This prevents the entity from

instantaneously changing direction.

In the implementation used within this experiment, step one is replaced with

interest management. Steps 2 through 6 are performed using only the “interesting

entities” list generated for each out-bound entity by the client. Because of interest

management, for each entity we have reduced the problem to O(I + M) per entity,  where

M is the number of interesting entities, and I is the cost of interest management. However

it can be seen from Chapter IV that in the Three-Tiered system I depends only on M and

lgR, so it can be said that this algorithm is implemented in O(M) per entity. Figure 13

presents a diagram view of steps 2 through 5 of the flocking algorithm.

The flocking algorithm is implemented within the “tick” function of a derived

outbound entity class, a fish class. This new class also has a protocol spacific attribute

called “species” that represents the species of the fish entity. Each fish is only interested

in schooling with fish of its own species. All three of these entity species are then run

with three different base clients. Each base client filters using a different filtering scheme:

broadcast-based, region-based, and Three-Tier-based filtering.
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Figure 13. diagram view of steps 2 through 5 of the flocking algorithm

1.  Broadcast-based filtering client

The broadcast based client uses DIS-like packets with a 5-second keep-alive

heartbeat and a 1m error threshold, with no angular thresholds. The packets contain

various state and dead-reckoning information. The resulting simulation is very similar to

DIS, but with only entity state PDUs.
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2.   Region-based filtering client

The region-based client uses the same DIS-like packets as above, again with a 5-

second keep-alive heartbeat, 1m error threshold, and no angular thresholds. The size of

the cube shaped regions is the average of previous research estimates (2500 meters (Rak

and VanHook 1996) and 6450 meters (Macedonia, Zyda et al. 1995)) which is 4475.

3.  Three-Tier-based filtering client

The Three-Tier based client is a client using the implementation outlined in

Chapter IV. The octree thresholds are determined by the formulas presented in Chapter

III, using the constants of K=3.45, c=0.01, and t=300s. Each entity has its own multicast

address, and transmits the same DIS-like packets with the same 1m error thresholds, no

angular thresholds, and 5-second keep-alive heartbeat.

The broadcast and region based systems were chosen for comparison because

they are most competitive to the system outlined in this dissertation. Server based

filtering was not used because there are clear scalability issues with systems which use

server based filtering, as well as the fact that the system outline in this dissertation does

not use a server for filtering information, so it does not make a good comparison. Sender

based filtering was not used for comparison because it also has clear scalability issues.

The experimental design is based on a three-by-three factorial design using an

analysis of variance (ANOVA) with independent variables being architecture and total

entity count, this is illustrated in Table 2. Each system was run for ten minutes, a total of

nine times, three times at three different entity totals: 900 entities, 1800 entities, and 2700
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entities. Using an ANOVA, the ten-minute time period was determined to be more than

statistically adequate during trial runs of the experiment. For each entity count, each

system is run three times, each on a different day, to allow for any anomalies in the

network. ANOVAs are used to show that the dependent measures for each system are

significantly different. Dependent measures include average CPU time, packets per

second, and number of interesting entities. These are measured at one-second intervals

for a total of 1800 samples per measure per entity count per system. Because the packets

used in this experiment are of fixed size, bandwidth is always equal to Packets Per

Second multiplied by Packet size, and therefore does not need to be recorded. Instead of

using CPU time directly, the reciprocal is used; simulation updates per second. Packets

per second per region and the times of region switches were also recorded for the Three-

Tier system.

900 1800 2700
Broadcast 1800 1800 1800

Region 1800 1800 1800

Three-Tier 1800 1800 1800
Table 2. Three-by-Three Factorial Design

Data from both broadcast and region-based filtering is compared pair-wise with

the Three-Tier system using an analysis of variance. The experiments show that the

Three-Tier system is significantly less dependent on the total number of entities than both

broadcast and region based filtering.
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The measurement of packets per second per region of the Three-Tier system is

used to show that the formulas from Chapter III accurately predict bandwidth

requirements. Time spent per region per entity is used to show that the formulas from

Chapter III accurately predict the amount of region switching overhead per entity.

Entities are pseudo-randomly placed in groups of 225 according to Figure 14.

Each group of entities is managed by a single client, running on an SGI Octane with a

minimum of 256MB of memory and a 250Mhz R10000 processor. Between five and

thirteen Octanes are used in each run, depending on total entity count. In each run, one

Octane is designated as a data-recording client that managed only a single entity within

the simulation. This client was responsible for recording all experimental metrics. The

client software’s tick thread is executed as often as possible, so each computer was

completely utilized.

Figure 14. Entity distribution for experimental runs
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Figure 15. Experiment after 10 seconds with 900 entities

To make this experiment as fair as possible, it is set up such that the octree in the

Three-Tier system does not subdivide. The resulting octree regions used are the same size

and orientation as the region based system. Because of this the Three-Tier system will not

scale completely dependent on the number of entities a client in interested in at any time.

However because the number of regions remains fixed, this experiment can then more

easliy be used to determine octree overhead within the system.

A commercial LAN-analyzer program called Observer (Network Instruments

1998), running on a laptop, is used for recording the measurements of total LAN segment
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packets per second, and bandwidth. Packet latency is measured using the Unix ping

command and because packet jitter is based on this latency, it is not recorded. Because

the experiment is conducted on a LAN, time to join should be a constant, so it is not

recorded. This data is used to show the effect the network has on the three systems, and

vice versa.

To summarize, the goal of this experiment is to show that the Three-Tier system

is dependent on the number of entities a client is interested in at any one time, and much

less dependent on the total number of entities than either broadcast or region based

filtering. It also shows that the formulae from Chapter III accurately predict the amount

of region switching overhead per entity as well as the bandwidth requirements.

These goals translate into the following hypotheses for this experiment:

H1: A client within a virtual environment using the Three-Tier Interest Management

System scales, in terms of packets per second, dependent on the number of entities

that client is interested in at any one time.

H2: A client within a virtual environment using the Three-Tier Interest Management

System has a lower dependency on the total number of entities within the

environment, in terms of packets per second, than that of virtual environments using

either the broadcast or region based systems.
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H3: A client within a virtual environment using the Three-Tier Interest Management

System scales, in terms of CPU time, dependent on the number of entities that client

is interested in at any one time.

H4: A client within a virtual environment using the Three-Tier Interest Management

System has a lower dependency on the total number of entities within the

environment, in terms of CPU time, than that of virtual environments using either

the broadcast or region based systems.

H5: The formulae presented in Chapter III work as expected. Specifically cKTPN maxmax =

accurately predicts the maximum number of packets per second for a region based

on the number of entities, and )( STRKM +=  predicts the average amount of time a

given entity remains within one region based on region size.

H6: An application within a virtual environment using the Three-Tier Interest

Management System works as well as the same application within the broadcast or

region based systems, as determined by application-specific metrics, in this case

“flock” size.

H7: A virtual environment using the Three-Tier Interest Management System has

approximately the same impact on the network in terms of packets per second,

bandwidth, and latency, as broadcast or regions based systems.
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D. DATA AND ANALYSIS

This section presents an analysis of the results obtained from the experiment

outlined in the previous section.

1. Packets per second

Figure 16 presents a graph of the average number of packets per second (PPS)

received by a client versus the total number of entities within the simulation for each of

the three systems. When this portion of the data was first analyzed it seemed as though

the client was not receiving nearly as many packets as expected for broadcast and region

based systems.
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In fact, if one were to look at the data for just 900 through 2700 entities as

outlined in the experimental design, one could almost come to the conclusion that region

based filtering does better as the simulation grows, clearly that is not the case. By adding

two more data points to the graph, one at 0 entities, and one at 450 entities, the reason for

this behavior becomes clear. It was expected that broadcast and region based filtering

would fail under heavy load, but it appears that they failed much earlier than expected.

By again looking at Figure 16, we can see that broadcast filtering begins to taper off at

about 300 entities. It is known that a properly working broadcast client should have

received all packets broadcast in the simulation, so if it received 100 packets per second

at 300 entities, it should have received 300 packets per second at 900 entities. However,

at 900 entities the figure shows broadcast filtering at only approximately 210 packets per

second, so at this point broadcast is receiving 50% fewer packets then it should have.

This is due to CPU load, and will be explained in more detail in the next subsection.

Region based filtering has a similar problem, although because it uses network

filtering, its failure point cannot easily be obtained from this graph. From network data

presented later in subsection 5 of this section it can be seen that its failure point is near

900 entities, although it does not nearly degrade as much as the broadcast based system.

Although not evident in Figure 16, the Three-Tier system also began to show reduced

packet counts at high entity counts, but to a much lesser degree and only as the entity

total approached 2700 entities.
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Even with these reduced packet counts, the Three-Tier system performed much

better than region based and broadcast based filtering. By plotting a fitted line, and

calculating its slope it can be seen that packets per second grew at only 0.0106 packets

per entity in the total system.

This result satisfies hypothesis H2, that is: A client within a virtual environment

using the Three-Tier Interest Management System has a lower dependency on the total

number of entities within the environment, in terms of packets per second, than that of

virtual environments using either the broadcast or region based systems. Furthermore,

these results are confirmed by the statistics of F(2, 8636.537) with all three comparisons

being significant having a P < 0.0001.

The goal of the Three-Tier system is to grow dependent only on the number of

entities a client is interested in. To calculate the system’s actual scalability, Figure 17

presents a graph of the average number of packets per second per entity of interest, versus

the total number of entities within the simulation. A fitted line is plotted for the Three-

Tier system, but because data from broadcast and region based systems cannot be directly

correlated with the number of entities of interest, only the raw data points for those

systems are shown.
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PPS/Entity vs. Total Entity Count
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Figure 17. Packets Per Second Per Entity of Interest vs. Total Entity Count

To meet the difficult requirements of a perfectly scalable system, the slope of the

line in the above figure should be 0, and its y-intercept should be the average number of

packets per second each entity transmits. Although the Three-Tier system comes close, it

can be seen from its slope that it has an overhead associated with total entity count. This

overhead is due to the fact the client must receive information from the octree regions in

order to select the entities that are of interest. However, it is expected that as the total

number of entities grows the octree would subdivide and the slope of the line would

approach 0.  This satisfies hypothesis H1, that is: a client within a virtual environment
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using the Three-Tier Interest Management System scales, in terms of packets per second,

dependent on the number of entities that client is interested in at any one time.

At a total region entity count of 10,000 this overhead of 0.0009 translates to 9

packets per second, per entity of interest. In other words, in an environment with billions

of entities, if a client was interested in octree regions containing 10,000 entities, and of

those was really interested in only 100 of them, the client would require a network

connection able to handle 900 packets per second. Using DIS size packets, this translates

to a bandwidth requirement of 1 Mbps; this amount is easily handled by 10-Base-T, T1,

cable modems, or even DSL, which many businesses and households already have.
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2. CPU Time

Figure 18 presents a graph of the average number of CPU seconds per update

versus the total number of entities within the simulation for each of the three systems

tested. Again because of the packets per second anomaly described in the previous

subsection, two extra data points were added to the chart to help explain, one at 0 and

another at 450 entities.
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Although the Three-Tier and region based systems have a fairly linear response to

total entity count, the broadcast based system had a very non-linear response. This can be

explained in the following manner.

Each of the clients running in the experiment controlled 225 entities, with the

exception of the one client that recorded the data, which controlled only one entity. Based

on the data presented above earlier in Figure 16, it is estimated that the entities used

within this simulation on average each transmited one packet about every three seconds.

A client would have to update at least once every three seconds to keep up with this

packet rate. It can be seen from the data above, that for the Three-Tier system at 2700

total entities, it took at most approximately 0.013 seconds to update the client. If you

multiply this by the 225 entities the other clients controlled you obtain an estimate of 3

seconds update time for the other clients.

Although this is barely acceptable, the other clients required more CPU time

because they receive many more packets per second. This result is even more significant

because even though the total number of packets on the network was higher for the

Three-Tier system, CPU-time was lower. This leads one to believe that although filtering

multicast packets from the network in software is more expensive in terms of CPU-time

than filtering in hardware, receiving and processing these packets is an even more

expensive operation. Because of this overhead for processing each packet, the other

systems reach the 0.013-second mark at closer to 1000 entities. Once the broadcast based

system passes this point a non-linear behavior emerges. This behavior is due to the fact

that CPU time is closely related to the number of packets per second, which for the
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broadcast based system, is directly related to the total number of entities. As CPU would

rise past the 0.013-second mark, a given client would produce fewer and fewer packets

per second per entity it controls, so the CPU time required to receive all of these packets

did not increase as dramatically. The region based system performed much more linearly

because the number of packets a given client receives is not directly related to the total

number of packets transmitted.

Once again, as with the analysis of packet rate in the previous subsection, even if

these reduced CPU-times for broadcast and region based systems were accurate, the

Three-Tier system performed much better. The fitted line presented in the graph only has

a slope of 4.1 microseconds per entity in the total system, compared to approximately

11.2 microseconds for region based system.

This result satisfies the hypothesis H4, that is: A client within a virtual

environment using the Three-Tier Interest Management System has a lower dependency

on the total number of entities within the environment, in terms of CPU time, than that of

virtual environments using either the broadcast or region based systems.

Furthermore, these results are backed by the statistics of F(2, 951.939) with the

comparisons between the Three-Tier system and both broadcast and region based systems

being significant having P < 0.0001. The comparison between the broadcast and region

based systems had a P = 0.4607, which is not significant.

Although the Three-Tier system performed much better, it is interesting to look in

detail at the far-left side of the graph, shown as an enlargement in Figure 19. It can be

seen from the figure below, that the Three-Tier system is not always the best choice for
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small-scale virtual environments. In fact, it seems to only perform better than region

based systems at entity counts above 40. Furthermore, at least for this scenario, a

broadcast based system would have been a slightly better choice than a region-based

system until the virtual environment reached a total of 250 entities.
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Figure 19. Enlargement of CPU-Time vs. Total Entity Count

But recall again, the goal of the Three-Tier system is to only depend on the

number of entities that a given client is interested in. To analyze the Three-Tier system’s

scalability, Figure 20 presents a graph of the average CPU-time per entity of interest,

versus the total number of entities within the environment. A fitted line is plotted for the
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Three-Tier system, but because data from broadcast and region based systems cannot be

directly correlated with the number of entities of interest, only the raw data points for

those systems are shown.
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If the Three-Tier system were perfectly scalable, the fitted line above would have

a slope of 0. However because this slope is small when compared to the y-intercept, it can

be said that this satisfies hypothesis H3, that is: a client within a virtual environment using

the Three-Tier Interest Management System scales, in terms of CPU time, dependent on

the number of entities that client is interested in at any one time.
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Although the slope presented is small, it does represent the overhead associated

with dead reckoning entities that are within the regions of interest, but are not of interest

themselves. To put this overhead in context, we continue the example from the previous

subsection. If a client within a virtual environment filled with billions of entities was

interested in a set of octree regions containing 10,000 entities, and was only really

interested in 100 of those entities, it would take 0.62 seconds to update the client.

Although this would not be an acceptable rate, there were several optimizations that were

left out of the prototype to make this experiment a fair comparison.

One major optimization is to only dead reckon entities that are of possible

interest. Currently all entities found within octree regions of interest are dead reckoned,

and by using this optimization, a factor of three increase in overhead is realized for this

particular simulation. Also, the packets were all of a uniform size of 1024 bytes. This is

much bigger than needed; for example, DIS packets are 144 bytes, which would have

saved a factor of 7 in memory copies. Also, although the computers used for this

experiment were relatively high-end workstations, they do not perform as well on integer

operations as a current day PC. Much of the update process within the client is integer

based, which is directly related to CPU clock speed. It would not be surprising to

purchase a home PC that ran at 600 MHz, and when compared to the 250 MHz

workstations used within this experiment realize a factor of 2 increase in speed. Also, the

code was compiled in a ‘debug’ state, so the compiler did not output optimized machine

code.
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Putting all of the optimizations together, it is not unrealistic to expect an almost

20 times increase in performance, bringing our example to 0.031 seconds per update, or

about 30 Hz. This result, combined with the earlier result of a 1 Mbps bandwidth

requirement, means that someone with a modern day computer and modern day Internet

connection can participate in a virtual world with billions of entities, as long as he or she

were only interested in about 100 entities at a time. Overall CPU and Bandwidth

requirements for 100 interesting entities are plotted on a log scale as a function of entities

within octree regions of interest in Figure 21.
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Figure 21. Predicted Bandwidth and CPU requirements versus total octree region entity count.
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For example, using the computer and network technology available in a home

today, a person can join a virtual environment containing a football stadium. He or she

could sit in the stands among 10,000 other people, all of which would be updated via low

fidelity messages sent to the octree regions. Of those 10,000 people, the nearest 100 of

them would be updated at high fidelity messages sent via individual multicast address.
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3. Octree Formulas

Figure 22 presents the average number of packets per second transmitted to each

octree region using the Three-Tier system. These transmissions represent overhead for

the Three-Tier system, and therefore it is best to reduce them. Chapter II presented an

equation to predict worst-case packet overhead that each octree region would generate.

Using this equation the goal was to keep packets per second per octree region below

unity.
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Figure 22. Raw Octree Region Packets Per Second vs. Total Entity Count



96

As can be seen above, the results were much higher than expected, but recall from

section C that this scenario represents a worst case. Because each entity’s smallest region

was too large to allow subdivision of the octree, there were more entities than wanted in

each region. To obtain the predicted results, the octree should have subdivided at 14

entities. By totaling the average packets per second from each region, dividing by the

total number of entities within the environment, then multiplying by 14, we obtain a

predicted result represented in Figure 23 below.
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These predicted results all fall below the predicted maximum of 1, the highest

being 0.655. These predicted results confirm that the number 14 would have served well

as an octree region entity cap.

Figure 24 below shows the minimum time an entity spent per region versus the

total number of entities within the environment for the Three-Tier System.
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Using the formula to calculate minimum region size with the constant of T=300,

should have guaranteed within a probability of 50% that each entity stay within a region

for at least 300 seconds. Again because of the extreme nature of the experiment, the raw

results must be extrapolated to predict how the formulas would have worked in an

average case. In this case, although the octree regions were slightly larger than each

entity’s smallest allowed region, the entities were confined to a 1000x1000x50 meter

box, divided equally among four regions. By multiplying the results by the smallest

region size of 7141, and dividing by the actual region size of 500 we derive the predicted

results presented in Figure 25 below.
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Using these predicted results it can be seen that approximately 50% of the time

the entity stayed within the region for more than 300 seconds, as the formula predicted.

These two results confirm that hypothesis H5 is true, that is: The formulas

presented in Chapter III work as expected, specifically cKTPN maxmax =  accurately predicts

the maximum number of packets per second for a given region based on the number of

entities, and )( STRKM +=  predicts the average amount of time a given entity remains

within one region based on region size.

4. Application Metric

The application used for this experiment was schooling fish. In theory the average

number of fish in a school should not vary greatly between systems within a given total

entity count as long as the CPU time allows for a reasonable amount of calculation.

Because of the design of the fish entities, this school size is directly related to the number

of interesting entities. Figure 26 below presents a chart of interesting entities versus the

total number of entities within the virtual environment.
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Entity vs. Total Entity Count
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Figure 26. Interesting Entities vs. Total Entity Count

It can be seen from this chart that as the total entity count increases, and passes

the 900 mark, the broadcast based system consistently has a lower number of interesting

entities. It is no coincidence that after the 900 mark the broadcast based system shows

this behavior, because this is the point where it does not have enough CPU cycles to

update its position to other entities. The region and Three-Tier based systems however

are not consistently different, as expected. These observations are backed by the statistics

of F(2,6.148) with P=0.7002 for the comparison of the region and Three-Tier systems,

showing statistically that they are not significantly different. For comparisons with the

broadcast based systems however, P=0.0031 and P=0.0095, because of its failure.
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These results confirm that hypothesis H6 is true, that is: An application within a

virtual environment using the Three-Tier Interest Management System works as well as

the same application within the broadcast or region based systems. And in this case the

Three-Tier system works better than the broadcast based system because of the latter’s

failure.

5. Networking

In theory the overall network behavior in terms of latency and packets per second

should not vary between system architectures. Figure 27 shows the amount of network

latency, in terms of seconds, versus the total number of entities within the virtual

environment.
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Latency vs. Total Entity Count
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Figure 27. Network Latency vs. Total Entity Count

As expected, it is not clear from the chart that one system has a consistently lower

or higher latency than any others. Statistically however, with F(2,8.901), P=0.0012 and

P=0.002 for the comparisons between the broadcast and other systems, showing that the

difference is significant. Although statistically significant, the difference in mean values

is 0.98 and 1.12 milliseconds lower than the other systems, which is not an uncommon

variation, and not detrimental to the simulation. This difference could be due to the fact

that as entity count increased, the broadcast system did not produce as many packets per

second as the other systems. For the difference between the Three-Tier and region based

systems P=0.6532, which is not a significant difference.
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Figure 28 shows the average number of packets per second transmitted on the

local area network. By examining this graph, two facts can be inferred. First, all three

systems showed reduced packet transmission as entity count increased, although the

Three-Tier system showed this only mildly. The region based filtering system showed

this a bit more, while the broadcast system showed this almost immediately.

Second, even if all three of the systems behaved perfectly, there was still a small

overhead for the Three-Tier system. To show this more clearly, Figure 29 presents an

enlargement of the lower left corner of Figure 28.
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Network PPS vs. Total Entity Count
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Figure 29. Enlargement of Network Packets Per Second vs. Total Entity Count

If one were to examine only the packet per second values at 900 total entities, it

can be seen that the Three-Tier system transmitted approximately 20 more packets per

second than the region-based system. This works out to be a total packet overhead of

0.022 packets per second per entity within the environment. This overhead is the result of

two different causes. First, some of the packet overhead is most likely the result of

multicast subscribe (IGMP) messages send out from each computer as it became

interested in different entities. Second, each entity also transmits low fidelity messages to

the octree regions, which were described earlier in subsection 3. While this overhead is

measurable, each entity transmitting an extra packet once every 45 seconds is not

significant to overall network performance.
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If we combine the above with the fact that each packet was approximately the

same size, then the Three-Tier system did not have a significant effect on overall network

performance in terms of bandwidth either.

This result, combined with the earlier result from this subsection, has shown that

hypothesis H7 is true, that is: A virtual environment using the Three-Tier Interest

Management System has approximately the same impact on the network in terms of

packets per second, bandwidth, and latency, as broadcast or regions based systems.

E. SUMMARY

This chapter presented the experimental design and results of measurements

comparing the Three-Tier interest management system against broadcast-based and

region-based filtering. Specifically the results have shown that bandwidth, packets per

second, and CPU time only depend upon the number of entities that a client is interested

in, with a small overhead for entities within the regions of the octree that the client is

interested in. The results have shown that the formulae from Chapter III accurately

predict the packets per second per region of the octree as well as the average amount of

time that each entity spends within a region. These results have also shown that

architecture does not significantly affect network performance.
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VI. CONCLUSIONS

A. IMPLICATIONS OF WORK

With the caveat that experimentation has not been conducted for all combinations

of scenarios and formula constants, the work presented in this dissertation yields the

following significant contributions to the field of interest management within networked

virtual environments:

1. A system which scales in terms of CPU usage, packets per second, and

bandwidth dependent on the number of entities a client is interested in, and is

less dependent on the total number of entities within a virtual environment

than broadcast or receiver-based systems. This, combined with the dynamic

extendibility of the three-tired system, could allow the virtual environment to

be persistent.

2. A formula that accurately predicts the amount of region switching overhead

that a given entity will encounter. Because this formula is general it is thought

that it can be used not only with the Three-Tier system but also to determine a

pre-computed static size for region-based filtering.

3. A set of formulae that can be used to accurately determine when to split or

merge a dynamically-sized region. Because these formulae are general it is
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thought that they can be used not only with the Three-Tier system but also

within dynamically sized region-based filtering systems.

B. LIMITATIONS OF WORK

More testing is needed on a much larger scale in terms of both time and entity

count. To conduct even the simple experiment outlined in Chapter V with 10,000 entities

requires as many as 50 computers connected together with a network properly configured

for multicast, and with routers able to handle over 10,000 multicast routes. One real test

of the Three-Tiered system’s scalablity would be to properly implement it on a variety of

operating systems, set up a dedicated computer to act as a server, and invite the Internet

community in general to partake in the virtual environment. Some of this work is already

underway, although certainly its adoption would be hindered by the lack of IP multicast

support by many Internet Service Providers (ISP).

Much of the scalability presented in this dissertation still relies on IP multicast

technology that is currently limited in many implementations. Chapter II outlined these

concerns as well as current research efforts addressing these concerns. The work

presented in this dissertation may be limited by any failures these research efforts may

encounter. However, experimental results imply that some researchers working in the

field of interest management may be solving problems that are too specific. Instead,

perhaps they should focus their efforts on solving the general data distribution problems

found within the network itself. For example, instead of solving the problem of grouping

entities with like interests to save multicast addresses, each entity could be given one or
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more multicast addresses, and the more general problem of aggregating multicast routes

within network routers could be solved instead.

The system presented in this dissertation is almost completely distributed. Along

with distribution comes a lack of control. Implementers of virtual environments using this

system may find difficulty in enforcing constraints or limiting participation in the

environment. While this may not be necessary for large social environments, it is most

definitely required for online gaming and other “pay-per-view” virtual environments.

One possible solution for limiting participation may be to use the octree server as an

encryption key server as well, and then encrypting all traffic within the octree regions.

In the current design and implementation of the Three-Tiered system a virtual

environment must make assumptions about the type and number of dimensions that

should make up the octree. To make the system more general a mechanism needs to be

created to allow the tree to dynamically change the type and number of dimensions it

represents. For example, many entities may need to filter based on positions and

temperature. An 18-tree that represents these four dimensions could then be used as a

first pass at the data instead of the octree, which represents only three of them.

Using the presented architecture, the virtual world must be of a fixed size, and

cannot change in size dynamically. To fix this, the octree root node would need to be re-

parented. Even so, the current dimensions of a region are transmitted in 64-bit floating-

point format. To effectively solve the problem of a world of unlimited size, the system

would need multiple frames of reference similar to those used in Spline (Barrus, Waters

et al. 1996). One possible solution might be to create a “world of worlds” containing
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many virtual environments, each specifying their coordinate system relative to another

world. Although this subject is perhaps outside the direct scope of interest management,

without being able to grow the volume that a virtual environment encompasses, it cannot

truly be called persistent or long-lived.

Currently a single server is used for octree consistency and searching. Although

the server is lightweight and handles only a small number of requests, a fault-tolerant

mechanism to distribute the workload among many servers must be created for truly

scalable persistent virtual environments.

C. RECOMMENDATIONS FOR FUTURE WORK

In addition to addressing the limitations of this work, future work should address

the fact that this is only one piece of a larger framework that must be in place in order to

support a large, persistent virtual environment. A larger framework being worked on is

called NPSNET-V, and is to be made up of the NPSNET-V Bamboo Foundation

Modules: “Dynamic Protocols,” “Interest Management” and “Persistent Universe.” The

goal is that together these Bamboo modules form the foundation for a persistent virtual

environment inhabited by millions of entities, hosted around the world. This dissertation

marks the completion of prototype versions of the “Dynamic Protocols” and “Interest

Management” portions of NPSNET-V.

Persistent Universe adds the ability to store an entity’s persistent state online and

to find specific entities within the virtual environment. When an entity leaves a virtual

environment, there may be a need to store its state just as it disconnects from the
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environment, so that it may reconnect and continue at some later time. One technology

we are looking to exploit is the common Internet web server. Also, some past systems

provided a method of finding entities within an environment, such as the Beacons in

Spline (Barrus, Waters et al. 1996). To find entities, we are looking to dynamic DNS.

This existing Internet infrastructure can be used by dynamically mapping host domain

names to multicast addresses of entities, or address of regions within the environment.

Although this work attempts to address the problem of filtering data that is not

needed by a client, it does not address how to decide which data is needed. Much work

must go into the problem of automatically changing interest expressions in order to

support very large, diverse, and dynamic virtual environments.

A similar, but more tractable problem is that, the current client subscribes to all

regions that its spherical AOI intersects with, including all depths of the octree. Although

this is not technically incorrect, there is more work to be done in the area of deciding

what size regions are important. This type of modification to the current client combined

with aggregation of entities can reduce bandwidth and CPU usage by a significant

amount in large crowded virtual environments, providing a network equivalent to the

functionality of the level-of-detail mechanism found in many scene graphs. Although it is

imagined that efficient aggregation can be used in the larger regions, this also must be

demonstrated in future work.

Experimentation presented in this dissertation seems to indicate that the Three-

Tier system will work well for large virtual environments, but research needs to be
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conducted to see if this architecture will work well for small collaborative virtual

environments, for example a medical surgery simulation.

D. SUMMARY

This dissertation has shown that it is possible to create an interest management

software architecture that will allow persistent distributed virtual environments to scale

dependent only on the number of entities a client is interested in at any one time.

The formulae presented in this work can accurately predict the maximum number

of packets per second for a given region, as well as the average amount of time that a

given entity remains within one region. These formulas can be used with not only the

Three-Tier system, but also existing region-based interest management systems.

These findings must be prefaced with the fact that experimentation has not been

conducted for all combinations of scenarios and formula constants. Nevertheless, these

are significant contributions to the field of interest management and are expected to help

make the dream of a single persistent virtual environment inhabited by millions of

entities come true.
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APPENDIX A. THREE-TIERED SYSTEM SOURCE CODE

A. INTRODUCTION

This appendix contains source code for the Three-Tiered interest management

system used in experiment described in Chapter V.  Presented below is the source-code

for the Bamboo module “IMServerModule” containing the lightweight server and the

module “IMBaseModule” that contains the four main base classes.

This source-code presented here is only for completeness, will not work on many

platforms, however, up to date platform-independent versions of these modules are

available from the NPSNET-V website (http://npsnet.org/~npsnet/v).

B. IMSERVERMODULE

1. server.h

#define CLIENT_BASE_ADDRESS 0
#define SERVER_BASE_ADDRESS 0

#define LEAF 0
#define BRANCH 1

typedef struct Octree
{
 char type;
 char lock;
 Octree *parent;
 Octree *children;
 unsigned int address;
} my_o;

2. server.c++

#include "server.h"
#include "IMPacket.h"
#include "IMCellRegion.h"
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#include <values.h>
#include <stdlib.h>
#include <stdio.h>

#include <sys/time.h>

#include <unistd.h>
#include <stropts.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>

#include <net/if.h>
#include <net/soioctl.h>

#include "set.h"
#include "list.h"

#include "bbThread.h"

#define SERVER_PORT 9805
#define MAX_REGIONS 1000000
#define WORLD_SIZE 10000.0
#define SPLIT_LIMIT 30
#define MERGE_LIMIT 10
#define DELAY_TIME 20.0

Octree myalloc[MAX_REGIONS];
Octree *hash[MAX_REGIONS];
Octree *tree;
unsigned long base_address;
int pt = 0;

int bigread(int fd,void *buf,int num)
{
 int cnt = 0;
 while(cnt < num && cnt != -1) cnt += read(fd,(char *)buf+cnt,num-cnt);
 return cnt;
}

int bigwrite(int fd,void *buf,int num)
{
 int cnt = 0;
 while(cnt < num && cnt != -1) cnt += write(fd,(char *)buf+cnt,num-
cnt);
 return cnt;
}

unsigned int allocServerAddress()
{
 static unsigned long count = base_address;
 return count++;
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}

int rc = 0;

// Cell alloctaion
Octree *newCells(Octree *parent,unsigned int newaddr[8])
{
 Octree *cells = &myalloc[rc];
 rc+=8;

 for(int i=0; i<8; i++)
    {
     cells[i].lock = 0;
     cells[i].address = newaddr[i];
     cells[i].num_people = 0;
     cells[i].type = LEAF;
     cells[i].parent = parent;
    }

 return cells;
}

// Given a LEAF, make it a BRANCH, and
// give it 8 LEAF children
void splitTree(Octree *cell,unsigned int newaddr[8])
{
 int n = cell->num_people;
 pt -= cell->num_people;

 cell->type = BRANCH;
 cell->children = newCells(cell,newaddr);

 struct in_addr grpaddr;
 grpaddr.s_addr = cell->address;
 printf("splitting cell %s\n",inet_ntoa(grpaddr));
}

// Given a Parent BRANCH, with only LEAF children
// make Parent a LEAF
void mergeTree(Octree *cell)
{
 printf("Not enough people, joining cells\n");

 cell->type = LEAF;
 cell->num_people = 0;
 cell->children = NULL;
}

Octree *AddresstoCell(Octree *mytree,unsigned long address)
{
 if (mytree->address == address) return mytree;
 if (mytree->type == LEAF) return NULL;

 Octree *ret = NULL;
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 if (!ret) ret = AddresstoCell(&mytree->children[0],address);
 if (!ret) ret = AddresstoCell(&mytree->children[1],address);
 if (!ret) ret = AddresstoCell(&mytree->children[2],address);
 if (!ret) ret = AddresstoCell(&mytree->children[3],address);
 if (!ret) ret = AddresstoCell(&mytree->children[4],address);
 if (!ret) ret = AddresstoCell(&mytree->children[5],address);
 if (!ret) ret = AddresstoCell(&mytree->children[6],address);
 if (!ret) ret = AddresstoCell(&mytree->children[7],address);

 return ret;
}

int XYZRtoCells(Octree *mytree,Extent *bound,struct CellRegion *regs)
{
 int c = 0;

 double r2 = regs[0].ext.r/2.0;
 double cx = regs[0].ext.x;
 double cy = regs[0].ext.y;
 double cz = regs[0].ext.z;

 //Always return parent.
 CellRegion *origregs = regs;
 regs[0].address = mytree->address;
 regs = &regs[1];
 int count = 1;

 unsigned char mask = 0xFF;
 if (bound->x > cx+bound->r) mask&=240; //11110000
 else if (bound->x < cx-bound->r) mask&=15; //00001111
 if (bound->y > cy+bound->r) mask&=204; //11001100
 else if (bound->y < cy-bound->r) mask&=51; //00110011
 if (bound->z > cz+bound->r) mask&=170; //10101010
 else if (bound->z < cz-bound->r) mask&=85; //01010101

 if (0x1&mask)
    {
     regs[0].ext.r = r2;
     regs[0].ext.x = cx - r2;
     regs[0].ext.y = cy - r2;
     regs[0].ext.z = cz - r2;

     if (mytree->children[0].type == BRANCH)
        {
         c = XYZRtoCells(&mytree->children[0],bound,regs);
         regs = &regs[c];
         count += c;
        }
     else
        {
         regs[0].address = mytree->children[0].address;
         regs[0].below = 0;
         regs = &regs[1];
         count++;
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        }
    }

 if (0x2&mask)
    {
     regs[0].ext.r = r2;
     regs[0].ext.x = cx - r2;
     regs[0].ext.y = cy - r2;
     regs[0].ext.z = cz + r2;

     if (mytree->children[1].type == BRANCH)
        {
         c = XYZRtoCells(&mytree->children[1],bound,regs);
         regs = &regs[c];
         count += c;
        }
     else
        {
         regs[0].address = mytree->children[1].address;
         regs[0].below = 0;
         regs = &regs[1];
         count++;
        }
    }

 if (0x4&mask)
    {
     regs[0].ext.r = r2;
     regs[0].ext.x = cx - r2;
     regs[0].ext.y = cy + r2;
     regs[0].ext.z = cz - r2;

     if (mytree->children[2].type == BRANCH)
        {
         c = XYZRtoCells(&mytree->children[2],bound,regs);
         regs = &regs[c];
         count += c;
        }
     else
        {
         regs[0].address = mytree->children[2].address;
         regs[0].below = 0;
         regs = &regs[1];
         count++;
        }
    }

 if (0x8&mask)
    {
     regs[0].ext.r = r2;
     regs[0].ext.x = cx - r2;
     regs[0].ext.y = cy + r2;
     regs[0].ext.z = cz + r2;
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     if (mytree->children[3].type == BRANCH)
        {
         c = XYZRtoCells(&mytree->children[3],bound,regs);
         regs = &regs[c];
         count += c;
        }
     else
        {
         regs[0].address = mytree->children[3].address;
         regs[0].below = 0;
         regs = &regs[1];
         count++;
        }
    }

 if (0x10&mask)
    {
     regs[0].ext.r = r2;
     regs[0].ext.x = cx + r2;
     regs[0].ext.y = cy - r2;
     regs[0].ext.z = cz - r2;

     if (mytree->children[4].type == BRANCH)
        {
         c = XYZRtoCells(&mytree->children[4],bound,regs);
         regs = &regs[c];
         count += c;
        }
     else
        {
         regs[0].address = mytree->children[4].address;
         regs[0].below = 0;
         regs = &regs[1];
         count++;
        }
    }

 if (0x20&mask)
    {
     regs[0].ext.r = r2;
     regs[0].ext.x = cx + r2;
     regs[0].ext.y = cy - r2;
     regs[0].ext.z = cz + r2;

     if (mytree->children[5].type == BRANCH)
        {
         c = XYZRtoCells(&mytree->children[5],bound,regs);
         regs = &regs[c];
         count += c;
        }
     else
        {
         regs[0].address = mytree->children[5].address;
         regs[0].below = 0;
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         regs = &regs[1];
         count++;
        }
    }

 if (0x40&mask)
    {
     regs[0].ext.r = r2;
     regs[0].ext.x = cx + r2;
     regs[0].ext.y = cy + r2;
     regs[0].ext.z = cz - r2;

     if (mytree->children[6].type == BRANCH)
        {
         c = XYZRtoCells(&mytree->children[6],bound,regs);
         regs = &regs[c];
         count += c;
        }
     else
        {
         regs[0].address = mytree->children[6].address;
         regs[0].below = 0;
         regs = &regs[1];
         count++;
        }
    }

 if (0x80&mask)
    {
     regs[0].ext.r = r2;
     regs[0].ext.x = cx + r2;
     regs[0].ext.y = cy + r2;
     regs[0].ext.z = cz + r2;

     if (mytree->children[7].type == BRANCH)
        {
         c = XYZRtoCells(&mytree->children[7],bound,regs);
         regs = &regs[c];
         count += c;
        }
     else
        {
         regs[0].address =mytree->children[7].address;
         regs[0].below = 0;
         regs = &regs[1];
         count++;
        }
    }

 //Set number of regions below this one.
 origregs->below = count-1;
 //Return the number of regions.
 return count;
}
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//Given XYZ return cell pointer and extent
Octree *XYZtoCell(double x,double y,double z)
{
 int i;
 double xa,ya,za,l,r,t,b,n,f;
 r=t=f= WORLD_SIZE;
 l=b=n=-WORLD_SIZE;
 Octree *cell = tree;

 while(cell->type == BRANCH)
      {
       xa = (l+r)/2.0;
       ya = (b+t)/2.0;
       za = (n+f)/2.0;

       if (x<=xa)
          {
           r=xa;
           if (y<=ya)
              {
               t=ya;
               if (z<=za)
                  {
                   i=0;
                   f=za;
                  }
               else
                  {
                   i=1;
                   n=za;
                  }
              }
           else
              {
               b=ya;
               if (z<=za)
                  {
                   i=2;
                   f=za;
                  }
               else
                  {
                   i=3;
                   n=za;
                  }
              }
          }
       else
          {
           l=xa;
           if (y<=ya)
              {
               t=ya;
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               if (z<=za)
                  {
                   i=4;
                   f=za;
                  }
               else
                  {
                   i=5;
                   n=za;
                  }
              }
           else
              {
               b=ya;
               if (z<=za)
                  {
                   i=6;
                   f=za;
                  }
               else
                  {
                   i=7;
                   n=za;
                  }
              }
          }

       cell = &cell->children[i];
      }

 return cell;
}

static bbThread *loopThread;
static int s2;

void loopFunc(bbThread *,bbData *that)
{
 ServerPacket packet;

 //wait for new connection
 fd_set listenfds;
 FD_ZERO(&listenfds);
 FD_SET(s2, &listenfds);
 struct timeval wait = {1,0};
 select(s2+1,&listenfds,NULL,NULL,&wait);
 if (!FD_ISSET(s2,&listenfds)) return;

 //accept new TCP connection
 static struct sockaddr sa_client;
 static int cs=sizeof(struct sockaddr);
 int s = accept(s2,&sa_client,&cs);
 if (read(s,&packet,sizeof(ServerPacket)) == -1) perror("read");



128

 switch(packet.type)
       {
        case ServerPacket::MERGE:
             {
              int lock = 0;
              printf("Client merging cell %d!\n",packet.split.address);
              Octree *cell = AddresstoCell(tree,packet.split.address);
              if (cell && cell->type == BRANCH)
                 {
                  int ok = 1;
                  for(int i=0;i<8;i++)
                     if (cell->children[i].type == BRANCH ) ok = 0;
                  if (ok)
                     {
                      mergeTree(cell);
                      lock = 1;
                     }
                  write(s,&lock,sizeof(lock));
                  printf("Unlocking cell %d!\n",packet.split.address);
                  cell->lock = 0;
                 }
              else write(s,&lock,sizeof(lock));
             } break;

        case ServerPacket::SPLIT:
             {
              int lock = 0;
              printf("Splitting cell %d!\n",packet.split.address);
              Octree *cell = AddresstoCell(tree,packet.split.address);
              if (cell)
                 {
                  if (cell->type == LEAF)
                     {
                      splitTree(cell,packet.split.newaddr);
                      lock = 1;
                     }
                  write(s,&lock,sizeof(lock));
                  printf("Unlocking cell %d!\n",packet.split.address);
                  cell->lock = 0;
                 }
              else write(s,&lock,sizeof(lock));
             } break;

        case ServerPacket::LOCK:
             {
              int lock = 0;
              printf("Trying to lock cell %d!\n",packet.split.address);
              Octree *cell = AddresstoCell(tree,packet.split.address);
              if (cell)
                 {
                  if (!cell->lock)
                     {
                      lock = 1;
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                      printf("Locking cell
%d!\n",packet.split.address);
                      cell->lock = 1;
                     }
                 }
              else printf("Cell %d not found!\n",packet.split.address);
              write(s,&lock,sizeof(lock));
             } break;

        case ServerPacket::MALLOC:
             {
              static unsigned int addrs[256];
              for(int i=0;i<packet.malloc.num;i++)
                 addrs[i]=allocServerAddress();
              write(s,addrs,sizeof(unsigned int)*packet.malloc.num);
              printf("allocated %d addresses\n",packet.malloc.num);
             } break;

        case ServerPacket::SEARCH:
             {
              //do sphere-octree intersection.
              Extent ext;
              static struct CellRegion regs[MAX_REGIONS];

              regs[0].ext.r = WORLD_SIZE;
              regs[0].ext.x = regs[0].ext.y = regs[0].ext.z = 0;
              ext.x=packet.search.x; ext.y=packet.search.y;
              ext.z=packet.search.z; ext.r=packet.search.r;
              int n = XYZRtoCells(tree,&ext,regs);
              write(s,&n,sizeof(int));
              bigwrite(s,regs,sizeof(CellRegion)*n);
             } break;

        default: printf("ERROR! Unknown message type
%d\n",packet.type);
       }

 close(s);
}

extern "C"
{
void initFunc()
{
 printf("Starting server with world size set to %f\n",WORLD_SIZE);
 base_address=inet_addr("239.0.0.1");

 for (int i=0;i<MAX_REGIONS;i++) hash[i]=0;

 tree = (Octree *)malloc(sizeof(Octree));

 // Start us off w/ 8.
 tree->type = LEAF;
 tree->address = allocServerAddress();
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 tree->num_people = 0;
 tree->lock = 1; // We never want this to split.
 hash[tree->address-base_address] = tree;
 unsigned int addrs[8];
 for(i=0;i<8;i++) addrs[i]=allocServerAddress();
 splitTree(tree,addrs);

 //Set up our incoming port
 struct in_addr bind_address;
 bind_address.s_addr = htonl(INADDR_ANY);

 struct sockaddr_in sa;
 sa.sin_family=AF_INET;
 sa.sin_addr=bind_address;
 sa.sin_port=htons(SERVER_PORT);

 s2 = socket(PF_INET,SOCK_STREAM,0);
 if (bind(s2,(struct sockaddr *)&sa,sizeof(struct sockaddr_in)) == -1)
     perror("bind");
 listen(s2,1000);

 loopThread = new bbThread(loopFunc,NULL);
}

void exitFunc(void)
{
 printf("Shutting down server....\n");
 delete loopThread;
 printf("Done.\n");
}
} //extern "C"

C. IMBASECLIENTMODULE

1. IMbaseClient.h

#ifndef _IMBASECLIENT
#define _IMBASECLIENT
#include <unistd.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#include <net/if.h>
#include <net/soioctl.h>
#include <arpa/inet.h>

#include <multimap.h>
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#include <set.h>
#include "bbMutex.h"
#include "IMBaseEntity.h"
#include "IMBaseOutEntity.h"

//Forward declare classes instead of including them
//This saves LOTS of memory when using Bamboo modules
class bbThread;
class Msocket;
class IMBaseInEntity;
class IMBaseProtocol;
class IMNode;

#define DEFAULT_SERVER_NAME "sse.cs.nps.navy.mil"
#define DEFAULT_SERVER_PORT 9805
#define DEFAULT_CLIENT_PORT 9905
#define MAX_READ_REGIONS 4096

class IMBaseClient
{
 public:
   static  void readFunc(bbThread *, bbData *);
   virtual void mcastcheck();

   bbMutex tree_mutex;
 public:

   int bigread(int fd,void *buf,int num)
   {
    int cnt = 0;
    while(cnt < num && cnt != -1)
          cnt += read(fd,(char *)buf+cnt,num-cnt);
    return cnt;
   }

   int bigwrite(int fd,void *buf,int num)
   {
    int cnt = 0;
    while(cnt < num && cnt != -1)
          cnt += write(fd,(char *)buf+cnt,num-cnt);
    return cnt;
   }

   int s2;           //mcast socket for sending
   int ourtcpsocket; //tcp socket waiting for connections

   IMNode *tree;

   IMBaseProtocol *base_proto;

   struct sockaddr_in sa;    // sockaddr_in used to connect to server
   char server_name[255];
   short server_port;
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   void setup();

   bool auto_tick;      // Should we automaticly tick outentities?
   bool internal_clock; // Should we set our time based on
gettimeofday?
   double simtime;      // Simulation Time

   // Set of all out-bounds
   set<IMBaseOutEntity *,IMBaseEntity::compare> outlist;

   // Set of all in-bounds
   set<IMBaseInEntity *,IMBaseEntity::compare> inlist;

   bbThread *readThread;

   virtual void filter(McastPacket &mpacket,IMBaseInEntity *ng);

   typedef pair<unsigned int,McastPacket> packet_type;
   multimap<double,packet_type> delaySend;
   multimap<double,unsigned int> delaySplit,delayMerge;
   multimap<double,IMBaseOutEntity *> delayRespond;

   unsigned int clientaddress;

 public:

   float k1; //constant for smallest region formula
   float k2; //constant for dead reckoning formula
   float MinTimeInRegion; //Minimum time to spend in a region
   int splitNumEntities;
   int mergeNumEntities;

   Msocket *msocket;
   static IMBaseClient *gClient;

   IMBaseClient();
   ~IMBaseClient();

   virtual void tick();
   inline double getTime() { return simtime; }
   inline void setTime(double t) { simtime = t; }

   static int numrtt;
   static int getNextRTT() { numrtt++; return numrtt-1; }

   virtual void addOutEntity(IMBaseOutEntity *e) { outlist.insert(e); }
   virtual void remOutEntity(IMBaseOutEntity *e) { outlist.erase(e); }

   virtual void checkin(IMBaseOutEntity *,unsigned int,unsigned int);
   virtual void sendMoved(IMBaseOutEntity *e,McastPacket
                          &mpacket,unsigned int send_to
                          unsigned int to,unsigned int from,
                          short port=9976);
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   virtual void sendPing(unsigned int send_to);
   virtual void sendMcast(unsigned int send_to,McastPacket &packet,
                          short port=9976);

   virtual void sendDelayedMcast(unsigned int send_to,
                                 McastPacket &packet,double delay);

   virtual void handleSplit(unsigned int address,
                            unsigned int newaddress[8]);
   virtual void handleMerge(unsigned int address);
   virtual void handleQuery(McastPacket &mpacket);

   virtual unsigned int OCTREE_search_server(IMBaseOutEntity *e);
   virtual unsigned int OCTREE_find_primary(IMBaseOutEntity *e,
                                            bool ask);
   virtual unsigned int OCTREE_ask_friends(IMBaseOutEntity *e,
                                           unsigned int address);
   virtual void OCTREE_Merge(IMNode *n);
   virtual void OCTREE_Split(IMNode *n);

   virtual bool MDHCP_getAddresses(int num,unsigned int *addrs);
};

#endif

2. IMBaseEntity.h

#ifndef _IMBASEENTITY
#define _IMBASEENTITY

#include <set.h>

#include "IMPacket.h"

#include "npsVec3f.h"
#include "IMCellRegion.h"

class IMBaseEntity
{
 public:

   unsigned int address; // Server assigned multicast address or guid.

   npsVec3f pos;         // position
   npsVec3f vel;         // velocity

   double lastUpdate;    // Time of last update (secs past Jan 1, 1970)

   CellRegion primary_region; //copy of primary region XXXX why?

 protected:

   npsVec3f oldpos;      // Position at time = lastUpdate
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 public:

   enum { INBOUND,OUTBOUND };

   virtual int   mode() = 0;

   virtual int   runtime_type()     { return rtt; }
   virtual char *protocol_name()    { return module_name; }
   virtual char *protocol_url()     { return module_url; }
   virtual float protocol_version() { return module_version; }

   static int rtt;
   static char module_name[64];
   static char module_url[192];
   static float module_version;

   virtual void tick() = 0; // Update Entity

   virtual bool interestedIn(IMBaseEntity *e) { return false; }
   virtual void NotinterestedIn(IMBaseEntity *e) {}

   struct compare:public
   binary_function<IMBaseEntity *,IMBaseEntity *,bool>
   {
    bool operator()(IMBaseEntity *r1,IMBaseEntity *r2) const
              {
               return (r1->address < r2->address);
              }
   };
};

#endif

3. IMBaseInEntity.h

#ifndef _IMBASEINENTITY
#define _IMBASEINENTITY

#include "IMBaseEntity.h"
#include "IMPacket.h"

#include "string"
#include "map.h"

class IMBaseInEntity : public IMBaseEntity
{
 protected:

   // subscribed ref count, 0 == entity updates come from octree
   set<IMBaseEntity *,IMBaseEntity::compare> sub_set;

   double lastlastUpdate;
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   npsVec3f oldoldpos;
   npsVec3f oldvel;
   float smooth_time;

   double dt;

   McastPacket lastPacket;

 public:

   IMBaseInEntity() {}

   IMBaseInEntity(McastPacket &mpacket)
   {
    address = mpacket.newaddress[1];
    update(mpacket);
   }

   virtual int mode() { return INBOUND; }

   virtual void tick(); // Update Entity
   virtual void update(McastPacket &mpacket);

   virtual int subscribed() { return (sub_set.size() > 0); }
   virtual bool subscribe(IMBaseEntity *e)
                         { return sub_set.insert(e).second;}
   virtual bool unsubscribe(IMBaseEntity *e)
                           { return sub_set.erase(e); }

   map<string,void *> attributeMap;
};

#endif

4. IMBaseOutEntity.h

#ifndef _IMBASEOUTENTITY
#define _IMBASEOUTENTITY

#include "npsVec3f.h"
#include "IMBaseEntity.h"
#include "IMBaseProtocol.h"
#include "IMCellRegion.h"

#include "map.h"

class IMNode;

class IMBaseOutEntity : public IMBaseEntity
{
 protected:

   float dead_thresh;       // Update if error > dead_thresh (m^2)
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   float dead_timeout;      // Update if time > dead_timeout (s)

   void obtain_address();
   void checkin(unsigned int old);

   unsigned int find_primary();

   npsVec3f lastPos;

 public:

   /////////////////////////////////////////////
   // IE Parameters

   bool SubUnknownProtocols; // Should we by defualt subscribe to
                             // entities we did not have an IE for?

   float smallest_entity;    // Smallest entity we should look for.
                             // (Similar to smallest region calc)
   float smallest_entity_avg_bound_dia; // Used in smallest_entity
calc.
   float smallest_entity_avg_max_vel;   // Used in smallest_entity
calc.

   float roi;   //Tier 2 - Radius of interest
   float roi2;  //Tier 2 - Radius of interest squared

   // Outcome of filtering
   map<IMBaseEntity *,float,IMBaseEntity::compare> interestingEntities;

   /////////////////////////////////////////////
   // Smallest Region Parameters

   float smallest_region; //Smallest region this entity can fit in
given
                          //current mode of movement

   float avg_bound_dia; // diameter used for smallest_region calc. (m)
   float avg_max_vel;   // Velocity used for smallest_region calc.
(m/s)

   void AvgMaxVel(float v) { avg_max_vel = v; calc_smallest_region(); }
   void AvgBoundDia(float d){avg_bound_dia = d;
calc_smallest_region();}

   set<IMNode *> current_nodes; // Set of interesting regions

 protected:

   void calc_smallest_region();
   double lastTick;                 // Time this guy was ticked last
   double dt;                       // currenttime - lastTick
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   void Update_dt();                // Updates dt;

   CellRegion region;   // Current location
   npsVec3f oldvel;  // Velocity at time = lastUpdate

 public:

   virtual int mode() { return OUTBOUND; }

   virtual void sendMoved(McastPacket &mpacket,
                          unsigned int send_to,unsigned int to,
                          unsigned int from, short port = 9976);

   virtual void forceSend(); // Used for pings
   virtual void tick();      // Update Entity

   IMBaseOutEntity(npsVec3f p, float search_r, float dia,
                   float vel,float timeout);
   IMBaseOutEntity(npsVec3f p, float search_r);

   ~IMBaseOutEntity();
};
#endif

5. IMBaseNode.h

#ifndef _IMBASENODE
#define _IMBASENODE

#include "set.h"

#include "IMCellRegion.h"

//Forward declare classes
class IMBaseOutEntity;

class IMNode
{
 public:
   CellRegion region; //Bounds
   IMNode *parent;
   IMNode *child[8];
   bool leaf;         //True if node has no children
   int ref;

   set<unsigned int> elist;

   IMNode(CellRegion r)
   {
    parent=NULL;
    leaf=true;
    for(int i=0;i<8;i++) child[i]=NULL;
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    memcpy(&region,&r,sizeof(CellRegion));
    ref = 0;
   }

   IMNode()
   {
    parent=NULL;
    leaf=true;
    for(int i=0;i<8;i++) child[i]=NULL;
    ref = 0;
   }

   //Number on entities in child and parent
   //Returns -1 if all children present && not leaf nodes!
   virtual int childrenSize();

   virtual void splittree(unsigned int newaddr[8]);
   virtual void mergetree();

   virtual void mergeregions(CellRegion *region);
   virtual void fleshtree();
   virtual IMNode *findnode(unsigned int address);
   virtual bool remfromtree();
   virtual IMNode *addtotree(CellRegion r);
   virtual void   addtotree(void);
   virtual IMNode *XYZtonode(IMBaseOutEntity *e);
   virtual int searchXYZR(double x,double y,double z,double r,
                          CellRegion *cells,IMNode **nodes = NULL);
};

#endif

6. IMBaseProtocol.h

#ifndef __IMBASEPROTOCOL__
#define __IMBASEPROTOCOL__

#include "bbMappedClass.h"

#include "IMPacket.h"

// forward declare
class IMBaseInEntity;

class IMBaseProtocol : public bbMappedClass<IMBaseProtocol>
{
 public:

   IMBaseProtocol() :
bbMappedClass<IMBaseProtocol>("IMBaseClientModule") {setup();}
   IMBaseProtocol(const char *name) :
bbMappedClass<IMBaseProtocol>(name) {setup();}



139

   virtual void setup(void);

   virtual IMBaseInEntity *new_entity(McastPacket &mpacket);
   virtual void del_entity(IMBaseInEntity *);
};

class IMBaseProtocolIE
{
 public:
   IMBaseProtocol *protocol; //Which protocol is this for

   struct compare : public
   binary_function<IMBaseProtocolIE *,IMBaseProtocolIE *,bool>
   {
    bool operator()(IMBaseProtocolIE *r1,IMBaseProtocolIE *r2) const
                {
                 return (r1->protocol < r2->protocol);
                }
   };
};
#endif

7. IMCellRegion.h

#ifndef __IM_CELLREGION
#define __IM_CELLREGION

#include "npsVec3f.h"
#include "IMExtent.h"

struct CellRegion
{
  unsigned int address;
  Extent ext;
  int below;

  inline bool contains(npsVec3f p)
  {
   if (p[0] <= ext.x + ext.r && p[0] > ext.x - ext.r &&
       p[1] <= ext.y + ext.r && p[1] > ext.y - ext.r &&
       p[2] <= ext.z + ext.r && p[2] > ext.z - ext.r) return true;
   return false;
  }

  inline bool contains(npsVec3f p,float r)
  {
   r+=ext.r;
   if (p[0] <= ext.x + r && p[0] > ext.x - r &&
       p[1] <= ext.y + r && p[1] > ext.y - r &&
       p[2] <= ext.z + r && p[2] > ext.z - r) return true;
   return false;
  }
};
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#endif

8. IMExtent.h

#ifndef __IM_EXTENT
#define __IM_EXTENT

// Messages from server
struct Extent
{
 double x;
 double y;
 double z;
 double r;
};

#endif

9. IMPacket.h

#ifndef __IM_PACKET
#define __IM_PACKET

#include "IMCellRegion.h"

// Messages to server
struct ServerPacket
{
 enum PacketType {SEARCH,CHANGE,MALLOC,LOCK,SPLIT,MERGE};
 enum PacketType type;
 union
 {
  struct
  {
   int num;
  } malloc;

  struct
  {
   unsigned int address;
   unsigned int newaddr[8];
  } split;

  struct
  {
   unsigned int address;
   double x;
   double y;
   double z;
   double r;
  } search;
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  struct
  {
   unsigned int from;
   unsigned int to;
  } change;

 };
};

// Messages to mcast address
struct McastPacket
{
 enum PacketType {MOVED,PINGING,MERGE,SPLIT,QUERY,RESPOND};
 enum PacketType type;
 unsigned int address;
 union
     {
      unsigned int newaddress[8]; //XXXX is this used?!
      struct
           {
            unsigned int newaddress[2];
            double lastUpdate;
            double x;
            double y;
            double z;
            float vx;
            float vy;
            float vz;
            char module_name[64];
            char module_url[192];
            float module_version;
            char protocol_reserved[712];
           } moved; // 312 + 712 = 1024

      struct
           {
            unsigned int tcpaddress;
            unsigned int port;
            double r;
            double x;
            double y;
            double z;
           } query; // 40 bytes
     };
};

#endif

10. IMSocket.h

#ifndef _MSOCKET
#define _MSOCKET
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#include <set.h>

#include "ace/SOCK_Dgram.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

#include "ace/INET_Addr.h"

//A Socket that reads from multiple mcast addresses

class ACE_Export Msocket : public ACE_SOCK_Dgram
{
 public:
   Msocket(unsigned short port);
   ~Msocket(void);

   bool subscribe(unsigned int address);
   void unsubscribe(unsigned int address);
   int numsub() {return sub_list.size();}

 private:
   set<unsigned int> sub_list;
   in_addr ifaddr;
};

#endif

11. baseClient.c++

#include <stdio.h>
#include <errno.h>
#include <unistd.h>

#include <sys/time.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "bbPrinter.h"
#include "bbThread.h"

#include "IMBaseClient.h"
#include "IMBaseOutEntity.h"
#include "IMBaseInEntity.h"
#include "IMBaseProtocol.h"

#include "IMSocket.h"
#include "ace/Handle_Set.h"
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#include "IMPacket.h"
#include "IMBaseNode.h"

#define JOIN_DELAY 10

double smallest_region = 100000000.0;
int IMBaseClient::numrtt = 0;
IMBaseClient *IMBaseClient::gClient;

IMBaseClient::IMBaseClient()
{
 tree = NULL;
 internal_clock = true;
 auto_tick = true;
 k1 = 4.76; //constant for smallest region formula
 k2 = 0.01; //constant for dead reckoning formula
 MinTimeInRegion = 300.0; //Minimum time to spend in a region

 splitNumEntities = (2*k1*k2*MinTimeInRegion)/2;
 mergeNumEntities = 0.75 * splitNumEntities;

 printf("high water mark: %d\n",splitNumEntities);
 printf("low water mark: %d\n",mergeNumEntities);

 struct timeval tt;
printf("getting time...\n");
 gettimeofday(&tt);
printf("setting time...\n");
 setTime((double)tt.tv_sec + tt.tv_usec/1000000.0);
printf("Better not be this...\n");
 strcpy(server_name,DEFAULT_SERVER_NAME);
 server_port = DEFAULT_SERVER_PORT;
printf("Clearing lists...\n");
 outlist.clear();
 inlist.clear();
 setup();

printf("After set up.\n");
 //Turn on the base protocol. This is our default entity.
 base_proto = new IMBaseProtocol();
 IMBaseEntity::rtt = IMBaseClient::getNextRTT();

printf("Starting up network thread....\n");
 //Start up the network read thread
 readThread = new bbThread(readFunc,NULL);
printf("Leaving constructor....\n");
}

void IMBaseClient::setup()
{
printf("In setup!\n");
 struct hostent *en = gethostbyname(server_name);
 sa.sin_family=PF_INET;
 sa.sin_addr=*((struct in_addr *)(en->h_addr_list[0]));
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 sa.sin_port=htons(server_port);

 // Set up the multicast socket
 int on=1,ttl = 15;
 unsigned char off = 0;
 msocket = new Msocket(9976);
 s2 = socket(AF_INET, SOCK_DGRAM, 0);
 setsockopt(s2, IPPROTO_IP, IP_TTL, &ttl, sizeof(ttl));
 if (setsockopt(s2, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on)) < 0)
    perror("setsockopt SO_REUSEPORT");
 if (setsockopt(s2, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)) < 0)
    perror("setsockopt SO_REUSEADDR");
 if (setsockopt(s2, IPPROTO_IP, IP_MULTICAST_LOOP, &off, sizeof(off)) <
0)
    perror("setsockopt IP_MULTICAST_LOOP");

 // Set up our tcp socket
 struct in_addr bind_address;
 bind_address.s_addr = htonl(INADDR_ANY);

 struct sockaddr_in sa_client;
 sa_client.sin_family=AF_INET;
 sa_client.sin_addr=bind_address;
 sa_client.sin_port=htons(DEFAULT_CLIENT_PORT);

 ourtcpsocket = socket(PF_INET,SOCK_STREAM,0);
 if (bind(ourtcpsocket,(struct sockaddr *)&sa_client,
                      sizeof(struct sockaddr_in)) == -1)
perror("bind");

 listen(ourtcpsocket,1000);

 en = gethostbyname(server_name);
 clientaddress = *((int *)(en->h_addr_list[0]));

 struct in_addr grpaddr;
 grpaddr.s_addr = clientaddress;
 printf("clientaddress = %s\n",inet_ntoa(grpaddr));
}

IMBaseClient::~IMBaseClient()
{
 printf("IMBaseClient shutting down\n");
 delete readThread;
 printf("Killed readThread.\n");
 delete msocket;
 printf("deleted msocket.\n");
 printf("IMBaseClient shutdown\n");
}

void IMBaseClient::tick()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);
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 struct timeval tt;
 gettimeofday(&tt);
 double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;

 // Go through wait respond queue
 // If something is ready, it means that we must check the server
 multimap<double,IMBaseOutEntity *>::iterator k = delayRespond.begin();
 while(k != delayRespond.end() && (*k).first < tod)
      {
printf("Ask friends failed... must ask server!\n");
       OCTREE_search_server((*k).second);
       delayRespond.erase(k);
       k = delayRespond.begin();
      }

 // Go through delay send queue
 multimap<double,packet_type>::iterator p = delaySend.begin();
 while(p != delaySend.end() && (*p).first < tod)
      {
       sendMcast((*p).second.first,(*p).second.second);
       delaySend.erase(p);
       p = delaySend.begin();
      }

 // Go through delay split check queue
 multimap<double,unsigned int>::iterator q = delaySplit.begin();
 while(q != delaySplit.end() && (*q).first < tod)
      {
       // We erase first because 'OCTREE_Split' can mess with the queue
       unsigned int node_addr = (*q).second;
       delaySplit.erase(q);
       q = delaySplit.begin();

       IMNode *nn;
       if ((nn = tree->findnode(node_addr)) != NULL)
          if (nn->leaf && nn->elist.size() > splitNumEntities)
             OCTREE_Split(nn);
      }

 // Go through delay merge check queue
 multimap<double,unsigned int>::iterator r = delayMerge.begin();
 while(r != delayMerge.end() && (*r).first < tod)
      {
       // We erase first because 'OCTREE_Merge' can mess with the queue
       unsigned int node_addr = (*r).second;
       delayMerge.erase(r);
       r = delayMerge.begin();

       IMNode *nn;
       if ((nn = tree->findnode(node_addr)) != NULL)
          if (!nn->leaf && nn->childrenSize() >= 0 &&
              nn->childrenSize() < mergeNumEntities)
             OCTREE_Merge(nn);
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      }

 //Set simtime based on tod
 if (internal_clock) setTime(tod);

 set<IMBaseOutEntity *,IMBaseEntity::compare>::iterator i;
 set<IMBaseInEntity *,IMBaseEntity::compare>::iterator j;

 //XXXX should we just erase the list and start over every time?
 // This manages the interestingEntities list for inbounds.
 for(j = inlist.begin();j!=inlist.end();j++)
    for(i = outlist.begin();i!=outlist.end();i++)
       {
        float dist2 = ((*i)->pos - (*j)->pos).lengthSqr();
        if (dist2 < (*i)->roi2 && (*i)->interestedIn(*j))
           (*i)->interestingEntities.insert
                 (pair<IMBaseEntity *,float>(*j,dist2));
        else
           {
           (*i)->interestingEntities.erase(*j);
           (*i)->NotinterestedIn(*j);
           }
       }

 // This manages the interestingEntities list for outbounds.
 for(i = outlist.begin();i!=outlist.end();i++)
    {
     if ((*i)->smallest_region < smallest_region)
        smallest_region = (*i)->smallest_region;
     set<IMBaseOutEntity *,IMBaseEntity::compare>::iterator i2 = i;
     for(i2++;i2!=outlist.end();i2++)
        {
         float dist2 = ((*i)->pos - (*i2)->pos).lengthSqr();
         if (dist2 < (*i)->roi2 && (*i)->interestedIn(*i2))
            (*i)->interestingEntities.insert
                  (pair<IMBaseEntity *,float>(*i2,dist2));
         else
            (*i)->interestingEntities.erase(*i2);
         if (dist2 < (*i2)->roi2 && (*i2)->interestedIn(*i))
            (*i2)->interestingEntities.insert
                   (pair<IMBaseEntity *,float>(*i,dist2));
         else
            (*i2)->interestingEntities.erase(*i);
        }
    }

 if (auto_tick)
    {
     for(i = outlist.begin();i!=outlist.end();i++)
        (*i)->tick();

     for(j = inlist.begin();j!=inlist.end();j++)
        (*j)->tick();
    }
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}

void IMBaseClient::
checkin(IMBaseOutEntity *e,unsigned int from,unsigned int to)
{
 static McastPacket p;
 e->sendMoved(p,from,to,from);
 e->sendMoved(p,to,to,from);
}

void IMBaseClient::
sendDelayedMcast(unsigned int send_to,McastPacket &packet,double delay)
{
 struct timeval tt;
 gettimeofday(&tt);
 double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;
 packet_type packetPair(send_to,packet);
 multimap<double,packet_type>::value_type
          valuePair(delay+tod,packetPair);
 delaySend.insert(valuePair);
}

void IMBaseClient::
sendMcast(unsigned int send_to,McastPacket &packet,short port)
{
 struct sockaddr_in sa_mcast;
 sa_mcast.sin_family=AF_INET;
 struct in_addr grpaddr;
 grpaddr.s_addr = send_to;
 sa_mcast.sin_addr=grpaddr;
 sa_mcast.sin_port=htons(port);

 sendto(s2,&packet,sizeof(McastPacket),0,&sa_mcast,sizeof(sa_mcast));
}

void IMBaseClient::
sendPing(unsigned int send_to)
{
 McastPacket packet;
 packet.type=McastPacket::PINGING;
 packet.address=send_to;

 //Send out ping in 30 seconds.
 sendDelayedMcast(send_to,packet,JOIN_DELAY);
}

void IMBaseClient::OCTREE_Merge(IMNode *n)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 struct in_addr grpaddr;
 grpaddr.s_addr = n->region.address;
 printf("Merge %s?\n",inet_ntoa(grpaddr));
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 ServerPacket packet;

 packet.type = ServerPacket::LOCK;
 packet.split.address = n->region.address;

 int lock=0;

 printf("Lock %s?\n",inet_ntoa(grpaddr));
 int s = socket(PF_INET,SOCK_STREAM,0);
 if ((connect(s,&sa,sizeof(struct sockaddr_in)))==-1)
perror("connect");
 write(s,&packet,sizeof(ServerPacket));
 read(s,&lock,sizeof(int));
 close(s);

 if (lock)
    {
     printf("Locked %s\n",inet_ntoa(grpaddr));
     printf("Merging %s on server\n",inet_ntoa(grpaddr));
     packet.type = ServerPacket::MERGE;
     packet.split.address = n->region.address;
     s = socket(PF_INET,SOCK_STREAM,0);
     if ((connect(s,&sa,sizeof(struct sockaddr_in)))==-1)
        perror("connect");
     write(s,&packet,sizeof(ServerPacket));
     read(s,&lock,sizeof(int));
     close(s);

     if (lock)
        {
         printf("Merging %s on mcast\n",inet_ntoa(grpaddr));
         McastPacket mpacket;
         mpacket.type=McastPacket::MERGE;
         mpacket.address=n->region.address;
         for(int i=0;i<8;i++)
            {
             sendMcast(n->child[i]->region.address,mpacket);
             sendDelayedMcast(n->child[i]->region.address,
                              mpacket,JOIN_DELAY);
            }
         handleMerge(n->region.address);
         return;
        }
     else
        {
         printf("Merge failed must have trucated tree tree.\n");

         //artifically make child[0] a branch.
         n->child[0]->leaf = true;
        }
    }

 // Lock was bad. Something is most likly wrong,
 // remove near-future request
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 multimap<double,unsigned int>::iterator q = delayMerge.begin();
 for(;q != delayMerge.end();q++)
    if ( (*q).second == n->region.address )
       {
        delayMerge.erase(q);
        q = delayMerge.begin();
       }
}

void IMBaseClient::OCTREE_Split(IMNode *n)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 struct in_addr grpaddr;
 grpaddr.s_addr = n->region.address;
 printf("Split %s?\n",inet_ntoa(grpaddr));

 ServerPacket packet;

 packet.type = ServerPacket::LOCK;
 packet.split.address = n->region.address;

 int lock=0;

 printf("Lock %s?\n",inet_ntoa(grpaddr));
 int s = socket(PF_INET,SOCK_STREAM,0);
 if ((connect(s,&sa,sizeof(struct sockaddr_in)))==-1)
perror("connect");
 write(s,&packet,sizeof(ServerPacket));
 read(s,&lock,sizeof(int));
 close(s);

 if (lock)
    {
     printf("Locked %s\n",inet_ntoa(grpaddr));
     unsigned int addrs[8];
     if (!MDHCP_getAddresses(8,addrs))
        {
         //Tell server never mind...
        }
     else
        {
         printf("Splitting %s on server\n",inet_ntoa(grpaddr));
         packet.type = ServerPacket::SPLIT;
         packet.split.address = n->region.address;
         for(int i=0;i<8;i++) packet.split.newaddr[i] = addrs[i];
         s = socket(PF_INET,SOCK_STREAM,0);
         if ((connect(s,&sa,sizeof(struct sockaddr_in)))==-1)
            perror("connect");
         write(s,&packet,sizeof(ServerPacket));
         read(s,&lock,sizeof(int));
         close(s);

         if (lock)
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            {
             printf("Splitting %s on mcast\n",inet_ntoa(grpaddr));
             McastPacket mpacket;
             mpacket.type=McastPacket::SPLIT;
             mpacket.address=n->region.address;
             for(i=0;i<8;i++) mpacket.newaddress[i]=addrs[i];
             sendMcast(n->region.address,mpacket);
             sendDelayedMcast(n->region.address,mpacket,JOIN_DELAY);
             handleSplit(n->region.address,addrs);
             return;
            }
        }
    }

 // Lock was bad. Something is mostlikly wrong, remove near-future
request
 multimap<double,unsigned int>::iterator q = delaySplit.begin();
 for(;q != delaySplit.end();q++)
    if ( (*q).second == n->region.address )
       {
        delaySplit.erase(q);
        q = delaySplit.begin();
       }
}

void IMBaseClient::
sendMoved(IMBaseOutEntity *e,McastPacket &mpacket,unsigned int send_to,
          unsigned int to,unsigned int from, short port)
{
 if (to != from)
    {
     IMNode *n = tree->findnode(from);
     if (n)
        if (n->elist.erase(mpacket.newaddress[1]))
           {
            if (n->leaf) n=n->parent;
            if (!n->leaf && n->childrenSize() >= 0 &&
                 n->childrenSize() < mergeNumEntities)
               {
                struct timeval tt;
                gettimeofday(&tt);
                double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;
                double delay = 20.0 + JOIN_DELAY + rand()%
                              (n->childrenSize()?n->childrenSize():1);
                multimap<double,unsigned int>::value_type
                        valuePair(delay+tod,n->region.address);
                delayMerge.insert(valuePair);
               }
           }
     n = tree->findnode(to);
     if (n)
        if (n->elist.insert(mpacket.newaddress[1]).second)
           {
            if (n->leaf && n->elist.size() > splitNumEntities &&
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               (n->region.ext.r/2.0) > e->smallest_region)
               {
                struct timeval tt;
                gettimeofday(&tt);
                double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;
                double delay = 20.0 + JOIN_DELAY +
                               rand()%n->elist.size();
                multimap<double,unsigned int>::value_type
                        valuePair(delay+tod,to);
                delaySplit.insert(valuePair);
               }
           }

    }

 sendMcast(send_to,mpacket,port);
}

//Allocate num multicast addresses from MDHCP server.
//XXXX Currently this is handled by IM server!
bool IMBaseClient::MDHCP_getAddresses(int num,unsigned int *addrs)
{
 ServerPacket packet;

 packet.type = ServerPacket::MALLOC;
 packet.malloc.num = num;

 int s = socket(PF_INET,SOCK_STREAM,0);
 if ((connect(s,&sa,sizeof(struct sockaddr_in)))==-1)
perror("connect");
 write(s,&packet,sizeof(ServerPacket));
 read(s,addrs,sizeof(unsigned int)*num);
 close(s);

 for(int i=0;i<num;i++) if (addrs[i] == 0) return false;
 return true;
}

unsigned int IMBaseClient::
OCTREE_ask_friends(IMBaseOutEntity *e,unsigned int address)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 McastPacket mpacket;
 mpacket.type = McastPacket::QUERY;
 mpacket.address = address;
 mpacket.query.tcpaddress = clientaddress;
 mpacket.query.port = DEFAULT_CLIENT_PORT;
 mpacket.query.x = e->pos[0];
 mpacket.query.y = e->pos[1];
 mpacket.query.z = e->pos[2];
 mpacket.query.r = e->roi;
 sendMcast(address,mpacket);
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 pair<double,IMBaseOutEntity *> p;
 p.first=30;
 p.second = e;
 delayRespond.insert(p);

 return 0;
}

unsigned int IMBaseClient::OCTREE_search_server(IMBaseOutEntity *e)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 static CellRegion region[MAX_READ_REGIONS];
 int s;

 int n;
 ServerPacket packet;

 packet.type = ServerPacket::SEARCH;
 packet.search.address = e->primary_region.address;
 packet.search.r = e->roi;
 packet.search.x = e->pos[0];
 packet.search.y = e->pos[1];
 packet.search.z = e->pos[2];
 s = socket(PF_INET,SOCK_STREAM,0);

 if ((connect(s,&sa,sizeof(struct sockaddr_in)))==-1)
perror("connect");
 write(s,&packet,sizeof(ServerPacket));
 read(s,&n,sizeof(int));
 bigread(s,region,sizeof(CellRegion)*n);
 close(s);
 printf("Got %d regions\n",n);

 if (tree == NULL) tree = new IMNode(region[0]);
 tree->mergeregions(region,n);
 e->primary_region.address = 0;
 e->primary_region.ext.r = 0;
 return OCTREE_find_primary(e,true);
}

// Finds entities primary region
unsigned int IMBaseClient::
OCTREE_find_primary(IMBaseOutEntity *e,bool ask)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 IMNode *tmp;

 //Check to see if we are currently in the correct region.
 //Handles splits, and smallest regions....
 if (e->primary_region.contains(e->pos))
    {
     tmp = tree->findnode(e->primary_region.address);
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     if (tmp)
        {
         if (tmp->leaf)
            return 0;
         else
            {
             if (e->smallest_region > tmp->region.ext.r/2.0)
                return 0;
             else
                tmp = tmp->XYZtonode(e);
            }
        }
    }
 else // Search the tree in memory
    tmp = tree->XYZtonode(e);

 if (!tmp) tmp = tree;
 if (tmp) // If we found an answer
    {
     if (tmp->region.address != 0 && tmp != tree) // Is it a real
region
        {
         unsigned int rval = e->primary_region.address;
         memcpy(&e->primary_region,&tmp->region,sizeof(CellRegion));
         return rval;
        }
     else // It's a fake! (or root of tree...)
        {
         if (tmp->parent) tmp=tmp->parent;
         else { printf("entity primary region in root!\n"); exit(0); }

         for(int f=0;f<8;f++)
            {
             if (tmp->child[f] && tmp->child[f]->region.address != 0)
                {
                 if (ask)
                    return OCTREE_ask_friends(e,
                                       tmp->child[f]->region.address);
                 else
                    return 0;
                }
            }
        }
    }

 printf("You should never see this!!!\n");
 return 0;
}

void IMBaseClient::filter(McastPacket &mpacket,IMBaseInEntity *ng)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 //Does Protocol Exist? O(lg P)
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 IMBaseProtocol *protocol = IMBaseProtocol::
                            findObject(mpacket.moved.module_name);
 if (protocol == NULL)
    {
     printf ("'%s' not loaded... tring!\n",mpacket.moved.module_name);
     bbModule::load(mpacket.moved.module_name,
             mpacket.moved.module_version,0,mpacket.moved.module_url);
     protocol = IMBaseProtocol::findObject(mpacket.moved.module_name);

     if (protocol == NULL)
        {
         bbError << "Could not load protocol module `"
                 << mpacket.moved.module_name << "`!" << endl;
         protocol = base_proto;
        }
    }

 //Does Entity Exist?
 set<IMBaseInEntity *,IMBaseEntity::compare>::iterator i;

 // Yes - an old guy. O(lg N)
 if ((i = inlist.find(ng)) != inlist.end())
    {
     if ((*i)->lastUpdate < mpacket.moved.lastUpdate)
        (*i)->update(mpacket);
    }
 else // No - a new guy O(lg N)
    {
     i = inlist.insert(protocol->new_entity(mpacket)).first;
    }

 // If he is checking out, delete him!
 if (mpacket.address == 0)
    {
     printf("Killing entity...\n");
     IMBaseInEntity *tmp = *i;
     inlist.erase(i);
     protocol->del_entity(tmp);
    }
 else
 //Keep track of number and who is in each region.
 //Atempt to split or merge if needed.
 if ((*i)->primary_region.address != mpacket.address)
    {
     IMNode *n = tree->findnode((*i)->primary_region.address);
     if (n)
        if (n->elist.erase(mpacket.newaddress[1]))
           {
            if (n->leaf) n=n->parent;
            if (!n->leaf && n->childrenSize() >= 0 &&
                 n->childrenSize() < mergeNumEntities)
               {
                struct timeval tt;
                gettimeofday(&tt);
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                double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;
                double delay = 20.0 + JOIN_DELAY + rand()%
                              (n->childrenSize()?n->childrenSize():1);
                multimap<double,unsigned int>::value_type
                        valuePair(delay+tod,n->region.address);
                delayMerge.insert(valuePair);
               }
           }
     n = tree->findnode(mpacket.address);
     if (n)
        if (n->elist.insert(mpacket.newaddress[1]).second)
           {
            if (n->leaf && n->elist.size() > splitNumEntities &&
               (n->region.ext.r/2.0) > smallest_region)
               {
                struct timeval tt;
                gettimeofday(&tt);
                double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;
                double delay = 20.0 + JOIN_DELAY + rand()%
                               n->elist.size();
                multimap<double,unsigned int>::value_type
                         valuePair(delay+tod,mpacket.address);
                delaySplit.insert(valuePair);
               }
           }
    }

}

void IMBaseClient::readFunc(bbThread *,bbData *that)
{
 //XXXX avoid race condition
 if (IMBaseClient::gClient != NULL)
    IMBaseClient::gClient->mcastcheck();
 else
    sleep(0);
}

void IMBaseClient::mcastcheck()
{
 int rval;
 McastPacket mpacket;
 ACE_Handle_Set handle_set;

 handle_set.reset();
 handle_set.set_bit(msocket->get_handle());
 handle_set.set_bit(ourtcpsocket);

 // Time out so thread will unblock.
 ACE_Time_Value t2(1,0);

 if ((rval = ACE_OS::select((ourtcpsocket)+1,handle_set,
      NULL,NULL,&t2)) != 0)
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    {
     if (rval == -1) perror("select");
     else
        if (handle_set.is_set(ourtcpsocket))
           {
            printf("Got a reply to our query!\n");
            int n;
            struct sockaddr sa_client;
            int cs = sizeof(sa_client);
            int s = accept(ourtcpsocket,&sa_client,&cs);
            static CellRegion cells[MAX_READ_REGIONS];
            read(s,&n,sizeof(int));
            bigread(s,cells,sizeof(CellRegion)*n);
            close(s);
            printf("Got %d regions\n",n);
            tree->mergeregions(cells,n);
            // run though delayRespond queue to see if we can
            // take anytthing out!
            multimap<double,IMBaseOutEntity *>::iterator
                     k = delayRespond.begin();
            ACE_Guard<bbMutex> guard(IMBaseClient::gClient-
>tree_mutex);
            while(k != delayRespond.end())
                 {
                  // This message fixed his problem
                  if (OCTREE_find_primary((*k).second,false))
                     {
                      multimap<double,IMBaseOutEntity *>::iterator
                      i = k;
                      i++;
                      delayRespond.erase(k);
                      k = i;
                     }
                 }
           }
        else
           {
            ACE_OS::recvfrom(msocket->get_handle(),(char *)&mpacket,
                             sizeof(McastPacket), 0,0,0);
            switch (mpacket.type)
                   {
                    case McastPacket::MOVED:
                             {
                              static IMBaseInEntity *ng =
                                     new IMBaseInEntity(mpacket);
                              ng->address = mpacket.newaddress[1];
                              filter(mpacket,ng);
                             }
                             break;

                    case McastPacket::PINGING:
                    {
                     ACE_Guard<bbMutex>
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                               guard(IMBaseClient::gClient-
>tree_mutex);
          set<IMBaseOutEntity *,IMBaseEntity::compare>
                               ::iterator i;
                     for(i = outlist.begin();i!=outlist.end();i++)
                     if((*i)->primary_region.address ==
mpacket.address)
                       (*i)->forceSend();

// Remove ping request if we already go one.
 multimap<double,packet_type>::iterator p = delaySend.begin();
 for(;p != delaySend.end(); p++)
    {
     if ((*p).second.first == mpacket.address &&
         (*p).second.second.type == McastPacket::PINGING)
        {
         delaySend.erase(p);
         printf("Ping request removed..\n");
         break;
        }
    }

                             }
                             break;

                    case McastPacket::MERGE:
                             {
                              struct in_addr grpaddr;
                              grpaddr.s_addr = mpacket.address;
                              handleMerge(mpacket.address);
                             }
                             break;

                    case McastPacket::SPLIT:
                       {
                        struct in_addr grpaddr;
                        grpaddr.s_addr = mpacket.address;

handleSplit(mpacket.address,mpacket.newaddress);
                       }
                       break;

                    case McastPacket::QUERY:
                             {
                              handleQuery(mpacket);
                             }
                             break;

                    default: printf("Unknown message from socket!\n");
                   }
           }
    }
}
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// Joe blow wants a region intersection.
void IMBaseClient::handleQuery(McastPacket &mp)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);
 printf("We got a Query!\n");

 static CellRegion cells[MAX_READ_REGIONS];

 int num = tree->searchXYZR(mp.query.x,mp.query.y,mp.query.z,
                            mp.query.r,cells);

 if (num == 0) return; // We don't know the answer

 //Connect to client needing help via tcp
 struct sockaddr_in tmpsa;
 struct hostent *en = gethostbyaddr(&mp.query.tcpaddress,4,AF_INET);
 tmpsa.sin_family=PF_INET;
 tmpsa.sin_addr=*((struct in_addr *)(en->h_addr_list[0]));
 tmpsa.sin_port=htons((short)mp.query.port);

 int s = socket(PF_INET,SOCK_STREAM,0);
 if ((connect(s,&tmpsa,sizeof(struct sockaddr_in)))==-1)
     perror("connect");
 write(s,&num,sizeof(int));
 bigwrite(s,cells,sizeof(CellRegion)*num);
 close(s);

 printf("Sent them back %d regions!\n",num);
}

void IMBaseClient::handleMerge(unsigned int address)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 IMNode *parent = tree->findnode(address);
 if (!parent) return;
 if (parent->leaf) return;
 for(int x=0;x<8;x++)
    if (parent->child[x])
       if (!parent->child[x]->leaf) return;

 printf("Address %d has been merged!\n",address);

 set<IMBaseOutEntity *,IMBaseEntity::compare>::iterator i
 for(I = outlist.begin();i!=outlist.end();i++)
    for(x=0;x<8;x++)
       if (parent->child[x])
          if ((*i)->primary_region.address ==
              parent->child[x]->region.address)
             {
              memcpy(&(*i)->primary_region,&parent->region,
                     sizeof(CellRegion));
              checkin((*i),parent->child[x]->region.address,
                      (*i)->primary_region.address);
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             }

 parent->mergetree();

 parent->elist.clear();
}

void IMBaseClient::
handleSplit(unsigned int address,unsigned int newaddress[8])
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 IMNode *parent = tree->findnode(address);
 if (!parent) return;
 if (!parent->leaf) return;

 printf("Address %d has been split!(%d)\n",address,parent->leaf);

 parent->splittree(newaddress);

 parent->elist.clear();

 set<IMBaseOutEntity *,IMBaseEntity::compare>::iterator i
 for(i = outlist.begin();i!=outlist.end();i++)
    if ((*i)->primary_region.address == address)
       {
        OCTREE_find_primary(*i,true);
        if ((*i)->primary_region.address != address)
           {
            checkin((*i),address,(*i)->primary_region.address);
           }
       }
}

12. baseInEntity.c++

#include "IMBaseEntity.h"

int IMBaseEntity::rtt;
char IMBaseEntity::module_name[64] = "IMBaseClientModule";
char IMBaseEntity::module_url[192] = "";
float IMBaseEntity::module_version = 0.894;

#include "IMBaseClient.h"
#include "IMBaseInEntity.h"

void IMBaseInEntity::update(McastPacket &mpacket)
{
 memcpy(&lastPacket,&mpacket,sizeof(McastPacket));
 npsVec3f newpos(mpacket.moved.x,mpacket.moved.y,mpacket.moved.z);
 npsVec3f newvel(mpacket.moved.vx,mpacket.moved.vy,mpacket.moved.vz);

 oldoldpos = oldpos;
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 oldpos = newpos;

 oldvel = vel;
 vel = newvel;

 lastlastUpdate = lastUpdate;
 lastUpdate = mpacket.moved.lastUpdate;
}

void IMBaseInEntity::tick()
{
 dt = IMBaseClient::gClient->getTime()-lastUpdate;
 pos = oldpos + vel * dt;

 if (dt < smooth_time)
    {
     double dt2 = IMBaseClient::gClient->getTime()-lastlastUpdate;
     float frac = dt/smooth_time;
     pos = pos * frac + (oldoldpos + oldvel * dt2) * (1.0f-frac);
    }
}

13. baseNode.c++

#include "IMSocket.h"
#include "IMBaseNode.h"
#include "IMBaseClient.h"
#include "IMBaseInEntity.h"
#include "IMBaseOutEntity.h"

void IMNode::mergeregions(CellRegion *regions)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 int i = 0;
 IMNode *p;

 p = findnode(regions[0].address);
 if (p != NULL) p->region.below = regions[0].below;
 else printf("Error.. new tree begins outside old\n");

 while(p != NULL && i < n-1)
      {
       i++;
       IMNode *c = p->findnode(regions[i].address);

       if (c == NULL) c = p->addtotree(regions[i]);
       c->region.below = regions[i].below;
       p->region.below -= (c->region.below + 1);

       if (c->region.below) p = c;
       while(p != NULL && p->region.below == 0) p = p->parent;
      }
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 fleshtree();
}

//Fills children with '0' regions
//If entity is interested in '0' region, it means that
//he needs more octree info
void IMNode::fleshtree()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 unsigned char mask = 0x0;
 int i;

 for(i=0;i<8;i++)
    if (child[i])
       {
        child[i]->fleshtree();
        mask |=(0x1<<(((char)(child[i]->region.ext.x <
region.ext.x))<<2
                    | ((char)(child[i]->region.ext.y <
region.ext.y))<<1
                    | ((char)(child[i]->region.ext.z <
region.ext.z))));
       }

 if (mask != 0x0 && mask != 0xff)
    {
     for(int x=0; x < 8; x++)
        {
         if ((0x1<<x) & mask) continue;

         CellRegion r;
         r.address = 0;
         r.ext.r = region.ext.r/2.0;
         r.ext.x = 0.0;
         r.ext.y = 0.0;
         r.ext.z = 0.0;
         for(i=0;i<8;i++)
            {
             if (child[i] == NULL)
                {
                 child[i] = new IMNode(r);
                 child[i]->parent = this;
                 child[i]->region.ext.x = region.ext.x +
                           r.ext.r*((0x4 & x)?-1:1);
                 child[i]->region.ext.y = region.ext.y +
                           r.ext.r*((0x2 & x)?-1:1);
                 child[i]->region.ext.z = region.ext.z +
                           r.ext.r*((0x1 & x)?-1:1);
                 break;
                }
            }
        }
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    }
}

IMNode *IMNode::findnode(unsigned int address)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 if (region.address == address) return this;
 for(int i=0; i<8; i++)
    {
     if (child[i])
        {
         struct IMNode *rval = child[i]->findnode(address);
         if (rval != NULL) return rval;
        }
    }
 return NULL;
}

int IMNode::childrenSize()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 int res = 0;
 for(int i=0;i<8;i++)
    {
     if (child[i])
        {
         if (!child[i]->leaf) return -1;
         res += child[i]->elist.size();
        }
     else return -1;
    }
 return res;
}

void IMNode::splittree(unsigned int newaddr[8])
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 CellRegion r;
 r.ext.r = region.ext.r/2.0;

 r.ext.x = region.ext.x - r.ext.r;
 r.ext.y = region.ext.y - r.ext.r;
 r.ext.z = region.ext.z - r.ext.r;
 r.address = newaddr[0];
 addtotree(r);

 r.ext.x = region.ext.x - r.ext.r;
 r.ext.y = region.ext.y - r.ext.r;
 r.ext.z = region.ext.z + r.ext.r;
 r.address = newaddr[1];
 addtotree(r);
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 r.ext.x = region.ext.x - r.ext.r;
 r.ext.y = region.ext.y + r.ext.r;
 r.ext.z = region.ext.z - r.ext.r;
 r.address = newaddr[2];
 addtotree(r);

 r.ext.x = region.ext.x - r.ext.r;
 r.ext.y = region.ext.y + r.ext.r;
 r.ext.z = region.ext.z + r.ext.r;
 r.address = newaddr[3];
 addtotree(r);

 r.ext.x = region.ext.x + r.ext.r;
 r.ext.y = region.ext.y - r.ext.r;
 r.ext.z = region.ext.z - r.ext.r;
 r.address = newaddr[4];
 addtotree(r);

 r.ext.x = region.ext.x + r.ext.r;
 r.ext.y = region.ext.y - r.ext.r;
 r.ext.z = region.ext.z + r.ext.r;
 r.address = newaddr[5];
 addtotree(r);

 r.ext.x = region.ext.x + r.ext.r;
 r.ext.y = region.ext.y + r.ext.r;
 r.ext.z = region.ext.z - r.ext.r;
 r.address = newaddr[6];
 addtotree(r);

 r.ext.x = region.ext.x + r.ext.r;
 r.ext.y = region.ext.y + r.ext.r;
 r.ext.z = region.ext.z + r.ext.r;
 r.address = newaddr[7];
 addtotree(r);
}

void IMNode::mergetree()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 leaf = true;
 for (int i =0;i<8;i++)
     if (child[i])
        {
         //XXX is there a quicker way!?
         set<IMBaseOutEntity *>::iterator
         ee = IMBaseClient::gClient->outlist.begin();
         for(;ee != IMBaseClient::gClient->outlist.end(); ee++)
            (*ee)->current_nodes.erase(child[i]);

         delete child[i];
         child[i] = 0;
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        }
}

bool IMNode::remfromtree()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 ref--;

 if (ref > 0) return false;

 IMBaseClient::gClient->msocket->unsubscribe(region.address);

 set<unsigned int>::iterator i;
 for(i = elist.begin();i != elist.end(); i++)
    {
     IMBaseInEntity ng;
     ng.address = *i;
     set<IMBaseInEntity *>::iterator i =
         IMBaseClient::gClient->inlist.find(&ng);
     if (i != IMBaseClient::gClient->inlist.end())
        {
         IMBaseClient::gClient->inlist.erase(i);
         if (!(*i)->subscribed()) delete *i;
        }
    }

 // Replace us with a empty node.
 region.address = 0;

 return true;
}

void IMNode::addtotree()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 ref++;
}

IMNode *IMNode::addtotree(CellRegion r)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 // See if it is already there
 for(int x=0;x<8;x++)
    {
     if (child[x] != NULL && child[x]->region.address == r.address)
       return child[x];
    }

 // See if we can replace an empty node
 for(x=0;x<8;x++)
    if (child[x] != NULL)
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       {
    if (child[x]->region.ext.x == r.ext.x &&
        child[x]->region.ext.y == r.ext.y &&
        child[x]->region.ext.z == r.ext.z)
       {
    if (child[x]->region.address == 0)
       {
        leaf = false;
        child[x]->region.address = r.address;

if (IMBaseClient::gClient->msocket->
          subscribe(child[x]->region.address))
           IMBaseClient::gClient->sendPing(child[x]->region.address);
        return child[x];
       }
    else
       {
        leaf = false;
        child[x]->region.address = r.address;

  if (IMBaseClient::gClient->msocket->
           subscribe(child[x]->region.address))
           IMBaseClient::gClient->sendPing(child[x]->region.address);
        return child[x];
       }
       }
       }

 // If not, see if we can just stick it in the tree
 if (x==8)
 for(x=0;x<8;x++)
    if (child[x] == NULL)
       {
        child[x] = new IMNode(r);
        child[x]->parent = this;
        leaf = false;

  if (IMBaseClient::gClient->msocket->
            subscribe(child[x]->region.address))
           IMBaseClient::gClient->sendPing(child[x]->region.address);
        return child[x];
       }

 // This should never happen!
 printf("Error! No room in tree!!! (this should never happen!)\n");
 return NULL;
}

IMNode *IMNode::XYZtonode(IMBaseOutEntity *e)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 if (region.contains(e->pos) && e->smallest_region < region.ext.r)
    {
     for(int i=0;i<8;i++)
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        {
         if (child[i])
            {
             IMNode *rval = child[i]->XYZtonode(e);
             if (rval) return rval;
            }
        }
     return this;
    }
 return NULL;
}

int IMNode::searchXYZR(double x,double y,double z,double r,CellRegion
*cells,IMNode **nodes)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 //Always return parent.
 CellRegion *origregs = cells;
 cells[0].ext.x = region.ext.x;
 cells[0].ext.y = region.ext.y;
 cells[0].ext.z = region.ext.z;
 cells[0].ext.r = region.ext.r;
 cells[0].address = region.address;
 cells = &cells[1];

 if (nodes)
    {
     nodes[0] = this;
     nodes = &nodes[1];
    }
 int count = 1;

 // Out of the eight child, which do we intersect?
 for(int i=0;i<8;i++)
    {
     if (child[i])
        {
         if (child[i]->region.contains(npsVec3f(x,y,z),r))
            {
             int c = child[i]->searchXYZR(x,y,z,r,cells,nodes);
             cells = &cells[c];
             if (nodes) nodes = &nodes[c];
             count += c;
            }
        }
    }

 //Set number of regions below this one.
 origregs->below = count-1;

 //Return the number of regions.
 return count;
}
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14. baseOutEntity.c++

#include "IMBaseClient.h"
#include "IMBaseOutEntity.h"
#include "IMBaseNode.h"

#include "vector.h"

IMBaseOutEntity::IMBaseOutEntity(npsVec3f p, float search_r, float dia,
                                 float vel, float timeout)
{
 roi = search_r;
 roi2 = roi*roi;
 primary_region.address = 0;
 address = 0;

 AvgBoundDia(dia);
 AvgMaxVel(vel);

 dead_timeout = timeout;
 oldvel.makeNull();
 oldpos = pos = p;
 oldvel[0] = 0.0;  oldvel[1] = 0.0;  oldvel[2] = 0.0;
 obtain_address();
 IMBaseClient::gClient->addOutEntity(this);
 lastTick = IMBaseClient::gClient->getTime();
}

IMBaseOutEntity::IMBaseOutEntity(npsVec3f p,float search_r)
{
 roi = search_r;
 roi2 = roi*roi;
 primary_region.address = 0;
 address = 0;

 AvgBoundDia(1.0);
 AvgMaxVel(1.0);

 dead_timeout = 120.0;
 oldvel.makeNull();
 oldpos = pos = p;
 oldvel[0] = 0.0;  oldvel[1] = 0.0;  oldvel[2] = 0.0;
 obtain_address();
 lastTick = IMBaseClient::gClient->getTime();
 IMBaseClient::gClient->addOutEntity(this);
}

IMBaseOutEntity::~IMBaseOutEntity()
{
 IMBaseClient::gClient->remOutEntity(this);
 unsigned int old = primary_region.address;
 primary_region.address = 0;
 checkin(old);
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}

void IMBaseOutEntity::obtain_address()
{
 IMBaseClient::gClient->MDHCP_getAddresses(1,&address);
 IMBaseClient::gClient->OCTREE_search_server(this);
}

void IMBaseOutEntity::checkin(unsigned int old)
{
 IMBaseClient::gClient->checkin(this,old,primary_region.address);
}

void IMBaseOutEntity::sendMoved(McastPacket &mpacket,unsigned int
send_to,unsigned int to,unsigned int from, short port)
{
 mpacket.type=McastPacket::MOVED;
 mpacket.address=to;
 mpacket.newaddress[0]=from;
 mpacket.newaddress[1]=address;
 mpacket.moved.x = pos[0];
 mpacket.moved.y = pos[1];
 mpacket.moved.z = pos[2];
 mpacket.moved.vx = vel[0];
 mpacket.moved.vy = vel[1];
 mpacket.moved.vz = vel[2];
 mpacket.moved.lastUpdate = lastUpdate;
 mpacket.moved.module_version = protocol_version();
 strcpy(mpacket.moved.module_name,protocol_name());
 strcpy(mpacket.moved.module_url,protocol_url());

 IMBaseClient::gClient->sendMoved(this,mpacket,send_to,to,from,port);
}

unsigned int IMBaseOutEntity::find_primary()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 set<IMNode *> new_nodes;

 static CellRegion cells[1024];
 static IMNode *nodes[1024];
 int num = IMBaseClient::gClient->tree->
           searchXYZR(pos[0],pos[1],pos[2],roi,cells,nodes);
 bool zr = false;
 for(int i=0;i<num;i++)
    {
     if (nodes[i])
        {
         if (nodes[i]->region.address != 0)
            new_nodes.insert(nodes[i]);
         else zr = true;
        }
    }
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 if (zr)
    {
     printf("Found '0' Region. Must Search\n");
     IMBaseClient::gClient->OCTREE_search_server(this);
    }

 vector<IMNode *> add_nodes(new_nodes.size(),NULL);
 vector<IMNode *>::iterator a = add_nodes.begin();
 a = set_difference(new_nodes.begin(),new_nodes.end(),
                    current_nodes.begin(),current_nodes.end(),a);
 for(a = add_nodes.begin();a != add_nodes.end(); a++)
    if (*a)
       {
        (*a)->addtotree();
        current_nodes.insert(*a);
       }

 vector<IMNode *> old_nodes(current_nodes.size(),NULL);
 vector<IMNode *>::iterator o = old_nodes.begin();
 o = set_difference(current_nodes.begin(),current_nodes.end(),
                    new_nodes.begin(),new_nodes.end(),o);
 for(o = old_nodes.begin() ;o != old_nodes.end(); o++)
    if (*o)
       {
        (*o)->remfromtree();
        current_nodes.erase(*o);
       }

 return IMBaseClient::gClient->OCTREE_find_primary(this,true);
}

void IMBaseOutEntity::Update_dt()
{
 dt = IMBaseClient::gClient->getTime() - lastTick;
}

void IMBaseOutEntity::forceSend()
{
 double time = IMBaseClient::gClient->getTime();
 lastUpdate = time;
 oldvel = vel;
 oldpos = pos;
 static McastPacket p;
 this->sendMoved(p,primary_region.address,primary_region.address,0);
}

void IMBaseOutEntity::tick()
{
 double time = IMBaseClient::gClient->getTime();
 double big_dt = time-lastUpdate;

 int oldcell = find_primary();
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 npsVec3f ghostpos = oldpos + oldvel * big_dt;
 vel = (pos - lastPos)/dt;

 if ((ghostpos - pos).lengthSqr() > dead_thresh ||
      big_dt > dead_timeout || oldcell)
    {
     lastUpdate = time;
     oldvel = vel;
     oldpos = pos;
     static McastPacket p;
     if (oldcell) checkin(oldcell);
     else this->sendMoved(p,primary_region.address,
                          primary_region.address,0);
    }

 lastPos = pos;
 lastTick = time;
}

void IMBaseOutEntity::calc_smallest_region()
{
 smallest_region = IMBaseClient::gClient->k1 * (avg_bound_dia +
                    avg_max_vel*IMBaseClient::gClient-
>MinTimeInRegion);

 printf("Smallest region now %f meters on a side.\n",smallest_region);
 dead_thresh =  IMBaseClient::gClient->k2 * smallest_region;

 printf("dead_thresh now %f meters.\n",dead_thresh);
 dead_thresh *= dead_thresh;
}

15. baseProtocol.c++

#include "IMBaseClient.h"
#include "IMBaseProtocol.h"
#include "IMBaseInEntity.h"

IMBaseInEntity *IMBaseProtocol::new_entity(McastPacket &mpacket)
{
 return new IMBaseInEntity(mpacket);
}

void IMBaseProtocol::del_entity(IMBaseInEntity *e)
{
 delete e;
}

void IMBaseProtocol::setup(void)
{
}
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APPENDIX B. FISH ENTITY SOURCE CODE

A. INTRODUCTION

This appendix contains source-code for Bamboo module “IMFishModule” which

contains the “fish” entities used within the experiment described in Chapter V, and the

module “FishClient” which controlled 225 fish. For other examples on how to create and

use protocol modules using the Three-Tiered interest management system see the

NPSNET-V website (http://npsnet.org/~npsnet/v).

B. IMFISHMODULE

1. fishEntity.h

#ifndef _FISHENTITY
#define _FISHENTITY

#include "npsQuaternion.h"

class FishEntity
{
 protected:

   npsQuaternion orien;      // orientation

 public:

   static int rtt;
   static char module_name[64];
   static char module_url[192];
   static float module_version;

   npsVec3f dir;

   enum FishSize
   {
    FISH_SMALL,
    FISH_MEDIUM,
    FISH_LARGE,
    FISH_NOT_A_SIZE
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   } size;
};

#endif

2. fishInEntity.h

#ifndef _FISHINENTITY
#define _FISHINENTITY

#include "IMPacket.h"
#include "fishEntity.h"
#include "IMBaseInEntity.h"

class FishInEntity : public IMBaseInEntity, public FishEntity
{
   npsQuaternion oldorien;
   npsQuaternion neworien;

 public:

   virtual int   runtime_type()     {return FishEntity::rtt;}
   virtual char *protocol_name()    {return FishEntity::module_name;}
   virtual char *protocol_url()     {return FishEntity::module_url;}
   virtual float protocol_version() {return
FishEntity::module_version;}

   FishInEntity(McastPacket &mpacket) : IMBaseInEntity(mpacket)
               { size=FISH_NOT_A_SIZE;update(mpacket); }

   virtual void update(McastPacket &mpacket);

   virtual void tick();

   virtual bool subscribe(IMBaseEntity *e);
   virtual bool unsubscribe(IMBaseEntity *e);
};

#endif

3. fishOutEntity.h

#ifndef _FISHOUTENTITY
#define _FISHOUTENTITY

#include <math.h>

#include "fishEntity.h"
#include "IMBaseOutEntity.h"

inline npsVec3f calcPos(float p,float r,npsVec3f c,npsVec3f n)
{
 npsVec3f np(r * sin(p) + c[0],c[1],r * cos(p) + c[2]);
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 return np;
}

class FishOutEntity : public IMBaseOutEntity, public FishEntity
{
 private:

   npsVec3f norm; // Normal of plane
   npsVec3f cent; // Center of circle
   float radius;  // Radius of circle
   float phi;     // Current Angle (rads)

   // Per entity high quality dead reckoning
   double last_fish_Update;
   npsVec3f old_fish_vel;
   npsVec3f old_fish_pos;

 public:
   virtual bool interestedIn(IMBaseEntity *e);
   virtual void NotinterestedIn(IMBaseEntity *e);

   virtual int   runtime_type()     { return FishEntity::rtt; }
   virtual char *protocol_name()    { return FishEntity::module_name; }
   virtual char *protocol_url()     { return FishEntity::module_url; }
   virtual float protocol_version() { return
FishEntity::module_version; }

   virtual void sendMoved(McastPacket &mpacket,unsigned int send_to,
                          unsigned int to,unsigned int from,
                          short port = 9876);

   FishOutEntity(FishSize s,float search_r,float p,float r,
                 npsVec3f c,npsVec3f n);
   ~FishOutEntity();

   virtual void tick();// Update Entity
};

#endif

4. fishProtocol.h

#ifndef __FISHPROTOCOL__
#define __FISHPROTOCOL__

#include "bbModule.h"
#include "fishInEntity.h"
#include "IMBaseProtocol.h"
#include "IMSocket.h"

class bbThread;
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class FishProtocol : public IMBaseProtocol
{
 private:
   bool cosmo;

   static void fish_loop(bbThread *,void *);

 public:
   Msocket *msocket;

   FishProtocol() : IMBaseProtocol("IMFishProtocolModule") {setup();}
   FishProtocol(const char *name) : IMBaseProtocol(name) {setup();}

   virtual void setup(void);

   virtual IMBaseInEntity *new_entity(McastPacket &packet)
   {
       return new FishInEntity(packet);
   }

   virtual void del_entity(IMBaseInEntity *e)
   {
       delete (FishInEntity *)e;
   }
};

#endif

5. fishInEntity.c++

#include "fishInEntity.h"
#include "fishProtocol.h"

void FishInEntity::update(McastPacket &mpacket)
{
 oldorien = neworien;
 npsVec3f forward(0.0,0.0,-1.0);
 neworien.makeFromVecs(forward, npsVec3f(mpacket.moved.vx,
                       mpacket.moved.v, mpacket.moved.vz));

 size = (FishSize)mpacket.moved.protocol_reserved[0];

 IMBaseInEntity::update(mpacket);
}

void FishInEntity::tick()
{
 IMBaseInEntity::tick();

 if (dt < smooth_time)
    {
     float frac = dt/smooth_time;
     orien.slerp(oldorien,neworien,frac,0);
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    }
 else orien = neworien;
}

bool FishInEntity::subscribe(IMBaseEntity *e)
{
 static FishProtocol *protocol =
              (FishProtocol
*)FishProtocol::findObject(protocol_name());

 if (!IMBaseInEntity::subscribe(e)) return false;
 protocol->msocket->subscribe(address);
 return true;
}

bool FishInEntity::unsubscribe(IMBaseEntity *e)
{
 static FishProtocol *protocol =
              (FishProtocol
*)FishProtocol::findObject(protocol_name());

 if (!IMBaseInEntity::unsubscribe(e)) return false;
 if (subscribed()) return true;

 protocol->msocket->unsubscribe(address);
 return true;
}

6. fishOutEntity.c++

#include <math.h>

#include "IMBaseClient.h"
#include "fishOutEntity.h"
#include "fishInEntity.h"

FishOutEntity::FishOutEntity(FishSize s,float search_r,float p,
                            float r,npsVec3f c,npsVec3f n) :
               IMBaseOutEntity(calcPos(p,r,c,n),search_r,0.3,5,120.0)
{
 norm = n;
 cent = c;
 radius = r;
 phi = p;

 size = s;
 // Init direction
 if (dir[0] == 0 && dir[1] == 0 && dir[2] == 0)
    {
     dir[0] = 1.0;
     dir[1] = 1.0;
     dir[2] = 1.0;
     dir.normalize();
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    }
}

bool FishOutEntity::interestedIn(IMBaseEntity *e)
{
 // We only like fish that are our size
 if (e->runtime_type() == FishEntity::rtt)
{
 if (e->mode() == INBOUND)
    {
     if (((FishInEntity *)e)->size == size)
        {
         if (!((FishInEntity *)e)->subscribed())
             ((FishInEntity *)e)->subscribe(this);
         return true;
        }
    }
 else
    {
     if (((FishOutEntity *)e)->size == size)
         return true;
    }
}

 if (e->mode() == INBOUND)
    if (((FishInEntity *)e)->subscribed())
       ((FishInEntity *)e)->unsubscribe(this);

 return false;
}

void FishOutEntity::NotinterestedIn(IMBaseEntity *e)
{
 if (e->runtime_type() == FishEntity::rtt)
    if (e->mode() == INBOUND)
       if (((FishInEntity *)e)->subscribed())
          ((FishInEntity *)e)->unsubscribe(this);
}

void FishOutEntity::tick()
{
 // Default speed...
 static float fish_vel = 5;

 IMBaseOutEntity::Update_dt();

 int num_inter = interestingEntities.size();
 if (num_inter)
    {
     map<IMBaseEntity *,float,IMBaseEntity::compare>::iterator i;

     //Calculated intersting things about intersting entities
     int numclose=0;
     npsVec3f pos_avg(0,0,0), dir_avg(0,0,0), avoid_avg(0,0,0);
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for(i=interestingEntities.begin();i!=interestingEntities.end();i++)
        {
         // Calculate group average position
         pos_avg = pos_avg + (*i).first->pos;

         // Calculate group average heading
         dir_avg = dir_avg + ((FishEntity *)(*i).first)->dir;

         // Calculate average avoidence heading
         float d2 = (*i).second;
         if (d2 < (20*20))
            {
             // Directly away
             npsVec3f dv = pos - (*i).first->pos;
             avoid_avg = avoid_avg + dv;
             numclose++;
            }
        }

     // Head toward Average position of interesting entities
     pos_avg = pos_avg / (float)num_inter;
     npsVec3f toAvg = pos_avg - pos;

     // Keep distance from other entities.
     if (numclose) avoid_avg = avoid_avg / (float)numclose;

     // Head in avg direction of entities
     dir_avg = dir_avg / (float)num_inter;

     // Merge weighted headings: This is our goal heading!
     npsVec3f goal = dir_avg * 0.35 + toAvg * 0.15 + avoid_avg * 0.5;
     goal.normalize();
     npsVec3f diff = (goal - dir);

     // At most 30deg / sec
     float len = diff.length();
     float max = (0.33 * dt);
     if (len > max) diff = diff * max / len;

     // Nudge our heading
     dir = dir + diff;
     dir.normalize();
    }

 // Update our position.
 pos = pos + dir * fish_vel * dt;

 // Keep them in 1km x 30 x 1km box
 if (pos[0] > 500) { pos[0] = 500; dir[0] = -dir[0];}
 if (pos[1] > 0) { pos[1] = 0; dir[1] = -dir[1];}
 if (pos[2] > 500) { pos[2] = 500; dir[2] = -dir[2];}
 if (pos[0] < -500) { pos[0] = -500; dir[0] = -dir[0];}
 if (pos[1] < -30) { pos[1] = -30; dir[1] = -dir[1];}
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 if (pos[2] < -500) { pos[2] = -500; dir[2] = -dir[2];}

 //Do rest of update
 IMBaseOutEntity::tick();

 // Send out per entity mcast based on small thresholds
 double time = IMBaseClient::gClient->getTime();
 double big_dt = time-last_fish_Update;

 npsVec3f ghostpos = old_fish_pos + old_fish_vel * big_dt;
 if ((ghostpos - pos).lengthSqr() > 1.0 || big_dt > 5.0)
    {
     last_fish_Update = time;
     old_fish_vel = vel;
     old_fish_pos = pos;
     static McastPacket p;
     sendMoved(p,address,address,0,9090);
    }
}

void FishOutEntity::sendMoved(McastPacket &mpacket,unsigned int
send_to,unsigned int to,unsigned int from,short port)
{
 mpacket.moved.protocol_reserved[0] = (char)size;
 IMBaseOutEntity::sendMoved(mpacket,send_to,to,from,port);
}

FishOutEntity::~FishOutEntity()
{
 IMBaseClient::gClient->remOutEntity(this);
 unsigned int old = primary_region.address;
 primary_region.address = 0;
 checkin(old);
}

7. fishProtocol.c++

#include "IMBaseClient.h"
#include "fishEntity.h"
#include "fishProtocol.h"

#include "statBaseClient.h"
#include "stat_recorder.h"

#include "bbThread.h"

int FishEntity::rtt;
char FishEntity::module_name[64] = "IMFishProtocolModule";
char FishEntity::module_url[192] = "";
float FishEntity::module_version = 0.894;

extern "C"
{
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 static FishProtocol *proto = NULL;
 static bbThread *loop = NULL;

 bool initFunc(void)
 {
  proto = new FishProtocol();
  FishEntity::rtt = IMBaseClient::getNextRTT();
  return true;
 }

 bool exitFunc(void)
 {
  delete proto;
  delete loop;
  return true;
 }
}

void FishProtocol::fish_loop(bbThread *,void *)
{
 static McastPacket mpacket;
 static IMBaseInEntity *ng = new IMBaseInEntity(mpacket);
 static set<IMBaseInEntity *,IMBaseEntity::compare>::iterator i;
 static stat_recorder *pps =
bbModule::findObject("IMStatClientModule")?
            (((IMStatClient*)IMBaseClient::gClient)-
>pps_recorder):NULL;

 ACE_OS::recvfrom(proto->msocket->get_handle(),(char *)&mpacket,
                  sizeof(McastPacket), 0,0,0);
 if (pps) pps->record_count();
 ng->address = mpacket.newaddress[1];

 if ((i = IMBaseClient::gClient->inlist.find(ng)) ==
      IMBaseClient::gClient->inlist.end())
     return;

 // Update his packet unless we have a newer update
 if ((*i)->lastUpdate < mpacket.moved.lastUpdate)
     ((FishInEntity *)(*i))->update(mpacket);
}

void FishProtocol::setup(void)
{
 cosmo = bbModule::findObject("npsCosmo3dModule")?true:false;

 msocket = new Msocket(9090);

 //Spawn fish network thread.
 loop = new bbThread(fish_loop);
}
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C. FISHCLIENT

1. client.c++

#include<stdio.h>
#include<stdlib.h>

#include "bbThread.h"
#include "bbCommandLine.h"

#include "IMBaseClient.h"
#include "fishOutEntity.h"

#define NUM_ENTITY 225

bbThread *tickThread;
FishOutEntity *ent[NUM_ENTITY];

extern "C"
{
void tickFunc(bbThread *thread, void *data)
{
 IMBaseClient::gClient->tick();
}

void runme()
{
 //We decide what type of Client the global one is!
 IMBaseClient::gClient = new IMBaseClient();

 const char *myname = bbCommandLine::getModule(1);

 npsVec3f c((float)atoi(bbCommandLine::getModuleArg(myname,0)+1),
            (float)atoi(bbCommandLine::getModuleArg(myname,1)+1),
            (float)atoi(bbCommandLine::getModuleArg(myname,2)+1));

 npsVec3f n(0.0,1.0,0.0);
 float r,p;
 for(int i=0;i<NUM_ENTITY;i+=3)
    {
     r = rand()%100;
     p = (rand()%628)/100.0;
     ent[i] = new
FishOutEntity(FishOutEntity::FISH_SMALL,35.0,p,r,c,n);

     r = rand()%100;
     p = (rand()%628)/100.0;
    ent[i+1]=new
FishOutEntity(FishOutEntity::FISH_MEDIUM,35.0,p,r,c,n);
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     r = rand()%100;
     p = (rand()%628)/100.0;
     ent[i+2]=new
FishOutEntity(FishOutEntity::FISH_LARGE,35.0,p,r,c,n);
    }

 tickThread = new bbThread(tickFunc,NULL);
}

void killme()
{
 printf("Unloading fish test module.\n");
 delete tickThread;
 printf("Killed tick thread\n");
 for(int c=0;c<NUM_ENTITY;c++)
    {
     delete ent[c];
    }
 printf("deleted Entities\n");
 delete IMBaseClient::gClient;
 printf("Killed gClient\n");
 printf("Unloaded boid test module.\n");
}

}
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APPENDIX C. BROADCAST SYSTEM SOURCE CODE

A. INTRODUCTION

This appendix contains source code for the broadcast-based filtering client used in

the experiment described in Chapter V. This implementation was only used for

comparisons against the Three-Tier system, and is only provided here for completeness.

B. BROADCAST CLIENT

1. IMBaseClient.h

#ifndef _IMBASECLIENT
#define _IMBASECLIENT
#include <unistd.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#include <net/if.h>
#include <net/soioctl.h>
#include <arpa/inet.h>

#include <multimap.h>
#include <set.h>
#include "bbMutex.h"
#include "IMBaseEntity.h"
#include "IMBaseOutEntity.h"

//Forward declare classes instead of including them
//This saves LOTS of memory when using Bamboo modules
class bbThread;
class Msocket;
class IMBaseInEntity;
class IMBaseProtocol;
class IMNode;

class IMBaseClient
{
 public:
   static  void readFunc(bbThread *, bbData *);
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   virtual void mcastcheck();

   bbMutex inlistLock;
 public:

   int bigread(int fd,void *buf,int num)
   {
    int cnt = 0;
    while(cnt < num && cnt != -1)
          cnt += read(fd,(char *)buf+cnt,num-cnt);
    return cnt;
   }

   int bigwrite(int fd,void *buf,int num)
   {
    int cnt = 0;
    while(cnt < num && cnt != -1)
          cnt += write(fd,(char *)buf+cnt,num-cnt);
    return cnt;
   }

   int s2;           //mcast socket for sending

   IMNode *tree;

   IMBaseProtocol *base_proto;

   void setup();

   bool auto_tick;      // Should we automaticly tick outentities?
   bool internal_clock; // Should we set our time based on
gettimeofday?
   double simtime;      // Simulation Time

   set<IMBaseOutEntity *,IMBaseEntity::compare> outlist;
   set<IMBaseInEntity *,IMBaseEntity::compare> inlist;

   bbThread *readThread;

   virtual void filter(McastPacket &mpacket,IMBaseInEntity *ng);

   typedef pair<unsigned int,McastPacket> packet_type;
   multimap<double,packet_type> delaySend;
   multimap<double,unsigned int> delaySplit,delayMerge;
   multimap<double,IMBaseOutEntity *> delayRespond;

   unsigned int clientaddress;

 public:

   Msocket *msocket;
   static IMBaseClient *gClient;

   IMBaseClient();
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   ~IMBaseClient();

   virtual void tick();
   double getTime() { return simtime; }
   void setTime(double t) { simtime = t; }

   static int numrtt;
   static int getNextRTT() { numrtt++; return numrtt-1; }

   virtual void addOutEntity(IMBaseOutEntity *e) { outlist.insert(e); }
   virtual void remOutEntity(IMBaseOutEntity *e) { outlist.erase(e); }

   virtual void checkin(IMBaseOutEntity *e,unsigned int from,
                        unsigned int to);
   virtual void sendMoved(IMBaseOutEntity *e,McastPacket &mpacket,
                          unsigned int send_to,unsigned int to,
                          unsigned int from);
   virtual void sendPing(unsigned int send_to);
   virtual void sendMcast(unsigned int send_to,McastPacket &packet);
   virtual void sendDelayedMcast(unsigned int send_to,
                                 McastPacket &packet,double delay);

   virtual unsigned int OCTREE_search_server(IMBaseOutEntity *e);
   virtual unsigned int OCTREE_find_primary(IMBaseOutEntity *e,
                                            bool ask);
   virtual unsigned int OCTREE_ask_friends(IMBaseOutEntity *e,
                                           unsigned int address);
   virtual void OCTREE_Merge(IMNode *n);
   virtual void OCTREE_Split(IMNode *n);

   virtual bool MDHCP_getAddresses(int num,unsigned int *addrs);
};

#endif

2. IMBaseEntity.h

#ifndef _IMBASEENTITY
#define _IMBASEENTITY

#include <set.h>

#include "IMPacket.h"

#include "npsVec3f.h"
#include "IMCellRegion.h"

class IMBaseEntity
{
 public:

   unsigned int address; // Server assigned multicast address or guid.
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   npsVec3f pos;         // position
   npsVec3f vel;         // velocity

   double lastUpdate;    // Time of last update (secs past Jan 1, 1970)

   CellRegion primary_region; //copy of primary region

 protected:

   npsVec3f oldpos;      // Position at time = lastUpdate

 public:

   enum { INBOUND,OUTBOUND };

   virtual int   mode() = 0;

   virtual int   runtime_type()     { return rtt; }
   virtual char *protocol_name()    { return module_name; }
   virtual char *protocol_url()     { return module_url; }
   virtual float protocol_version() { return module_version; }

   static int rtt;
   static char module_name[64];
   static char module_url[192];
   static float module_version;

   virtual void tick() = 0; // Update Entity

   virtual bool interestedIn(IMBaseEntity *e) { return false; }

   struct compare :
   public binary_function<IMBaseEntity *,IMBaseEntity *,bool>
   {
    bool operator()(IMBaseEntity *r1,IMBaseEntity *r2) const
              {
               return (r1->address < r2->address);
              }
   };
};

#endif

3. IMBaseInEntity.h

#ifndef _IMBASEINENTITY
#define _IMBASEINENTITY

#include "IMBaseEntity.h"
#include "IMPacket.h"

#include "string"
#include "map.h"
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class IMBaseInEntity : public IMBaseEntity
{
 protected:

   int internal;  // ref count; 0 == entity updates come from octree

   double lastlastUpdate;
   npsVec3f oldoldpos;
   npsVec3f oldvel;
   float smooth_time;

   double dt;

   McastPacket lastPacket;

 public:

   IMBaseInEntity(McastPacket &packet)
   {
    internal = 0;
    address = packet.newaddress[1];
    update(packet);
   }

   virtual int mode() { return INBOUND; }

   virtual void tick(); // Update Entity
   virtual void update(McastPacket &mpacket);

   virtual bool subscribed() { return (internal > 0); }
   virtual void subscribe() { internal++; }
   virtual void unsubscribe() { internal--; }

   map<string,void *> attributeMap;
};

#endif

4. IMBaseOutEntity.h

#ifndef _IMBASEOUTENTITY
#define _IMBASEOUTENTITY

#include "npsVec3f.h"
#include "IMBaseEntity.h"
#include "IMBaseProtocol.h"
#include "IMCellRegion.h"

#include "map.h"

class IMBaseOutEntity : public IMBaseEntity
{
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 protected:

   float dead_thresh;           // Update if error > dead_thresh (m^2)
   float dead_timeout;          // Update if time > dead_timeout (s)

   void obtain_address();
   void checkin(unsigned int old);
   virtual void sendMoved(McastPacket &mpacket,unsigned int send_to,
                          unsigned int to,unsigned int from);

   unsigned int find_primary();

   npsVec3f lastPos;

 public:

   /////////////////////////////////////////////
   // IE Parameters
   //
   bool SubUnknownProtocols; // Should we by defualt subscribe to
                             // entities we did not have an IE for?

   float smallest_entity;    // Smallest entity we should look for.
                             // (Similar to smallest region calc)
   float smallest_entity_avg_bound_dia; // Used in smallest_entity
calc.
   float smallest_entity_avg_max_vel;   // Used in smallest_entity
calc.

   float roi;   //Tier 2 - Radius of interest
   float roi2;  //Tier 2 - Radius of interest squared

   map<IMBaseEntity *,float,IMBaseEntity::compare> interestingEntities;

 protected:

   void calc_smallest_region();
   double lastTick;                 // Time this guy was ticked last
   double dt;                       // currenttime - lastTick

   void Update_dt();                // Updates dt;

   CellRegion region;  // Current location
   npsVec3f oldvel;    // Velocity at time = lastUpdate

 public:

   virtual int mode() { return OUTBOUND; }

   virtual void forceSend(); // Used for pings
   virtual void tick();      // Update Entity

   IMBaseOutEntity(npsVec3f p, float search_r, float dia,
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                   float vel,float timeout);
   IMBaseOutEntity(npsVec3f p, float search_r);

   ~IMBaseOutEntity();
};
#endif

5. IMBaseNode.h

#ifndef _IMBASENODE
#define _IMBASENODE

#include "set.h"

#include "IMCellRegion.h"

//Forward declare classes
class IMBaseOutEntity;

class IMNode
{
 public:
   CellRegion region; //Bounds
   IMNode *parent;
   IMNode *child[8];
   bool leaf;         //True if node has no children

   set<unsigned int> elist;

   IMNode(CellRegion r)
   {
    parent=NULL;
    leaf=true;
    for(int i=0;i<8;i++) child[i]=NULL;
    memcpy(&region,&r,sizeof(CellRegion));
   }

   IMNode()
   {
    parent=NULL;
    leaf=true;
    for(int i=0;i<8;i++) child[i]=NULL;
   }

   //Number on entities in child and parent
   //Returns -1 if all children present && not leaf nodes!
   virtual int childrenSize();

   virtual void splittree(unsigned int newaddr[8]);
   virtual void mergetree();
   virtual void mergeregions(CellRegion *region);
   virtual void fleshtree();
   virtual IMNode *findnode(unsigned int address);
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   virtual IMNode *addtotree(CellRegion r);
   virtual IMNode *XYZtonode(IMBaseOutEntity *e);
   virtual int searchXYZR(double x,double y,double z,double r,
                          CellRegion *cells);

};

#endif

6. IMBaseProtocol.h

#ifndef __IMBASEPROTOCOL__
#define __IMBASEPROTOCOL__

#include "bbMappedClass.h"

#include "IMPacket.h"

// forward declare
class IMBaseInEntity;

class IMBaseProtocol : public bbMappedClass<IMBaseProtocol>
{
 public:

   IMBaseProtocol():
bbMappedClass<IMBaseProtocol>("IMBaseClientModule")
                   {setup();}
   IMBaseProtocol(const char *name):
bbMappedClass<IMBaseProtocol>(name)
                   {setup();}

   virtual void setup(void);

   virtual IMBaseInEntity *new_entity(McastPacket &mpacket);
   virtual void del_entity(IMBaseInEntity *);
};

class IMBaseProtocolIE
{
 public:
   IMBaseProtocol *protocol; //Which protocol is this for

   struct compare :
   public binary_function<IMBaseProtocolIE *,IMBaseProtocolIE *,bool>
   {
    bool operator()(IMBaseProtocolIE *r1,IMBaseProtocolIE *r2) const
                {
                 return (r1->protocol < r2->protocol);
                }
   };
};
#endif
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7. IMCellRegion.h

#ifndef __IM_CELLREGION
#define __IM_CELLREGION

#include "npsVec3f.h"
#include "IMExtent.h"

struct CellRegion
{
  unsigned int address;
  Extent ext;
  int below;

  inline bool contains(npsVec3f p)
  {
   if (p[0] <= ext.x + ext.r && p[0] > ext.x - ext.r &&
       p[1] <= ext.y + ext.r && p[1] > ext.y - ext.r &&
       p[2] <= ext.z + ext.r && p[2] > ext.z - ext.r) return true;
   return false;
  }
};

#endif

8. IMExtent.h

#ifndef __IM_EXTENT
#define __IM_EXTENT

// Messages from server
struct Extent
{
 double x;
 double y;
 double z;
 double r;
};

#endif

9. IMPacket.h

#ifndef __IM_PACKET
#define __IM_PACKET

#include "IMCellRegion.h"

// Messages to server
struct ServerPacket
{
 enum PacketType {SEARCH,CHANGE,MALLOC,LOCK,SPLIT,MERGE};
 enum PacketType type;
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 union
 {
  struct
  {
   int num;
  } malloc;

  struct
  {
   unsigned int address;
   unsigned int newaddr[8];
  } split;

  struct
  {
   unsigned int address;
   double x;
   double y;
   double z;
   double r;
  } search;

  struct
  {
   unsigned int from;
   unsigned int to;
  } change;

 };
};

// Messages to mcast address
struct McastPacket
{
 enum PacketType {MOVED,PINGING,MERGE,SPLIT,QUERY,RESPOND};
 enum PacketType type;
 unsigned int address;
 union
     {
      unsigned int newaddress[8]; //XXXX is this used?!
      struct
           {
            unsigned int newaddress[2];
            double lastUpdate;
            double x;
            double y;
            double z;
            float vx;
            float vy;
            float vz;
            char module_name[64];
            char module_url[192];
            float module_version;
            char protocol_reserved[712];
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           } moved; // 312 + 712 = 1024

      struct
           {
            unsigned int tcpaddress;
            unsigned int port;
            double r;
            double x;
            double y;
            double z;
           } query; // 40 bytes
     };
};

#endif

10. IMSocket.h

#ifndef _MSOCKET
#define _MSOCKET

#include <set.h>

#include "ace/SOCK_Dgram.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

#include "ace/INET_Addr.h"

//A Socket that reads from multiple mcast addresses

class ACE_Export Msocket : public ACE_SOCK_Dgram
{
 public:
   Msocket(unsigned short port);
   ~Msocket(void);

   bool subscribe(unsigned int address);
   void unsubscribe(unsigned int address);

 private:
   set<unsigned int> sub_list;
   in_addr ifaddr;
};

#endif

11. baseClient.c++

#include <stdio.h>
#include <errno.h>
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#include <unistd.h>

#include <sys/time.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "bbPrinter.h"
#include "bbThread.h"

#include "IMBaseClient.h"
#include "IMBaseOutEntity.h"
#include "IMBaseInEntity.h"
#include "IMBaseProtocol.h"

#include "IMSocket.h"
#include "ace/Handle_Set.h"

#include "IMPacket.h"
#include "IMBaseNode.h"

#define JOIN_DELAY 10

int IMBaseClient::numrtt = 0;
IMBaseClient *IMBaseClient::gClient;

IMBaseClient::IMBaseClient()
{
 internal_clock = true;
 auto_tick = true;

 struct timeval tt;
 gettimeofday(&tt);
 setTime((double)tt.tv_sec + tt.tv_usec/1000000.0);

 outlist.clear();
 inlist.clear();

 // Set up the multicast socket
 int on=1,ttl = 15;
 unsigned char off = 0;
 msocket = new Msocket(9976);
 msocket->subscribe(inet_addr("239.0.0.1"));
 s2 = socket(AF_INET, SOCK_DGRAM, 0);
 setsockopt(s2, IPPROTO_IP, IP_TTL, &ttl, sizeof(ttl));
 if (setsockopt(s2, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on)) < 0)
    perror("setsockopt SO_REUSEPORT");
 if (setsockopt(s2, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)) < 0)
    perror("setsockopt SO_REUSEADDR");
 if (setsockopt(s2, IPPROTO_IP, IP_MULTICAST_LOOP, &off,
sizeof(off))<0)
    perror("setsockopt IP_MULTICAST_LOOP");
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 //Turn on the base protocol. This is our default entity.
 base_proto = new IMBaseProtocol();
 IMBaseEntity::rtt = IMBaseClient::getNextRTT();

 readThread = new bbThread(readFunc,NULL);
}

IMBaseClient::~IMBaseClient()
{
 printf("IMBaseClient shutting down\n");
 delete readThread;
 printf("Killed readThread.\n");
 delete msocket;
 printf("deleted msocket.\n");
 printf("IMBaseClient shutdown\n");
}

void IMBaseClient::tick()
{
 struct timeval tt;
 gettimeofday(&tt);
 double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;

 // Go through delay send queue
 multimap<double,packet_type>::iterator p = delaySend.begin();
 while(p != delaySend.end() && (*p).first < tod)
      {
       sendMcast((*p).second.first,(*p).second.second);
       delaySend.erase(p);
       p = delaySend.begin();
      }

 //Set simtime based on tod
 if (internal_clock) setTime(tod);

 set<IMBaseOutEntity *,IMBaseEntity::compare>::iterator i;
 set<IMBaseInEntity *,IMBaseEntity::compare>::iterator j;

 // This manages the interestingEntities list for inbounds.
 for(j = inlist.begin();j!=inlist.end();j++)
    for(i = outlist.begin();i!=outlist.end();i++)
       {
        float dist2 = ((*i)->pos - (*j)->pos).lengthSqr();
        if (dist2 < (*i)->roi2 && (*i)->interestedIn(*j))
           (*i)->interestingEntities.insert(
                 pair<IMBaseEntity *,float>(*j,dist2));
        else
           (*i)->interestingEntities.erase(*j);
       }

 // This manages the interestingEntities list for outbounds.
 for(i = outlist.begin();i!=outlist.end();i++)
    {
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     set<IMBaseOutEntity *,IMBaseEntity::compare>::iterator i2 = i;
     for(i2++;i2!=outlist.end();i2++)
        {
         float dist2 = ((*i)->pos - (*i2)->pos).lengthSqr();
         if (dist2 < (*i)->roi2 && (*i)->interestedIn(*i2))
            (*i)->interestingEntities.insert(
                  pair<IMBaseEntity *,float>(*i2,dist2));
         else
            (*i)->interestingEntities.erase(*i2);
         if (dist2 < (*i2)->roi2 && (*i2)->interestedIn(*i))
            (*i2)->interestingEntities.insert(
                   pair<IMBaseEntity *,float>(*i,dist2));
         else
            (*i2)->interestingEntities.erase(*i);
        }
    }

 if (auto_tick)
    {
     for(i = outlist.begin();i!=outlist.end();i++)
        (*i)->tick();

     for(j = inlist.begin();j!=inlist.end();j++)
        (*j)->tick();
    }
}

void IMBaseClient::sendDelayedMcast(unsigned int send_to,McastPacket
&packet,double delay)
{
 struct timeval tt;
 gettimeofday(&tt);
 double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;
 packet_type packetPair(send_to,packet);
 multimap<double,packet_type>::
              value_type valuePair(delay+tod,packetPair);
 delaySend.insert(valuePair);
}

void IMBaseClient::sendMcast(unsigned int send_to,McastPacket &packet)
{
 struct sockaddr_in sa_mcast;
 sa_mcast.sin_family=AF_INET;
 struct in_addr grpaddr;
 grpaddr.s_addr = send_to;
 sa_mcast.sin_addr=grpaddr;
 sa_mcast.sin_port=htons(9976);

 sendto(s2,&packet,sizeof(McastPacket),0,&sa_mcast,sizeof(sa_mcast));
}



196

void IMBaseClient::sendMoved(IMBaseOutEntity *e,McastPacket
&mpacket,unsigned int send_to,unsigned int to,unsigned int from)
{
 sendMcast(send_to,mpacket);
}

void IMBaseClient::filter(McastPacket &mpacket,IMBaseInEntity *ng)
{
 //Does Protocol Exist? O(lg P)
 IMBaseProtocol *protocol =
IMBaseProtocol::findObject(mpacket.moved.module_name);
 if (protocol == NULL)
    {
     bbModule::load(mpacket.moved.module_name,

mpacket.moved.module_version,0,mpacket.moved.module_url);
     protocol = IMBaseProtocol::findObject(mpacket.moved.module_name);

     if (protocol == NULL)
        {
         protocol = base_proto;
        }
    }

 //Does Entity Exist?
 set<IMBaseInEntity *,IMBaseEntity::compare>::iterator i;

 inlistLock.acquire();
 // Yes - an old guy. O(lg N)
 if ((i = inlist.find(ng)) != inlist.end())
    {
     if ((*i)->lastUpdate < mpacket.moved.lastUpdate)
        (*i)->update(mpacket);
    }
 else // No - a new guy O(lg N)
    {
     i = inlist.insert(protocol->new_entity(mpacket)).first;
    }

 // If he is checking out, delete him!
 if (mpacket.address == 0)
    {
     printf("Killing entity...\n");
     IMBaseInEntity *tmp = *i;
     inlist.erase(i);
     protocol->del_entity(tmp);
    }
 inlistLock.release();
}

void IMBaseClient::readFunc(bbThread *,bbData *that)
{
 if (IMBaseClient::gClient != NULL)
    IMBaseClient::gClient->mcastcheck();
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 else
    sleep(0);
}

void IMBaseClient::mcastcheck()
{
 int rval;
 McastPacket mpacket;
 ACE_Handle_Set handle_set;

 handle_set.reset();
 handle_set.set_bit(msocket->get_handle());

 // Time out so thread will unblock.
 ACE_Time_Value t2(1,0);

 if ((rval = ACE_OS::select((msocket->get_handle())+1,handle_set,
      NULL,NULL,&t2)) != 0)
    {
     if (rval == -1) perror("select");
     else
        {
         ACE_OS::recvfrom(msocket->get_handle(),(char *)&mpacket,
                          sizeof(McastPacket),0,0,0);
         switch (mpacket.type)
                {
                 case McastPacket::MOVED:
                          {
                           static IMBaseInEntity *ng =
                                    new IMBaseInEntity(mpacket);
                           ng->address = mpacket.newaddress[1];
                           filter(mpacket,ng);
                          }
                          break;

                 default: printf("Unknown message from socket!\n");
                }
           }
    }
}

12. baseInEntity.c++

#include "IMBaseEntity.h"

int IMBaseEntity::rtt;
char IMBaseEntity::module_name[64] = "IMBaseClientModule";
char IMBaseEntity::module_url[192] = "";
float IMBaseEntity::module_version = 0.894;

#include "IMBaseClient.h"
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#include "IMBaseInEntity.h"

void IMBaseInEntity::update(McastPacket &mpacket)
{
 memcpy(&lastPacket,&mpacket,sizeof(McastPacket));
 npsVec3f newpos(mpacket.moved.x,mpacket.moved.y,mpacket.moved.z);
 npsVec3f newvel(mpacket.moved.vx,mpacket.moved.vy,mpacket.moved.vz);

 oldoldpos = oldpos;
 oldpos = newpos;

 oldvel = vel;
 vel = newvel;

 lastlastUpdate = lastUpdate;
 lastUpdate = mpacket.moved.lastUpdate;
}

void IMBaseInEntity::tick()
{
 dt = IMBaseClient::gClient->getTime()-lastUpdate;
 pos = oldpos + vel * dt;

 if (dt < smooth_time)
    {
     double dt2 = IMBaseClient::gClient->getTime()-lastlastUpdate;
     float frac = dt/smooth_time;
     pos = pos * frac + (oldoldpos + oldvel * dt2) * (1.0f-frac);
    }
}

13. baseOutEntity.c++

#include "IMBaseClient.h"
#include "IMBaseOutEntity.h"

IMBaseOutEntity::IMBaseOutEntity(npsVec3f p, float search_r, float dia,
                                 float vel, float timeout)
{
 roi = search_r;
 roi2 = roi*roi;
 primary_region.address = 0;
 address = 0;

 AvgBoundDia(dia);
 AvgMaxVel(vel);

 dead_timeout = 5.0;
 oldvel.makeNull();
 oldpos = pos = p;
 oldvel[0] = 0.0;  oldvel[1] = 0.0;  oldvel[2] = 0.0;
 obtain_address();
 IMBaseClient::gClient->addOutEntity(this);
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 lastTick = IMBaseClient::gClient->getTime();
}

IMBaseOutEntity::IMBaseOutEntity(npsVec3f p,float search_r)
{
 roi = search_r;
 roi2 = roi*roi;
 primary_region.address = 0;
 address = 0;

 AvgBoundDia(1.0);
 AvgMaxVel(1.0);

 dead_timeout = 5.0;
 oldvel.makeNull();
 oldpos = pos = p;
 oldvel[0] = 0.0;  oldvel[1] = 0.0;  oldvel[2] = 0.0;
 obtain_address();
 lastTick = IMBaseClient::gClient->getTime();
 IMBaseClient::gClient->addOutEntity(this);
}

IMBaseOutEntity::~IMBaseOutEntity()
{
 IMBaseClient::gClient->remOutEntity(this);
 unsigned int old = primary_region.address;
 primary_region.address = 0;
 checkin(old);
}

void IMBaseOutEntity::obtain_address()
{
 static unsigned int clientaddress = 0;
 if (!clientaddress)
    {
     char myname[255];
     gethostname(myname,255);
     struct hostent *en = gethostbyname(myname);
     clientaddress = *((int *)(en->h_addr_list[0]));
     clientaddress = (clientaddress >> 24) + (clientaddress<<24) +
                     (clientaddress&0x00ffff00);
    }

 address = clientaddress++;
}

void IMBaseOutEntity::checkin(unsigned int old)
{
}

void IMBaseOutEntity::sendMoved(McastPacket &mpacket,unsigned int
send_to,unsigned int to,unsigned int from)
{
 mpacket.type=McastPacket::MOVED;
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 mpacket.address=to;
 mpacket.newaddress[0]=from;
 mpacket.newaddress[1]=address;
 mpacket.moved.x = pos[0];
 mpacket.moved.y = pos[1];
 mpacket.moved.z = pos[2];
 mpacket.moved.vx = vel[0];
 mpacket.moved.vy = vel[1];
 mpacket.moved.vz = vel[2];
 mpacket.moved.lastUpdate = lastUpdate;
 mpacket.moved.module_version = protocol_version();
 strcpy(mpacket.moved.module_name,protocol_name());
 strcpy(mpacket.moved.module_url,protocol_url());

 IMBaseClient::gClient->sendMoved(this,mpacket,send_to,to,from);
}

unsigned int IMBaseOutEntity::find_primary()
{
 return 0;
}

void IMBaseOutEntity::Update_dt()
{
 dt = IMBaseClient::gClient->getTime() - lastTick;
}

void IMBaseOutEntity::forceSend()
{
 double time = IMBaseClient::gClient->getTime();
 lastUpdate = time;
 oldvel = vel;
 oldpos = pos;
 sendMoved(McastPacket(),primary_region.address,
           primary_region.address,0);
}

void IMBaseOutEntity::tick()
{
 double time = IMBaseClient::gClient->getTime();
 double big_dt = time-lastUpdate;

 // DIS doesn't change primary_regions.
 primary_region.address = inet_addr("239.0.0.1");

 npsVec3f ghostpos = oldpos + oldvel * big_dt;
 vel = (pos - lastPos)/dt;

 if ((ghostpos - pos).lengthSqr() > dead_thresh || big_dt >
dead_timeout)
    {
     lastUpdate = time;
     oldvel = vel;
     oldpos = pos;
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     sendMoved(McastPacket(),primary_region.address,
               primary_region.address,0);
    }

 lastPos = pos;
 lastTick = time;
}

void IMBaseOutEntity::calc_smallest_region()
{
 dead_thresh = 1.0;
 printf("dead_thresh now %f meters.\n",dead_thresh);
}

14. baseProtocol.c++

#include "IMBaseClient.h"
#include "IMBaseProtocol.h"
#include "IMBaseInEntity.h"

IMBaseInEntity *IMBaseProtocol::new_entity(McastPacket &mpacket)
{
 return new IMBaseInEntity(mpacket);
}

void IMBaseProtocol::del_entity(IMBaseInEntity *e)
{
 delete e;
}

void IMBaseProtocol::setup(void)
{
}

15. msocket.c++

#include "IMSocket.h"

Msocket::Msocket(unsigned short port)
{
if (ACE_SOCK_Dgram::open(ACE_INET_Addr(port),PF_INET,0,1) < 0)
    perror("open:");

 char buf[BUFSIZ];
 struct ifconf ifc;
 ifc.ifc_len = sizeof(buf);
 ifc.ifc_buf = buf;
 if (ACE_OS::ioctl(get_handle(), SIOCGIFCONF, &ifc) < 0)
    perror("ioctl SIOCGIFCONF");
 struct ifreq *ifr;
 ifr = ifc.ifc_req;
 ifaddr = ((struct sockaddr_in *)&ifr->ifr_addr)->sin_addr;
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 int on = 1;
 if (set_option(SOL_SOCKET,SO_REUSEADDR,&on,sizeof on) == -1)
    perror("setsockopt SO_REUSEADDR");
 if (set_option(SOL_SOCKET,SO_REUSEPORT,&on,sizeof on) == -1)
    perror("setsockopt SO_REUSEPORT");

 int off = 0;
 if (set_option(IPPROTO_IP, IP_MULTICAST_LOOP, &off, sizeof off) == -1)
    perror("msocket setsockopt IP_MULTICAST_LOOP");
}

Msocket::~Msocket()
{
 ACE_SOCK_Dgram::close();
}

bool Msocket::subscribe(unsigned int address)
{
 //Don't bother if already subscribed
 if (!sub_list.insert(address).second) return false;

 ip_mreq mreq;
 mreq.imr_multiaddr.s_addr = address;
 mreq.imr_interface = ifaddr;
 if (ACE_SOCK::set_option(IPPROTO_IP,IP_ADD_MEMBERSHIP,
     &mreq,sizeof mreq)== -1)
    perror("setsockopt add membership");

 return true;
}

void Msocket::unsubscribe(unsigned int address)
{
 //Don't bother if not already subscribed
 if (!sub_list.erase(address)) return;

 in_addr grpaddr;
 ip_mreq mreq;
 grpaddr.s_addr = address;
 mreq.imr_multiaddr = grpaddr;
 mreq.imr_interface = ifaddr;
 if (ACE_SOCK::set_option(IPPROTO_IP,IP_DROP_MEMBERSHIP,
     &mreq,sizeof mreq)== -1)
    perror("setsockopt add membership");
}
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APPENDIX D. REGION SYSTEM SOURCE CODE

A. INTRODUCTION

This appendix contains source code for the region-based filtering client used in

the experiment described in Chapter V. This implementation was only used for

comparisons against the Three-Tier system, and is only provided here for completeness.

B. REGIONMODULE

1. IMBaseClient.h

#ifndef _IMBASECLIENT
#define _IMBASECLIENT
#include <unistd.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#include <net/if.h>
#include <net/soioctl.h>
#include <arpa/inet.h>

#include <multimap.h>
#include <set.h>
#include "bbMutex.h"
#include "IMBaseEntity.h"
#include "IMBaseOutEntity.h"

//Forward declare classes instead of including them
//This saves LOTS of memory when using Bamboo modules
class bbThread;
class Msocket;
class IMBaseInEntity;
class IMBaseProtocol;
class IMNode;

#define REGION_SIZE 4475
#define WORLDSIZE 4

class IMBaseClient
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{
 public:
   static  void readFunc(bbThread *, bbData *);
   virtual void mcastcheck();

   bbMutex tree_mutex;

 public:

   int bigread(int fd,void *buf,int num)
   {
    int cnt = 0;
    while(cnt < num && cnt != -1)
          cnt += read(fd,(char *)buf+cnt,num-cnt);
    return cnt;
   }

   int bigwrite(int fd,void *buf,int num)
   {
    int cnt = 0;
    while(cnt < num && cnt != -1)
          cnt += write(fd,(char *)buf+cnt,num-cnt);
    return cnt;
   }

   int s2;           //mcast socket for sending

   IMNode *tree[WORLDSIZE*2][WORLDSIZE*2][WORLDSIZE*2];

   IMBaseProtocol *base_proto;

   struct sockaddr_in sa;    // sockaddr_in used to connect to server
   char server_name[255];
   short server_port;

   virtual void setup();

   bool auto_tick;      // Should we automaticly tick outentities?
   bool internal_clock; // Should we set our time based on
gettimeofday?
   double simtime;      // Simulation Time

   set<IMBaseOutEntity *,IMBaseEntity::compare> outlist;
   set<IMBaseInEntity *,IMBaseEntity::compare> inlist;
   bbThread *readThread;

   virtual void filter(McastPacket &mpacket,IMBaseInEntity *ng);

   typedef pair<unsigned int,McastPacket> packet_type;
   multimap<double,packet_type> delaySend;
   multimap<double,unsigned int> delaySplit,delayMerge;
   multimap<double,IMBaseOutEntity *> delayRespond;

   unsigned int clientaddress;
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 public:

   Msocket *msocket;
   static IMBaseClient *gClient;

   IMBaseClient();
   ~IMBaseClient();

   virtual void tick();
   double getTime() { return simtime; }
   void setTime(double t) { simtime = t; }

   static int numrtt;
   static int getNextRTT() { numrtt++; return numrtt-1; }

   virtual void addOutEntity(IMBaseOutEntity *e) { outlist.insert(e); }
   virtual void remOutEntity(IMBaseOutEntity *e) { outlist.erase(e); }

   virtual void checkin(IMBaseOutEntity *e,unsigned int from,
                        unsigned int to);
   virtual void sendMoved(IMBaseOutEntity *e,McastPacket &mpacket,
                unsigned int send_to,unsigned int to,unsigned int
from);
   virtual void sendPing(unsigned int send_to);
   virtual void sendMcast(unsigned int send_to,McastPacket &packet);
   virtual void sendDelayedMcast(unsigned int send_to,
                                 McastPacket &packet,double delay);

   virtual unsigned int OCTREE_search_server(IMBaseOutEntity *e);
   virtual unsigned int OCTREE_find_primary(IMBaseOutEntity *e,
                                            bool ask);
   virtual unsigned int OCTREE_ask_friends(IMBaseOutEntity *e,
                                           unsigned int address);

   virtual bool MDHCP_getAddresses(int num,unsigned int *addrs);
};

#endif

2. IMBaseEntity.h

#ifndef _IMBASEENTITY
#define _IMBASEENTITY

#include <set.h>

#include "IMPacket.h"

#include "npsVec3f.h"
#include "IMCellRegion.h"

class IMBaseEntity
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{
 public:

   unsigned int address; // Server assigned multicast address or guid.

   npsVec3f pos;         // position
   npsVec3f vel;         // velocity

   double lastUpdate;    // Time of last update (secs past Jan 1, 1970)

   CellRegion primary_region; //copy of primary region XXXX why?

 protected:

   npsVec3f oldpos;      // Position at time = lastUpdate

 public:

   enum { INBOUND,OUTBOUND };

   virtual int   mode() = 0;

   virtual int   runtime_type()     { return rtt; }
   virtual char *protocol_name()    { return module_name; }
   virtual char *protocol_url()     { return module_url; }
   virtual float protocol_version() { return module_version; }

   static int rtt;
   static char module_name[64];
   static char module_url[192];
   static float module_version;

   virtual void tick() = 0; // Update Entity

   virtual bool interestedIn(IMBaseEntity *e) { return false; }

   struct compare :
   public binary_function<IMBaseEntity *,IMBaseEntity *,bool>
   {
    bool operator()(IMBaseEntity *r1,IMBaseEntity *r2) const
              {
               return (r1->address < r2->address);
              }
   };
};

#endif

3. IMBaseInEntity.h

#ifndef _IMBASEINENTITY
#define _IMBASEINENTITY
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#include "IMBaseEntity.h"
#include "IMPacket.h"

#include "string"
#include "map.h"

class IMBaseInEntity : public IMBaseEntity
{
 protected:

   int internal;   // ref count; 0 == entity updates come from octree

   double lastlastUpdate;
   npsVec3f oldoldpos;
   npsVec3f oldvel;
   float smooth_time;

   double dt;

   McastPacket lastPacket;

 public:

   IMBaseInEntity() {}

   IMBaseInEntity(McastPacket &mpacket)
   {
    internal = 0;
    address = mpacket.newaddress[1];
    update(mpacket);
   }

   virtual int mode() { return INBOUND; }

   virtual void tick(); // Update Entity
   virtual void update(McastPacket &mpacket);

   virtual bool subscribed() { return (internal > 0); }
   virtual void subscribe() { internal++; }
   virtual void unsubscribe() { internal--; }

   map<string,void *> attributeMap;
};

#endif

4. IMBaseOutEntity.h

#ifndef _IMBASEOUTENTITY
#define _IMBASEOUTENTITY

#include "npsVec3f.h"
#include "IMBaseEntity.h"
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#include "IMBaseProtocol.h"
#include "IMCellRegion.h"

#include "map.h"

class IMNode;

class IMBaseOutEntity : public IMBaseEntity
{
 protected:

   float dead_thresh;          // Update if error > dead_thresh (m^2)
   float dead_timeout;         // Update if time > dead_timeout (s)

   void obtain_address();
   void checkin(unsigned int old);

   unsigned int find_primary();

   npsVec3f lastPos;

 public:

   map<IMBaseEntity *,float,IMBaseEntity::compare> interestingEntities;

 protected:

   double lastTick;                 // Time this guy was ticked last
   double dt;                       // currenttime - lastTick

   void Update_dt();                // Updates dt;

   CellRegion region;   // Current location
   npsVec3f oldvel;  // Velocity at time = lastUpdate

   set<IMNode *> current_nodes; // Set of interesting regions

 public:

   virtual int mode() { return OUTBOUND; }

   virtual void sendMoved(McastPacket &mpacket,unsigned int send_to,
                          unsigned int to,unsigned int from);
   virtual void forceSend(); // Used for pings
   virtual void tick();      // Update Entity

   IMBaseOutEntity(npsVec3f p, float search_r, float dia,
                   float vel,float timeout);
   IMBaseOutEntity(npsVec3f p, float search_r);

   ~IMBaseOutEntity();
};
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#endif

5. IMBaseNode.h

#ifndef _IMBASENODE
#define _IMBASENODE

#include "set.h"
#include "map.h"

#include "IMCellRegion.h"

//Forward declare classes
class IMBaseOutEntity;

class IMNode
{
 public:
   static map<unsigned int,IMNode *> nodemap;

   CellRegion region; //Bounds
   IMNode *parent;
   IMNode *child[8];
   bool leaf;         //True if node has no children
   int ref;

   set<unsigned int> elist;

   IMNode(CellRegion r)
   {
    parent=NULL;
    leaf=true;
    for(int i=0;i<8;i++) child[i]=NULL;
    memcpy(&region,&r,sizeof(CellRegion));
    ref=0;
   }

   IMNode()
   {
    parent=NULL;
    leaf=true;
    for(int i=0;i<8;i++) child[i]=NULL;
    ref=0;
   }

   virtual bool addtotree();
   virtual bool remfromtree();
   virtual IMNode *XYZtonode(IMBaseOutEntity *e);
   virtual int searchXYZR(double x,double y,double z,double r,
                          CellRegion *cells);

};
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#endif

6. IMBaseProtocol.h

#ifndef __IMBASEPROTOCOL__
#define __IMBASEPROTOCOL__

#include "bbMappedClass.h"

#include "IMPacket.h"

// forward declare
class IMBaseInEntity;

class IMBaseProtocol : public bbMappedClass<IMBaseProtocol>
{
 public:

   IMBaseProtocol():
bbMappedClass<IMBaseProtocol>("IMBaseClientModule")
                    {setup();}
   IMBaseProtocol(const char *name):
bbMappedClass<IMBaseProtocol>(name)
                    {setup();}

   virtual void setup(void);

   virtual IMBaseInEntity *new_entity(McastPacket &mpacket);
   virtual void del_entity(IMBaseInEntity *);
};

class IMBaseProtocolIE
{
 public:
   IMBaseProtocol *protocol; //Which protocol is this for

   struct compare :
   public binary_function<IMBaseProtocolIE *,IMBaseProtocolIE *,bool>
   {
    bool operator()(IMBaseProtocolIE *r1,IMBaseProtocolIE *r2) const
                {
                 return (r1->protocol < r2->protocol);
                }
   };
};
#endif

7. IMCellRegion.h

#ifndef __IM_CELLREGION
#define __IM_CELLREGION

#include "npsVec3f.h"
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#include "IMExtent.h"

struct CellRegion
{
  unsigned int address;
  Extent ext;
  int below;

  inline bool contains(npsVec3f p)
  {
   if (p[0] <= ext.x + ext.r && p[0] > ext.x - ext.r &&
       p[1] <= ext.y + ext.r && p[1] > ext.y - ext.r &&
       p[2] <= ext.z + ext.r && p[2] > ext.z - ext.r) return true;
   return false;
  }

  inline bool contains(npsVec3f p,float r)
  {
   r+=ext.r;
   if (p[0] <= ext.x + r && p[0] > ext.x - r &&
       p[1] <= ext.y + r && p[1] > ext.y - r &&
       p[2] <= ext.z + r && p[2] > ext.z - r) return true;
   return false;
  }
};

#endif

8. IMExtent.h

#ifndef __IM_EXTENT
#define __IM_EXTENT

// Messages from server
struct Extent
{
 double x;
 double y;
 double z;
 double r;
};

#endif

9. IMPacket.h

#ifndef __IM_PACKET
#define __IM_PACKET

#include "IMCellRegion.h"

// Messages to server
struct ServerPacket
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{
 enum PacketType {SEARCH,CHANGE,MALLOC,LOCK,SPLIT,MERGE};
 enum PacketType type;
 union
 {
  struct
  {
   int num;
  } malloc;

  struct
  {
   unsigned int address;
   unsigned int newaddr[8];
  } split;

  struct
  {
   unsigned int address;
   double x;
   double y;
   double z;
   double r;
  } search;

  struct
  {
   unsigned int from;
   unsigned int to;
  } change;

 };
};

// Messages to mcast address
#define MIN_PACKET_SIZE 312
struct McastPacket
{
 enum PacketType {MOVED,PINGING,MERGE,SPLIT,QUERY,RESPOND};
 enum PacketType type;
 unsigned int address;
 union
     {
      unsigned int newaddress[8]; //XXXX is this used?!
      struct
           {
            unsigned int newaddress[2];
            double lastUpdate;
            double x;
            double y;
            double z;
            float vx;
            float vy;
            float vz;



215

            char module_name[64];
            char module_url[192];
            float module_version;
            char protocol_reserved[712];
           } moved; // 312 + 712 = 1024

      struct
           {
            unsigned int tcpaddress;
            unsigned int port;
            double r;
            double x;
            double y;
            double z;
           } query; // 40 bytes
     };
};

#endif

10. IMSocket.h

#ifndef _MSOCKET
#define _MSOCKET

#include <set.h>

#include "ace/SOCK_Dgram.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

#include "ace/INET_Addr.h"

//A Socket that reads from multiple mcast addresses

class ACE_Export Msocket : public ACE_SOCK_Dgram
{
 public:
   Msocket(unsigned short port);
   ~Msocket(void);

   bool subscribe(unsigned int address);
   void unsubscribe(unsigned int address);

 private:
   set<unsigned int> sub_list;
   in_addr ifaddr;
};

#endif
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11. baseClient.c++

#include <stdio.h>
#include <errno.h>
#include <unistd.h>

#include <sys/time.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "bbPrinter.h"
#include "bbThread.h"

#include "IMBaseClient.h"
#include "IMBaseOutEntity.h"
#include "IMBaseInEntity.h"
#include "IMBaseProtocol.h"

#include "IMSocket.h"
#include "ace/Handle_Set.h"

#include "IMPacket.h"
#include "IMBaseNode.h"

#include "map.h"

#define JOIN_DELAY 10

int IMBaseClient::numrtt = 0;
IMBaseClient *IMBaseClient::gClient;

IMBaseClient::IMBaseClient()
{
 internal_clock = true;
 auto_tick = true;

 struct timeval tt;
 gettimeofday(&tt);
 setTime((double)tt.tv_sec + tt.tv_usec/1000000.0);
 outlist.clear();
 inlist.clear();
 setup();

 //Turn on the base protocol. This is our default entity.
 base_proto = new IMBaseProtocol();
 IMBaseEntity::rtt = IMBaseClient::getNextRTT();

 //Start up the network read thread
 readThread = new bbThread(readFunc,NULL);
}
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void IMBaseClient::setup()
{
 // Setup the regions
  for(int x=0;x<WORLDSIZE*2;x++)
    {
     for(int y=0;y<WORLDSIZE*2;y++)
        {
         for(int z=0;z<WORLDSIZE*2;z++)
            {
             static unsigned int addr = inet_addr("239.0.0.1");
             CellRegion r;
             r.address = addr;
             r.ext.x = REGION_SIZE*x + REGION_SIZE/2.0 –
                       WORLDSIZE*REGION_SIZE;
             r.ext.y = REGION_SIZE*y + REGION_SIZE/2.0 –
                       WORLDSIZE*REGION_SIZE;
             r.ext.z = REGION_SIZE*z + REGION_SIZE/2.0 –
                       WORLDSIZE*REGION_SIZE;
             r.ext.r = REGION_SIZE/2.0;
             tree[x][y][z] = new IMNode(r);
             IMNode::nodemap.insert(pair<unsigned int,IMNode *>
                                    (addr,tree[x][y][z]));
             addr++;
            }
        }
    }

 // Set up the multicast socket
 int on=1,ttl = 15;
 unsigned char off = 0;
 msocket = new Msocket(9976);
 s2 = socket(AF_INET, SOCK_DGRAM, 0);
 setsockopt(s2, IPPROTO_IP, IP_TTL, &ttl, sizeof(ttl));
 if (setsockopt(s2, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on)) < 0)
    perror("setsockopt SO_REUSEPORT");
 if (setsockopt(s2, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)) < 0)
    perror("setsockopt SO_REUSEADDR");
 if (setsockopt(s2, IPPROTO_IP, IP_MULTICAST_LOOP, &off,
sizeof(off))<0)
    perror("setsockopt IP_MULTICAST_LOOP");

 // Set up our tcp socket
 struct in_addr bind_address;
 bind_address.s_addr = htonl(INADDR_ANY);
}

IMBaseClient::~IMBaseClient()
{
 printf("IMBaseClient shutting down\n");
 delete readThread;
 printf("Killed readThread.\n");
 delete msocket;
 printf("deleted msocket.\n");
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 printf("IMBaseClient shutdown\n");
}

void IMBaseClient::tick()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 struct timeval tt;
 gettimeofday(&tt);
 double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;

 // Go through delay send queue
 multimap<double,packet_type>::iterator p = delaySend.begin();
 while(p != delaySend.end() && (*p).first < tod)
      {
       sendMcast((*p).second.first,(*p).second.second);
       delaySend.erase(p);
       p = delaySend.begin();
      }

 //Set simtime based on tod
 if (internal_clock) setTime(tod);

 set<IMBaseOutEntity *,IMBaseEntity::compare>::iterator i;
 set<IMBaseInEntity *,IMBaseEntity::compare>::iterator j;

 // This manages the interestingEntities list for inbounds.
 for(j = inlist.begin();j!=inlist.end();j++)
    for(i = outlist.begin();i!=outlist.end();i++)
       {
        float dist2 = ((*i)->pos - (*j)->pos).lengthSqr();
        if (dist2 < (*i)->roi2 && (*i)->interestedIn(*j))
           (*i)->interestingEntities.insert(pair<IMBaseEntity *,float>
                                           (*j,dist2));
        else
           (*i)->interestingEntities.erase(*j);
       }

 // This manages the interestingEntities list for outbounds.
 for(i = outlist.begin();i!=outlist.end();i++)
    {
     set<IMBaseOutEntity *,IMBaseEntity::compare>::iterator i2 = i;
     for(i2++;i2!=outlist.end();i2++)
        {
         float dist2 = ((*i)->pos - (*i2)->pos).lengthSqr();
         if (dist2 < (*i)->roi2 && (*i)->interestedIn(*i2))
            (*i)->interestingEntities.insert(pair<IMBaseEntity *,float>
                                            (*i2,dist2));
         else
            (*i)->interestingEntities.erase(*i2);
         if (dist2 < (*i2)->roi2 && (*i2)->interestedIn(*i))
            (*i2)->interestingEntities.insert(pair<IMBaseEntity
*,float>
                                             (*i,dist2));
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         else
            (*i2)->interestingEntities.erase(*i);
        }
    }

 if (auto_tick)
    {
     for(i = outlist.begin();i!=outlist.end();i++)
        (*i)->tick();

     for(j = inlist.begin();j!=inlist.end();j++)
        (*j)->tick();
    }
}

void IMBaseClient::checkin(IMBaseOutEntity *e,unsigned int
from,unsigned int to)
{
if (from != to)
  {
   static McastPacket p;
   e->sendMoved(p,from,to,from);
   e->sendMoved(p,to,to,from);
  }
}

void IMBaseClient::sendDelayedMcast(unsigned int send_to,McastPacket
&packet,double delay)
{
 struct timeval tt;
 gettimeofday(&tt);
 double tod = (double)tt.tv_sec + tt.tv_usec/1000000.0;
 packet_type packetPair(send_to,packet);
 multimap<double,packet_type>::value_type
          valuePair(delay+tod,packetPair);
 delaySend.insert(valuePair);
}

void IMBaseClient::sendMcast(unsigned int send_to,McastPacket &packet)
{
 struct sockaddr_in sa_mcast;
 sa_mcast.sin_family=AF_INET;
 struct in_addr grpaddr;
 grpaddr.s_addr = send_to;
 sa_mcast.sin_addr=grpaddr;
 sa_mcast.sin_port=htons(9976);

 sendto(s2,&packet,sizeof(McastPacket),0,&sa_mcast,sizeof(sa_mcast));
}

void IMBaseClient::sendPing(unsigned int send_to)
{
 McastPacket packet;
 packet.type=McastPacket::PINGING;
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 packet.address=send_to;

 sendDelayedMcast(send_to,packet,JOIN_DELAY);
}

void IMBaseClient::sendMoved(IMBaseOutEntity *e,McastPacket
&mpacket,unsigned int send_to,unsigned int to,unsigned int from)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);
 if (to != from)
    {
     IMNode *n = tree[0][0][0]->findnode(from);
     if (n)
        n->elist.erase(e->address);
     n = tree[0][0][0]->findnode(to);
     if (n)
        n->elist.insert(e->address);
    }

 sendMcast(send_to,mpacket);
}

unsigned int IMBaseClient::OCTREE_find_primary(IMBaseOutEntity *e,bool
ask)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

//Check to see if we are currently in the correct region.
 if (e->primary_region.address != 0)
    if (e->primary_region.contains(e->pos))
       return 0;

 int x = (int)(e->pos[0]/REGION_SIZE) + WORLDSIZE;
 int y = (int)(e->pos[1]/REGION_SIZE) + WORLDSIZE;
 int z = (int)(e->pos[2]/REGION_SIZE) + WORLDSIZE;
 IMNode *tmp = tree[x][y][z];

 if (tmp) // If we found an answer
    {
     unsigned int rval = e->primary_region.address;
     // Work around bug in 'e->primary_region.contains', I think...
     if (rval == tmp->region.address) return 0;
     memcpy(&e->primary_region,&tmp->region,sizeof(CellRegion));
     return rval;
    }

 printf("You should never see this message!\n");
 return 0;
}

void IMBaseClient::filter(McastPacket &mpacket,IMBaseInEntity *ng)
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);
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 //Does Protocol Exist? O(lg P)
 IMBaseProtocol *protocol =
                 IMBaseProtocol::findObject(mpacket.moved.module_name);
 if (protocol == NULL)
    {
     bbModule::load(mpacket.moved.module_name,

mpacket.moved.module_version,0,mpacket.moved.module_url);
     protocol = IMBaseProtocol::findObject(mpacket.moved.module_name);

     if (protocol == NULL)
        {
         protocol = base_proto;
        }
    }

 //Does Entity Exist?
 set<IMBaseInEntity *,IMBaseEntity::compare>::iterator i;

 // Yes - an old guy. O(lg N)
 if ((i = inlist.find(ng)) != inlist.end())
    {
     // Update his packet unless we getting better updates elsewhere?
     if ((*i)->subscribed()) return;
     else
        if ((*i)->lastUpdate < mpacket.moved.lastUpdate)
           (*i)->update(mpacket);
    }
 else // No - a new guy O(lg N)
    {
     i = inlist.insert(protocol->new_entity(mpacket)).first;
    }

 // If he is checking out, delete him!
 if (mpacket.address == 0)
    {
     printf("Killing entity...\n");
     IMBaseInEntity *tmp = *i;
     inlist.erase(i);
     protocol->del_entity(tmp);
    }
 else
 //Keep track of number and who is in each region.
 //Atempt to split or merge if needed.
 if ((*i)->primary_region.address != mpacket.address)
    {
     IMNode *n = tree[0][0][0]->findnode((*i)->primary_region.address);
     if (n)
        n->elist.erase((*i)->address);
     n = tree[0][0][0]->findnode(mpacket.address);
     if (n)
        n->elist.insert((*i)->address);
    }
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}

void IMBaseClient::readFunc(bbThread *,bbData *that)
{
//printf("IMBaseClient::readFunc\n");

 //XXXX avoid race condition
 if (IMBaseClient::gClient != NULL)
    IMBaseClient::gClient->mcastcheck();
 else
    sleep(0);
}

void IMBaseClient::mcastcheck()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 int rval;
 static McastPacket mpacket;
 ACE_Handle_Set handle_set;

 handle_set.reset();
 handle_set.set_bit(msocket->get_handle());

 // Time out so thread will unblock.
 ACE_Time_Value t2(1,0);

 if ((rval = ACE_OS::select((msocket->get_handle())+1,handle_set,
                             NULL,NULL,&t2)) != 0)
    {
     if (rval == -1) perror("select");
     else
        {
         ACE_OS::recvfrom(msocket->get_handle(),(char *)&mpacket,
                          sizeof(McastPacket), 0,0,0);
         switch (mpacket.type)
                {
                 case McastPacket::MOVED:
                          {
                           static IMBaseInEntity *ng =
                                       new IMBaseInEntity(mpacket);
                           ng->address = mpacket.newaddress[1];
                           filter(mpacket,ng);
                          }
                          break;

                 case McastPacket::PINGING:
                          {
               printf("Got Ping!\n");
       set<IMBaseOutEntity *,IMBaseEntity::compare>::iterator
i;
                 for(i = outlist.begin();i!=outlist.end();i++)
                    if ((*i)->primary_region.address ==
mpacket.address)
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                       (*i)->forceSend();

 // Remove ping request if we already go one.
 multimap<double,packet_type>::iterator p = delaySend.begin();
 for(;p != delaySend.end(); p++)
    {
     if ((*p).second.first == mpacket.address &&
         (*p).second.second.type == McastPacket::PINGING)
        {
         delaySend.erase(p);
         printf("Ping request removed..\n");
         break;
        }
    }

                          }
                          break;

                 default: printf("Unknown message from socket!\n");
                }
        }
    }
}

12. baseInEntity.c++

#include "IMBaseEntity.h"

int IMBaseEntity::rtt;
char IMBaseEntity::module_name[64] = "IMBaseClientModule";
char IMBaseEntity::module_url[192] = "";
float IMBaseEntity::module_version = 0.894;

#include "IMBaseClient.h"
#include "IMBaseInEntity.h"

void IMBaseInEntity::update(McastPacket &mpacket)
{
 memcpy(&lastPacket,&mpacket,sizeof(McastPacket));
 npsVec3f newpos(mpacket.moved.x,mpacket.moved.y,mpacket.moved.z);
 npsVec3f newvel(mpacket.moved.vx,mpacket.moved.vy,mpacket.moved.vz);

 oldoldpos = oldpos;
 oldpos = newpos;

 oldvel = vel;
 vel = newvel;

 lastlastUpdate = lastUpdate;
 lastUpdate = mpacket.moved.lastUpdate;
}

void IMBaseInEntity::tick()
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{
 dt = IMBaseClient::gClient->getTime()-lastUpdate;
 pos = oldpos + vel * dt;

 if (dt < smooth_time)
    {
     double dt2 = IMBaseClient::gClient->getTime()-lastlastUpdate;
     float frac = dt/smooth_time;
     pos = pos * frac + (oldoldpos + oldvel * dt2) * (1.0f-frac);
    }
}

13. baseNode.c++

#include "IMSocket.h"
#include "IMBaseNode.h"
#include "IMBaseClient.h"
#include "IMBaseInEntity.h"
#include "IMBaseOutEntity.h"

map<unsigned int,IMNode *> IMNode::nodemap;

IMNode *IMNode::findnode(unsigned int address)
{
 map<unsigned int,IMNode *>:: iterator i = nodemap.find(address);

 if (i != nodemap.end()) return (*i).second;

 return NULL;
}

bool IMNode::remfromtree()
{
 ref--;

 if (ref > 0) return false;

 IMBaseClient::gClient->msocket->unsubscribe(region.address);

 set<unsigned int>::iterator i;
 for(i= elist.begin();i != elist.end(); i++)
    {
     IMBaseInEntity ng;
     ng.address = *i;
     set<IMBaseInEntity *>::iterator
           i = IMBaseClient::gClient->inlist.find(&ng);
     if (i != IMBaseClient::gClient->inlist.end())
        {
         IMBaseClient::gClient->inlist.erase(i);
         delete *i;
        }
    }
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 return true;
}

bool IMNode::addtotree()
{
 ref++;

 if (IMBaseClient::gClient->msocket->subscribe(region.address))
    {
     IMBaseClient::gClient->sendPing(region.address);
printf("Sent ping to %d\n",region.address);
     return true;
    }

 return false;
}

IMNode *IMNode::XYZtonode(IMBaseOutEntity *e)
{

 if (region.contains(e->pos) && e->smallest_region < region.ext.r)
    {
     for(int i=0;i<8;i++)
        {
         if (child[i])
            {
             IMNode *rval = child[i]->XYZtonode(e);
             if (rval) return rval;
            }
        }
     return this;
    }
 return NULL;
}

int IMNode::searchXYZR(double x,double y,double z,double r,CellRegion
*cells)
{
 //Always return parent.
 CellRegion *origregs = cells;
 cells[0].ext.x = region.ext.x;
 cells[0].ext.y = region.ext.y;
 cells[0].ext.z = region.ext.z;
 cells[0].ext.r = region.ext.r;
 cells[0].address = region.address;
 cells = &cells[1];
 int count = 1;

 // Out of the eight child, which do we intersect?
 for(int i=0;i<8;i++)
    {
     if (child[i])
        {
         if (((x-region.ext.x)*(x-region.ext.x) +
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              (y-region.ext.y)*(y-region.ext.y) +
              (z-region.ext.z)*(z-region.ext.z)) <
              (2*r*r + 2*region.ext.r*region.ext.r))
            {
             int c = child[i]->searchXYZR(x,y,z,r,cells);
             cells = &cells[c];
             count += c;
            }
        }
    }

 //Set number of regions below this one.
 origregs->below = count-1;

 //Return the number of regions.
 return count;
}

14. baseOutEntity.c++

#include "IMBaseClient.h"
#include "IMBaseOutEntity.h"
#include "IMBaseNode.h"

// For set_difference
#include "algo.h"
#include "set.h"
#include "vector.h"

IMBaseOutEntity::IMBaseOutEntity(npsVec3f p, float search_r, float dia,
float vel, float timeout)
{
 roi = search_r;
 roi2 = roi*roi;
 primary_region.address = 0;
 address = 0;

 AvgBoundDia(dia);
 AvgMaxVel(vel);

 dead_timeout = timeout;
 oldvel.makeNull();
 oldpos = pos = p;
 oldvel[0] = 0.0;  oldvel[1] = 0.0;  oldvel[2] = 0.0;
 obtain_address();
 IMBaseClient::gClient->addOutEntity(this);
 lastTick = IMBaseClient::gClient->getTime();
}

IMBaseOutEntity::IMBaseOutEntity(npsVec3f p,float search_r)
{
 roi = search_r;
 roi2 = roi*roi;
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 primary_region.address = 0;
 address = 0;

 AvgBoundDia(1.0);
 AvgMaxVel(1.0);

 dead_timeout = 5.0;
 oldvel.makeNull();
 oldpos = pos = p;
 oldvel[0] = 0.0;  oldvel[1] = 0.0;  oldvel[2] = 0.0;
 obtain_address();
 lastTick = IMBaseClient::gClient->getTime();
 IMBaseClient::gClient->addOutEntity(this);
}

IMBaseOutEntity::~IMBaseOutEntity()
{
 IMBaseClient::gClient->remOutEntity(this);
 unsigned int old = primary_region.address;
 primary_region.address = 0;
 checkin(old);
}

void IMBaseOutEntity::obtain_address()
{
 static unsigned int clientaddress = 0;
 if (!clientaddress)
    {
     char myname[255];
     gethostname(myname,255);
     struct hostent *en = gethostbyname(myname);
     clientaddress = *((int *)(en->h_addr_list[0]));
     clientaddress = (clientaddress >> 24) + (clientaddress<<24) +
                     (clientaddress&0x00ffff00);
    }

 address = clientaddress++;
}

void IMBaseOutEntity::checkin(unsigned int old)
{
 IMBaseClient::gClient->checkin(this,old,primary_region.address);
}

void IMBaseOutEntity::sendMoved(McastPacket &mpacket,unsigned int
send_to,unsigned int to,unsigned int from)
{
 mpacket.type=McastPacket::MOVED;
 mpacket.address=to;
 mpacket.newaddress[0]=from;
 mpacket.newaddress[1]=address;
 mpacket.moved.x = pos[0];
 mpacket.moved.y = pos[1];
 mpacket.moved.z = pos[2];
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 mpacket.moved.vx = vel[0];
 mpacket.moved.vy = vel[1];
 mpacket.moved.vz = vel[2];
 mpacket.moved.lastUpdate = lastUpdate;
 mpacket.moved.module_version = protocol_version();
 strcpy(mpacket.moved.module_name,protocol_name());
 strcpy(mpacket.moved.module_url,protocol_url());

 IMBaseClient::gClient->sendMoved(this,mpacket,send_to,to,from);
}

unsigned int IMBaseOutEntity::find_primary()
{
 ACE_Guard<bbMutex> guard(IMBaseClient::gClient->tree_mutex);

 set<IMNode *> new_nodes;

 // We end up doing this twice cause entitiy doesn't have an IMNode
*...
 int x = (int)(pos[0]/REGION_SIZE) + WORLDSIZE;
 int y = (int)(pos[1]/REGION_SIZE) + WORLDSIZE;
 int z = (int)(pos[2]/REGION_SIZE) + WORLDSIZE;
 IMNode *tmp = IMBaseClient::gClient->tree[x][y][z];

 if (tmp)
    {
     new_nodes.insert(tmp);

     if (x == 0) x = 1;
     if (y == 0) y = 1;
     if (z == 0) z = 1;

     if (x == 2*WORLDSIZE) x = 2*WORLDSIZE - 1;
     if (y == 2*WORLDSIZE) y = 2*WORLDSIZE - 1;
     if (z == 2*WORLDSIZE) z = 2*WORLDSIZE - 1;

     for(int xx = x-1; xx < x+2; xx++)
        for(int yy = y-1; yy < y+2; yy++)
           for(int zz = z-1; zz < z+2; zz++)
              {
               IMNode *n = IMBaseClient::gClient->tree[xx][yy][zz];
               if (n->region.contains(pos,roi))
                  new_nodes.insert(n);
              }

     vector<IMNode *> add_nodes(new_nodes.size(),NULL);
     vector<IMNode *>::iterator a = add_nodes.begin();
     a = set_difference(new_nodes.begin(),new_nodes.end(),
                        current_nodes.begin(),current_nodes.end(),a);
     for(a = add_nodes.begin();a != add_nodes.end(); a++)
        if (*a)
           {
            c++;
            (*a)->addtotree();



229

            current_nodes.insert(*a);
           }

     vector<IMNode *> old_nodes(current_nodes.size(),NULL);
     vector<IMNode *>::iterator o = old_nodes.begin();
     o = set_difference(current_nodes.begin(),current_nodes.end(),
                        new_nodes.begin(),new_nodes.end(),o);
     for(o = old_nodes.begin() ;o != old_nodes.end(); o++)
        if (*o)
           {
            c++;
            (*o)->remfromtree();
            current_nodes.erase(*o);
           }
    }

 return IMBaseClient::gClient->OCTREE_find_primary(this,true);
}

void IMBaseOutEntity::Update_dt()
{
 dt = IMBaseClient::gClient->getTime() - lastTick;
}

void IMBaseOutEntity::forceSend()
{
 double time = IMBaseClient::gClient->getTime();
 lastUpdate = time;
 oldvel = vel;
 oldpos = pos;
 static McastPacket p;
 sendMoved(p,primary_region.address,primary_region.address,0);
}

void IMBaseOutEntity::tick()
{
 double time = IMBaseClient::gClient->getTime();
 double big_dt = time-lastUpdate;

 int oldcell = find_primary();

 npsVec3f ghostpos = oldpos + oldvel * big_dt;
 vel = (pos - lastPos)/dt;

 if ((ghostpos - pos).lengthSqr() > dead_thresh ||
      big_dt > dead_timeout || oldcell)
    {
     lastUpdate = time;
     oldvel = vel;
     oldpos = pos;
     static McastPacket p;
     if (oldcell) checkin(oldcell);
     else sendMoved(p,primary_region.address,primary_region.address,0);
    }
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 lastPos = pos;
 lastTick = time;
}

void IMBaseOutEntity::calc_smallest_region()
{
 dead_thresh = 1.0;
 printf("dead_thresh now %f meters.\n",dead_thresh);
}

15. baseProtocol.c++

#include "IMBaseClient.h"
#include "IMBaseProtocol.h"
#include "IMBaseInEntity.h"

IMBaseInEntity *IMBaseProtocol::new_entity(McastPacket &mpacket)
{
 return new IMBaseInEntity(mpacket);
}

void IMBaseProtocol::del_entity(IMBaseInEntity *e)
{
 delete e;
}

void IMBaseProtocol::setup(void)
{
}

16. msocket.c++

#include "IMSocket.h"

Msocket::Msocket(unsigned short port)
{
 if (ACE_SOCK_Dgram::open(ACE_INET_Addr(port),PF_INET,0,1) < 0)
    perror("open:");

 char buf[BUFSIZ];
 struct ifconf ifc;
 ifc.ifc_len = sizeof(buf);
 ifc.ifc_buf = buf;
 if (ACE_OS::ioctl(get_handle(), SIOCGIFCONF, &ifc) < 0)
    perror("ioctl SIOCGIFCONF");
 struct ifreq *ifr;
 ifr = ifc.ifc_req;
 ifaddr = ((struct sockaddr_in *)&ifr->ifr_addr)->sin_addr;

 int on = 1;
 if (set_option(SOL_SOCKET,SO_REUSEADDR,&on,sizeof on) == -1)
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    perror("setsockopt SO_REUSEADDR");
 if (set_option(SOL_SOCKET,SO_REUSEPORT,&on,sizeof on) == -1)
    perror("setsockopt SO_REUSEPORT");

 int off = 0;
 if (set_option(IPPROTO_IP, IP_MULTICAST_LOOP, &off, sizeof off) == -1)
    perror("msocket setsockopt IP_MULTICAST_LOOP");
}

Msocket::~Msocket()
{
 ACE_SOCK_Dgram::close();
}

bool Msocket::subscribe(unsigned int address)
{
 //Don't bother if already subscribed
 if (!sub_list.insert(address).second) return false;

 ip_mreq mreq;
 mreq.imr_multiaddr.s_addr = address;
 mreq.imr_interface = ifaddr;
 if (ACE_SOCK::set_option(IPPROTO_IP,IP_ADD_MEMBERSHIP,&mreq,sizeof
mreq)== -1)
    perror("setsockopt add membership");

 return true;
}

void Msocket::unsubscribe(unsigned int address)
{
 //Don't bother if not already subscribed
 if (!sub_list.erase(address)) return;

 in_addr grpaddr;
 ip_mreq mreq;
 grpaddr.s_addr = address;
 mreq.imr_multiaddr = grpaddr;
 mreq.imr_interface = ifaddr;
 if (ACE_SOCK::set_option(IPPROTO_IP,IP_DROP_MEMBERSHIP,&mreq,
     sizeof mreq)== -1)
    perror("setsockopt add membership");
}



232

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center................................................................. 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudly Knox Library ............................................................................................ 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Dr. Don Brutzman ............................................................................................... 1
Code UW/BR
Naval Postgraduate School
Monterey, California 93943-5001

4. Dr. Rudy Darken ................................................................................................. 2
Code CS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5001

5. Dr. Ted Lewis...................................................................................................... 1
Code CS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5001

6. Dr. Sandeep Singhal ............................................................................................ 2
IBM Corporation
P.O. Box 12195
RTP, NC 27709

7. Dr. Michael J. Zyda ............................................................................................. 2
Code CS/ZK
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5001



233

8. Dr. Michael Macedonia ....................................................................................... 1
Chief Scientist and Technical Director
US Army STRICOM
12350 Research Parkway
Orlando, Florida 32826-3276

9. Jaron Lanier......................................................................................................... 1
Advanced Network & Services, Inc.
200 Business Park Drive
Armonk, New York 10504

10. Al Weis ............................................................................................................... 1
Advanced Network & Services, Inc.
200 Business Park Drive
Armonk, New York 10504

11. Michael Myjak .................................................................................................... 1
1615 South Carpenter Road
Titusville, Florida 32796

12. Dr. Mark Pullen................................................................................................... 1
Computer Science/C3I Center MS4A5
George Mason University
Fairfax, Virginia 22030

13. Nagesh Kakarlamudi ........................................................................................... 1
9577 Sunnyslope Dr.
Manassas, Virginia 20112-2766

14.       Mr & Mrs Abrams ...............................................................................................1
1339 Green Knolls Drive
Buffalo Grove, Illinois 60089


