
January 25, 1994 1

Abstract

The Graphics and Video Laboratory of the Naval Post-
graduate School (NPS) is in the process of constructing a
three dimensional (3D) virtual world called NPSNET
[Zyda91]. NPSNET is a low-cost, commercial workstation-
based 3D visual simulator that utilizes SIMNET terrain data-
bases and networking [Garv88]. NPSNET is programmed
utilizing off-the-shelf SGI IRIS graphics workstation, rather
than the platform specific nodes of SIMNET. Part of the
work in constructing the NPSNET world is detecting and re-
solving collisions in real-time. Such collision detection and
resolution has been accomplished and integrated into the lat-
est version of NPSNET, NPSNET-2. The detection of vehi-
cle-weapon, vehicle-vehicle and vehicle-stationary nonvehi-
cle collisions is performed throughout the virtual world.

Background

Users of NPSNET are able to drive many different types
of vehicles such as tanks, jets, ships, helicopters and armored
personnel carriers. Up to 500 of the vehicles/objects can ma-
neuver in the world at one time. The 500 vehicles can include
autonomous vehicles that react when fired upon by either re-
turning fire or fleeing the area. These 3D icons move around
in the computer world that is based on the terrain at Fort
Hunter-Liggett, California. The terrain appearance is en-
hanced by the inclusion of textures on many terrain details.
Depending upon the model of IRIS being used, the user can
select to use texturing, fog and even haze. The system is net-
worked, via Ethernet, to allow several players to interact. A
two dimensional (2D) map option shows the position and
tracking of all the players in the 50 kilometer square. This
map displays the direction and viewing triangle of the driven
vehicle as well as the position and movement of the remain-
ing vehicles. The statistics and data concerning the driven
vehicle are displayed in a window at the top of the screen.
Speed, pitch, roll, number of remaining rounds and remain-
ing fuel are a few of the statistics shown. Players control their
chosen vehicles through several interface devices including
a button/dialbox, keyboard and SpaceBall.

The Spaceball is a single device used to control an ob-
ject’s six degrees of freedom. The pick button on the Space-
Ball fires the appropriate weapon associated with the vehicle
being driven. Applying pressure to the SpaceBall adds to the
thrust in the applied direction; twisting the Spaceball chang-
es the object’s orientation. This allows the player to turn,

move forward, backward, up and down very quickly. Since
the system runs in real-time, reactions to events, not just the
detection of them, have to take place very quickly. This in-
cludes following terrain contours, reacting to input from the
user and responding to changes in the 3D world. As long as
no collision occurs, the displays on the original NPSNET,
NPSNET-1, are realistic.

Purpose And Goals Of Work

NPSNET-1 does not detect nor respond to vehicle colli-
sions. Without collision detection and response, the realism
of NPSNET-1 is poor. Even with texturing, environmental
effects and realistic looking vehicles, the virtual world falls
apart the first time one vehicle drives through another. Our
work, implemented in NPSNET-2, detects and responds to
collisions between objects in real-time. Detection is suffi-
ciently fast to allow the time needed to respond properly. Re-
sponse time is dependent upon the level of physically-based
modeling.

Physically-based modeling is the process of giving ob-
jects the characteristics they actually possess and making
those objects react to the forces that influence them in the
real world. Transient events are those inputs that act upon the
models to change the characteristics of the models. For ex-
ample a missile impacting upon a tank would definitely
change the tank’s representation. Characteristics include
things such as: spring forces, moldability, rigidity, weight,
gravity, explosive potential and much more. Transient events
include collisions, explosions, terrain modifications and any-
thing else that affects the physically-based model of either
the world itself or the individual objects within that world.
There are physically-based models on the market with real-
istic texturing, collision detection and response. However,
very few are done in real-time.

Achieving real-time collision detection and response is
the primary goal of this work. Secondary goals include com-
patibility with SIMNET, realism in the responses and com-
patibility with future hardware upgrades. Detection of all
collisions is another secondary goal. This goal may not be
necessary though since realism can be achieved by only re-
sponding to those collisions that occur within the viewing
area of the user.

Below covers previous attempts to solve the problem of
collision detection and response. Other solutions to this
problem are covered including interpenetration of bounding

NPSNET: REAL-TIME VEHICLE COLLISIONS,
EXPLOSIONS AND TERRAIN MODIFICATIONS

Michael J. Zyda*, William D. Osborne, James G. Monahan, David R. Pratt
Naval Postgraduate School

Department of Computer Science
Monterey, California 93943-5100 USA
Email: zyda@trouble.cs.nps.navy.mil

In The Journal of Visualization and Computer Animation, Vol. 4, No. 1, 1993, pp. 13-24.

January 25, 1994 2

boxes and spheres, physically-based modeling and simple
spring forces.

A description of NPSNET-2’s collision/response module
is presented. Several steps have been taken to limit the num-
ber of objects checked for a collision. The implementation of
the module is discussed along with the various algorithms and
thought processes that went into its design.

The final sections cover results and conclusions including
requirements and suggestions for future work in the area of
real-time collision detection and response for NPSNET-2.

Other Related Work

There are several papers that cover non-real time ap-
proaches to collision detection and response: [Moor88],
[Hopc83] and [Terz87]. There are also a few works that cover
real-time approaches: [Garv88], [Hahn88] and [Uchi83].

A system for an interactive battlefield simulation is SIM-
NET [Garv88]; however, it is prohibitively expensive and
only runs on hardware specific for each type of vehicle,
whereas NPSNET uses one general purpose simulator for all
vehicles. SIMNET has a collision detection and response sys-
tem which is only a small part of the overall system just as
this work is only a small part of the NPSNET system. NPS-
NET complements SIMNET as a general battlefield simula-
tion system; however, there are other existing simulation and
collision detection papers which approach the problem of col-
lision detection and response specifically.

An example is a paper by Moore and Wilhelms [Moor88].
It discusses the issue of collision detection and response spe-
cifically and goes into detail about both flexible and solid sur-
faces. The algorithm presented in this paper tests to see if the
points of one object are inside the points of another, and if
they are, a collision has occurred. Two algorithms for colli-
sion detection are given in Moore and Wilhelms’ paper, each
of which is broken down into two parts. One part tests for pla-
nar penetration, and the other part tests for edge penetration.
The results of both algorithms are then passed to a collision
response algorithm. The algorithm then determines an appro-
priate response to the collision. The response concentrates on
giving new linear and angular velocities to the objects in-
volved. The authors take two approaches: one for objects at
rest with forces acting upon them, such as gravity and mass
and a second approach for moving objects. The objects at rest
respond with spring-like reactions while the moving objects
have to be analyzed to determine the appropriate response.
Physically-based modeling is discussed and partially imple-
mented. The paper’s final solution to the problem of collision
response is to use a dynamic approach which can access ei-
ther the spring force or the analytical method. The biggest
drawback to the paper is that the implementation is not real-
time.

Another paper isCollision Detection in Motion Simula-
tion by Uchiki, Ohashi and Tokoro [Uchi83]. It uses an inde-
pendent process, a space occupancy method, which detects

when spheres, which enclose objects, occupy the same space.
Each object is sent a message whenever it tries to occupy a
space that is already occupied by another object’s sphere.
Consequently, message passing is the key to its success. It has
an additional feature that makes it unique in that it also passes
the point of the collision to the collision detector. This is an
important bit of information that is essential to collision re-
sponse. To properly react to a transient event, the collision
point must be known. Again this is a characteristic of physi-
cally-based modeling and one that must be preserved in order
to accurately and realistically display interaction among ob-
jects in the physically-based world.

The paper by Hopcroft, Schwartz and Sharir [Hopc83]
provides an algorithm for determining whether a collision has
occurred between two objects in three dimensional space.
The paper uses spheres to determine intersections between
objects. Every object within the paper’s model is enclosed
within a sphere. The basis of the paper is to determine if any
two of those spheres intersect. It also provides a computation-
al complexity analysis for the algorithm along with the math-
ematics involved in calculating the intersection. Hopcroft’s
paper also contains the data structures used to create the effi-
ciency of their method. Sorting and placement of the sphere
locations and radii are an important part of the method and
contribute greatly to the results obtained.

In Hahn’s paper [Hahn88] an overview and a limited im-
plementation for a computer animation system to model 3D
moving objects is presented. Hahn’s paper goes into detail on
the physically-based modeling of the objects and the method-
ology for creating realistic movement of those objects. The
paper provides a method for computing the motion of objects
by merging not only dynamics but kinematics as well. It al-
lows for interaction between objects that includes collision
detection and response. If a collision has occurred, then the
collision point along with the backup vector is sent to an an-
alyzer which determines the appropriate response. The re-
sponse is limited to a bouncing effect at a new velocity and
angle. This is the major shortfall of the paper and where the
physically-based modeling stops. Responses are built into a
table of script files and are limited so that a true response may
not be given but whatever comes closest to matching the pre-
programmed response.

In Elastically Deformable Models by Terzopoulos, et al
[Terz87] the problem of deformable objects is discussed.
These are objects which would not normally get penetrated
but would respond by giving in or bending away from the col-
lision point. Objects of this type include things like paper,
rubber and other flexible materials. The paper deals exclu-
sively with deformable objects.Elastically Deformable Mod-
els does demonstrate what occurs in response to different
types of forces, constraints and other objects. The paper pro-
motes the use of dynamic models which react to transient
events based upon the principles of applied physics.

A predecessor to NPSNET is the moving platform simu-
lator (MPS) series. It has three versions, with versions 2.0

January 25, 1994 3

(MPSII) [Winn89] and 3.0 (MPSIII) [Chee90] each having
collision detection. The detection consists of a 2D check for
nearness of other vehicles or platforms. If a platform comes
within a certain range of another platform then both platforms
are killed. There is no check for non-platforms, such as trees,
bushes, etc. Additionally, the only response is to kill the ve-
hicles, not damage them or bounce them off of each other.

 The fundamentals of detecting collision points are con-
tained in the bookAn Introduction to Ray Tracing [Glas89].
The book covers not only the fundamentals but the specifics
of finding intersection points for collisions.

Although, several other programs and systems exist that
perform collision detection and response, few do so on SGI
IRIS graphics workstation hardware and none do it in real-
time. SIMNET comes closest to meeting these objectives but
works only on its own particular set of hardware.

Program Implementation

NPSNET-2 runs on any graphics workstation with the GL
libraries but has been developed on the IRIS workstations, in-
cluding the IRIS 4D/120 GTX, 4D/70 GT and the 4D/240
VGX. It is written in Kernighan & Ritchie C [Kern78]. The
NPSNET system involves real-time response in a battlefield
simulation of land, sea and air forces. The system is net-
worked, via Ethernet, to allow for multiple players to interact.
NPSNET performs realistic animation of explosions involv-
ing direct and indirect hits by ordnance; collisions of vehicles
with other vehicles and terrain features; and terrain modifica-
tions such as craters and destroyed trees. NPSNET is relative-
ly inexpensive in comparison to SIMNET. Moreover, NPS-
NET uses one general purpose simulator to operate on the en-
tire battlefield while SIMNET uses a different type of
simulator for each different type of vehicle/platform. This al-
lows any user to sit down at one terminal and become any ve-
hicle in the simulated world. The user can select a different
vehicle to operate simply by pressing a button rather than
switching hardware. Due to the generic application of the col-
lision detection routines, NPSNET-2 continues to perform in
real-time regardless of the simulated vehicle.

World Segmentation

NPSNET’s virtual world is divided up into gridsquares of
a constant size based upon the actual terrain features of the
database from the SIMNET Database Interchange Specifica-
tion (SDIS) [Lang90]. The gridsquares are small, 125 meters
square. Associated with each gridsquare are both fixed and
moving objects.

Collision Detection

Collision detection contributes significantly to virtual
world realism. Objects passing through other solid objects
makes the world unrealistic. A possible solution to this prob-
lem would be to prevent interpenetrations by bouncing ob-

jects off of each other after any contact, but this is rarely ac-
curate. Another possible solution is to destroy the objects in-
volved in collisions. A third option is to combine these two
solutions along with varying stages of damage to involved
objects depending upon the physical characteristics of the in-
volved objects. That is the approach taken by our work.

Against Fixed Objects

The algorithm for collisions with fixed objects constantly
checks moving vehicles to determine if a collision has oc-
curred. The position of the moving vehicle is updated con-
stantly. Consequently, as soon as a vehicle is moved and its
position is updated, it is checked for a collision. In order to
maintain a real-time speed, the scope of the collision detec-
tion is severely limited. A collision with fixed objects is
checked only if the moving vehicle is below a threshold ele-
vation. All fixed objects are in some way attached to the ter-
rain and thus below that threshold elevation. If an object is be-
low that elevation, NPSNET-2 runs through a linked list of
fixed objects which are attached to the current gridsquare.
This is a quick check since there are relatively few fixed ob-
jects in any one gridsquare (Table 1).

Against Moving Objects

A collision with other moving objects is more complicat-
ed since any other moving vehicle or object has the potential
for colliding with the vehicle we are checking. The potential
exists for checking up to 500 vehicles and any of their ex-
pendable weapons. Consequently, the scope of the collision
detection range has been limited in several ways.

As soon as each vehicle is moved, its position is checked
against the position of the neighboring vehicles. If the X or Z
position of any other vehicle is within 100 meters of the
checked vehicle then those two vehicles are sent to the second
level check. At the second level check, the distance between
the two vehicles is calculated. If this distance is less than the
combined radii of the two vehicles, then a collision has oc-
curred and the third level collision check is done. A rudimen-
tary form of ray tracing determines the actual point of colli-
sion.

If worst case numbers are used to determine the implicit
range limitations of all vehicles, it can be shown why this
culling is fairly accurate. Reasonable speed limitations of the
various types of vehicles are used to calculate worst cases for
each (Table 2). For example, a ground vehicle with a forward
velocity of 60 kilometers per hour travels 1000 meters per
minute or 16.6 meters per sec. At a frame rate of 10 frames
per sec, this is equivalent to 1.66 meters per frame. Since the
vehicle positions are updated each time before the frame is
displayed, they are also checked for a collision. A ground ve-
hicle would have to travel at approximately 1000 KPH to
completely traverse two gridsquares in one second. Conse-
quently, the movement across more than two gridsquares

January 25, 1994 4

within one tenth of a second, one frame, is impossible
(Figure 1).

The distance for the first level check is used as a
rough approximation for proximity of other vehicles.
The gridsquares that can be reached by the vehicle within
one frame are checked (Figure 2). The limitation of 100
meters ensures an efficient culling for collision detection
and allows the time needed for collision response.

Collision detection is accomplished by determining if
one object has interpenetrated another. The most obvious
way to determine if a collision has occurred is to create a
bounding box or sphere around each object and if that
surface is penetrated, then a reaction must occur. Both
methods are simple to implement, but the sphere imple-
mentation is slightly faster.

The radius used in the spherical check is the maxi-
mum distance from the center of the object to the furthest
outer vertex. The bounding box uses a maximum and
minimum value, not necessarily the value at that part of
the object being penetrated. In the collision response por-
tion of the system, the actual object’s penetration point is
determined. A slightly smaller value than the actual radi-
us of the object is used for the radius. This produces a
more realistic collision possibility since it increases the
likelihood of an actual collision of the checked objects

.

125 meters

125 meters

Figure 1. Vehicle Movement

radius of
movement

1.6 m

ABOVE &
LEFT

ABOVE ABOVE &
RIGHT

LEFT

BELOW &
LEFT

BELOW &
RIGHT

RIGHT

UPPER
LEFT
QUAD

UPPER
RIGHT
QUAD

LOWER
LEFT
QUAD

LOWER
RIGHT
QUAD

Figure 2. Possible Gridsquares

SQUARE SQUARE

BELOW

and not just their spheres. Once the collision has been de-
tected, the extent of damage and collision response are
determined.

Collision Response

Collision response is handled by a function which
takes in the two involved objects as arguments and deter-
mines the impact of the damage upon the them. Many
variables must be taken into account to include speed and
angle of impact, mass of the objects involved, explosive
potential, resistance to destruction, moldability of the ob-
jects, rigidity and fabricated spring forces which deter-
mine the bouncing-off effect and likelihood of surviv-
ability. Each of these factors is weighted in order to pro-
vide as realistic an effect as possible while maintaining
the environment in real-time. For example, if a tank runs
directly over a tree quickly, there should only be a stump
remaining if the vehicle operator were to turn around and
look backwards. Additionally, if two tanks were to col-
lide at 20 miles per hour, there would probably be a large
dent in both along with a severe bouncing effect if the an-
gle of impact was small. If the angle of impact was se-
vere, then both tanks would sustain a large amount of
damage. In a real situation, there would be several visual
effects that would occur simultaneously in response to
the impact. Special effects such as smoke and fire are in-
cluded.

Fixed Objects

The implementation of collision response requires
the input of the two objects involved. A basic assumption
that was made was that collisions between more than two
objects do not occur very often. Associated with each ob-
ject, both fixed and moving, are radii that determine the
sphere size for the collision checks. For a moving vehicle
colliding with a fixed object, there are only a few basic
cases:

❏ The vehicle is undamaged and destroys the fixed
 object.
❏ Both the vehicle and fixed object are damaged.
❏ Neither the vehicle and fixed object are damaged.

In all cases, the fixed object does not move; however,
its appearance may change. If the fixed object is large
and heavy, such as a building, then the moving vehicle is
probably damaged. If the fixed object is small and light,
like a small tree or stop sign, then it will be destroyed. A
more complex issue arises when two moving objects im-
pact with each other.

January 25, 1994 5

Moving Objects

In the case where two moving objects impact, all of
the physically-based modeling characteristics of each
object must be considered. The collision point must be
known to create realistic responses in the involved ob-
jects. The collision point determines the point for any
type of bending, crumpling and molding. Moreover, if
the point of collision is part of a wall that is interconnect-
ed to several other walls then there will have to be corre-
sponding responses in those interconnected walls. The
only way to find the collision point is through ray trac-
ing.

The first ray is shot from the center of a moving ob-
ject towards the center of an adjacent object to determine
a possible point of collision. This collision may simply
be between the bounding spheres of the two objects and
not the actual objects themselves. The intersection be-
tween the first ray and the second object’s bounding
sphere is used to specify the direction of a second ray
originating from the adjacent object’s center.

The second ray determines if one of the object’s actu-
al polygons was penetrated. This second ray is the ray
used in Haines’ algorithm. This algorithm from Glassner
[Glas89] was adapted for use in the collision point deter-
mination. It involves running through the list of polygons
that comprise the adjacent object and determining if the
second ray intersects the plane containing the polygon. If
no intersection is found once all of the polygons have
been checked, then only the spheres were penetrated and
not the objects themselves (Figure 3).

If the plane that the polygon lies in is intersected then
the polygon itself must be checked for an intersection.
This is where Haines’ adaptation of the Jordan Curve
Theorem is implemented. The Jordan Curve Theorem

Object 1 Object 2

Sphere 2

Point of intersection, Spheres Only

Object 3 Object 4

Point of Intersection, Objects

Sphere 4

Figure 3. 2D Collision Detection

Sphere 1

Sphere 3

simply states that if a point lies inside a polygon and a
line is drawn from that point to another coplanar point
outside of the polygon then it will intersect the polygon
edges an odd number of times. Conversely, if the poly-
gon edges are intersected an even number of times, then
that point lies outside the polygon (Figure 4). The poly-
gon vertices, along with the line segment from the possi-
ble polygon intersection to the adjacent object’s bound-
ing sphere intersection, are projected onto a common
plane. The projected line segment is checked against the
edges of the projected polygon for number of crossings.
The algorithm is efficient since all edges are either re-
jected with no intersection at all or accepted as intersect-
ed. The algorithm also avoids the problem of points that
lie exactly on the edge by placing those points either in-
side the checked polygon or outside it. The key to mak-
ing the algorithm work is to determine the dominant co-
ordinate, and to then work only in that coordinate’s
plane. This simplifies the process enormously and allows
for a much faster implementation in only two dimen-
sions.

Reactions

The proper response is performed by comparing the
characteristics of two objects involved in the collision.
The first check is to determine whether or not the objects
involved are fixed or mobile. A few general guidelines
are applied to all collisions. The larger massed object in-
flicts more damage on the smaller massed object. The
fixed object has no ability to shift away from the point of
contact and consequently suffers more damage than a
mobile object with the ability to spring away (Figures 5a

Odd number of Even number of
crossings, Outside

Figure 4. Intersection Check

Possible

Possible
Collision
Point

U’ U’
Axis

crossings, Inside

Collision
Point

Axis

January 25, 1994 6

nad 5b).

A large fixed object, such as a bunker or large rock,
can withstand a much larger force of impact than a small
fixed object. A large fixed object also inflicts much more
damage to the mobile object that struck it. A small mo-
bile object suffers damage if it is hit by a large mobile ob-
ject at angles that are near multiples of 90 degrees. At
smaller angles, even small vehicles are able to bounce
away from the impact with a minimum of damage. Con-
sequently, the collision response is limited to a few in-
stances. For fixed objects, the responses include several
degrees of damage, based upon the speed and mass of the
colliding object. Up to three levels of damage plus the
original undamaged fixed object are available for display
after a collision. For mobile objects, the response de-
pends upon the angle of impact as well as the speed and
mass of the two involved objects. The mobile object re-
acts by either bouncing away or being destroyed and ex-
ploding. In the special case of contact by munitions, the
only response is an explosion.The limited number of op-
tions available for the response to the collision keep the
response fast to maintain the real-time criteria. The col-
lision point and direction of travel are passed to another
module that handles physically-based modeling of object
movement. This function’s implementation can be seen
in [Mona91]. That work uses all of the physical charac-
teristics of the object to create the more accurate re-
sponse that goes beyond the scope of this work.

Performance

The performance of NPSNET-2 is not affected by the
addition of the collision detection and response modules.
The response time for detection of fixed objects is ade-
quate regardless of the speed of the moving objects.
However, for collisions between two high speed objects,
collision detection is sometimes slow. When vehicles are

OBJ
A

OBJ
B

OBJ
A

OBJ
B

Spring
Force

Figure 5a. Mobile Object Contact

Figure 5b. Reaction

Old
Azimuths

New
Azimuths

traveling at high speed, i.e., faster than about 216 KPH
each, they pass through each other rather than colliding.
For example: two tanks, each with a radius of three
meters, would have to travel six meters in one frame to
do this. This is a totally unrealistic speed for a land or sea
vehicle but not for an air vehicle. This is due to the inabil-
ity of the functions to calculate the positions of both ve-
hicles quickly enough to realize that a collision was sup-
posed to have occurred. A time interpolation of the
movement of the vehicles will solve this.

Achievement Of Goals

All collisions between fixed and moving objects in
NPSNET-2 are detected and respond in real-time and in
a realistic manner. The collisions between moving ob-
jects is adequate due to the normally slow speed of tacti-
cal land vehicles. The effects are realistic and are close to
what would occur in the real world.

Conclusions

Realism for simulation is maintained by allowing
correct physically-based modeling characteristics to oc-
cur in response to transient events within the virtual
world. The real-time collision detection and response al-
low the user to interact with the virtual world and with
other networked players.

One of the system’s limitations is that it cannot detect
collisions between two quickly moving objects. Time in-
terpolation needs to be integrated into the system in order
to detect all collisions between two moving objects.
Moreover, the system will only detect collisions between
two objects, whether they are moving or not. An implied
limitation is that all objects in the world are spherical,
when in fact, few are. Detections are done on spheres and
therefore have a margin for error on the virtual objects.
The final limitation is that fixed objects that are large, in
comparison to the size of the gridsquare, and are located
near the borders of gridsquares may not be detected until
after they have been penetrated (Figure 6). However,
there are only a small number of these objects in the vir-

January 25, 1994 7

tual world.

Ideas For Future Projects

Only a few of the physically-based modeling character-
istics were used in determining the response to colli-
sions. Obviously, the remainder of those characteristics
can be added for more realism. Actual laws of physics
were also avoided due to their computational intensity.
However, for every area that is added to obtain more re-
alistic affects there is a cost in time. Too many will cause
the real-time constraints to be exceeded and cost more
than the system can afford. Faster hardware and/or soft-
ware will allow these constraints to be met. Future work
is needed to include all of the physically-based character-
istics.

.
125 Meters

Figure 6. Border Object Limitation

Vehicle

Azimuth Object Located
in this Gridsquare

January 25, 1994 8

APPENDIX A Collision Response

.

Figure A.1-A Typical Scene From Inside a Vehicle in the Virtual Hunter-Liggett

Negative #2

Figure A.2-Imminent Collision with Tree

Negative #3

January 25, 1994 9

Figure A.3-Slow Speed Collision with a Tree

Negative #6

Figure A.4-High Speed Collision with a Tree

Negative #7

January 25, 1994 10

Figure A.5-Imminent Collision with Tower

Negative #9

Figure A.6-Slow Speed Collision with Tower

Negative #12

January 25, 1994 11

Figure A.7-High Speed Collision with Tower

Negative #10

January 25, 1994 12

References

[Chee90] Cheeseman, Curtis P.,Moving Platform
Simulator III: An Enhanced High-
Performance Real-Time Graphics
Simulator With Multiple Resolution
Display and Lighting, M.S. Thesis,
Naval Postgraduate School, Monterey,
CA, June 1990.

[Garv88] Garvey, Richard E., Jr., and Monday,
Paul, “SIMNET (SIMulator
NETworking)”, BBN Systems and
Technologies, Bellevue, WA, July 28,
1988.

[Glas89] Glassner, Andrew S., editor,An
Introduction to Ray Tracing, Academic
Press, San Diego, CA, 1989.

[Glas90] Glassner, Andrew S., editor,Graphics
Gems, Academic Press, San Diego, CA,
1990.

[Hahn88] Hahn, James K., “Realistic Animation
of Rigid Bodies”,Computer Graphics,
Vol 22, no. 4, pp. 299 - 308, August
1988.

[Hopc83] Hopcroft, J. E., Schwartz, J. T. and
Sharir, M., “Efficient Detection of
Intersections Among Spheres”,The
International Journal of Robotics, Vol 2,
no. 4, pp. 77 - 80, Winter 1983.

[Kern78] Kernighan, Brian W., and Ritchie,
Dennis M., The C Programming
Language, Prentice-Hall, Englewood
Cliffs, NJ, 1978.

[Lang90] Lang, Eric and Wever, Pete,SDIS
Version 3.0 User’s Guide: Interchange
Specification, Class Definitions,
Application Programmer’s Interface,
BBN Systems and Technologies,
Bellevue, WA, August 1990.

[Mona91] Monahan, James G., NPSNET:
Physically-Based Modeling
Enhancements to an Object File
Format, M.S. Thesis, Naval
Postgraduate School, Monterey, CA,
September 1991.

[Moor88] Moore, Mathew and Wilhelms, Jane,
“Collision Detection and Response for
Computer Animation”, Computer
Graphics, Vol 22, no. 4, pp. 289 - 298,
August 1988.

[Terz87] Terzopoulos, Demetri, Platt, John, Barr,
Alan and Fleisher, Kurt, “Elastically
Deformable Models”, Computer
Graphics, Vol 21, no. 4, pp. 269 - 278,
July 1987.

[Uchi83] Uchiki, Tetsuya, Ohashi, Toshiaki and
Tokoro, Mario, “Collision Detection in
Motion Simulation”, Computers and
Graphics, Vol 7, no. 3-4, pp. 285 -293,
1983.

[Winn89] Winn, Michael C., and Strong,
Randolph P., Moving Platform
Simulator II: A Networked Real- Time
Simulator with Intervisibility Displays,
M.S. Thesis, Naval Postgraduate
School, Monterey, CA, June 1989.

[Zyda91] Zyda, Michael J., and Pratt, David R.,
“NPSNET: A 3D Visual Simulator for
Virtual World Exploration and
Experimentation”,1991 SID
International Symposium, Digest of
Technical Papers, Society for
Information Display, Playa Del Rey,
CA, pp. 361 - 363, May 1991.

